
Oxygen XML Developer 19.0
User Guide

Contents

Chapter 1: Introduction... 1

Chapter 2: Getting Started..2
What is Oxygen XML Developer...2
Getting Familiar with the Layout.. 3
Supported Document Types... 4
Resources to Help You Get Started Using Oxygen XML Developer...4
Your First Document or Project..6

Creating a New Project..6
Getting Help... 7

Help Menu...7
Frequently Used Shortcut Keys.. 10

Chapter 3: Installation...14
Installation Options..14
Windows Installation... 15

Choosing an Installer...15
System Requirements..15
Install Using the Windows Installer.. 16
Unattended Installation..16

Mac OS X Installation... 16
Choosing an Installer...16
System Requirements..16
OS X Installation...17

Linux Installation..17
Choosing an Installer...17
System Requirements..17
Linux Installation.. 18
Unattended Installation..18

Windows Terminal Server Installation... 19
Choosing an Installer...19
System Requirements..19
Install Using the Windows Installer.. 19
Configuring Windows Terminal Server... 20

Linux Server Installation..20
Choosing an Installer...20
System Requirements..20
Linux Installation.. 21
Unix / Linux Server Configuration...21

Java Web Start (JWS) Installation...21
Site-wide deployment.. 23
Licensing...23

Choosing a License Type.. 23
Obtaining a License... 24
Register a Named-User or Subscription License...24
Registering a Floating License..25

Setting up a License Server..27
Setting up an HTTP Floating License Server...27
Setting up a TCP Floating License Server Using a 32-bit Windows Installer.......................................32
Setting up a TCP Floating License Server Using All-Platforms Distribution.. 33

ii

Transferring or Releasing a License.. 35
Upgrading... 35

Checking for New Versions of Oxygen XML Developer..35
What is Preserved During an Upgrade?... 35
Upgrading the Standalone Application...36

Installing and Updating Add-ons..36
Uninstalling...37

Uninstalling the Oxygen XML Developer Standalone.. 37
Unattended Uninstall..37

Oxygen XML Developer Installer Command Line Reference..38

Chapter 4: Configuration.. 40
Preferences.. 40

Global Preferences...42
Appearance Preferences..43
Application Layout Preferences.. 46
Add-ons Preferences..47
Document Type Association Preferences..47
Encoding Preferences.. 65
Editor Preferences..66
CSS Validator Preferences.. 91
XML Preferences..91
DITA Preferences... 114
Data Sources Preferences...115
SVN Preferences.. 119
Diff Preferences... 122
Archive Preferences... 126
Plugins Preferences... 127
External Tools Preferences... 128
Menu Shortcut Keys Preferences... 130
File Types Preferences.. 131
Open/Find Resource Preferences Page... 132
Custom Editor Variables Preferences.. 134
Network Connection Settings Preferences..134
XML Structure Outline Preferences.. 137
Views Preferences... 137
Messages Preferences.. 138

Configuring Options.. 138
Customizing Default Options.. 139
Storing Global and Project Level Options.. 140
Sharing Application Settings...141
Importing/Exporting/Resetting Global Options... 142

Associating a File Extension with Oxygen XML Developer..142
Configuring the Layout of the Views and Editors...143
Configure Toolbars.. 145
Import/Export Transformation or Validation Scenarios... 147
Editor Variables..147

Custom Editor Variables..152
Custom System Properties...152
Localizing the User Interface... 155

Creating an Interface Localization File.. 155
Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer..................................156

Setting Parameters for the Application Launchers... 156
Setting Parameters in the Command Line Scripts..157
Creating Custom Startup Parameters File... 157

Chapter 5: Perspectives..158

iii

Editor Perspective..158
XSLT Debugger Perspective... 159
XQuery Debugger Perspective..160
Database Perspective... 161

Chapter 6: Editing Modes...163
Text Editing Mode... 163

Navigating the Document Content in Text Mode.. 163
Text Mode Views... 165
Syntax Highlight Depending on Namespace Prefix.. 183
Presenting Validation Errors in Text Mode.. 183
Bidirectional Text Support in Text Mode..184

Grid Editing Mode..185
Layouts: Grid and Tree.. 185
Grid Mode Navigation..186
Bidirectional Text Support in Grid Mode..187

Design Editing Mode (XML Schema Diagram Editor)...188
Navigation in the XML Schema Design Mode...189
XML Schema Outline View..189
XML Schema Attributes View... 191
XML Schema Facets View.. 193
XML Schema Palette View..194

Chapter 7: Editing Documents... 195
Working with Unicode... 196

Opening and Saving Documents with Unsupported Characters.. 196
Inserting Symbols.. 196
Unicode Fallback Font Support...198

Creating and Working with Documents...199
Creating New Documents and Templates... 199
Opening Documents.. 205
Saving Documents... 207
Opening and Saving Remote Documents.. 208
Switching and Moving File Tabs...213
Closing Documents..214
Contextual Menu of the Current Editor Tab...214
Viewing File Properties..215

Searching Documents... 215
Open/Find Resource View...215
Open/Find Resource Dialog Box...218
Searching in Content... 220
Searching in File Paths..221
Searching in Reviews...222
Technical Aspects..222

Using Projects to Group Documents... 222
Creating a New Project... 222
Project View..223
Sharing a Project - Team Collaboration... 231
Master Files Support... 233

Editing XML Documents... 237
Editing XML Documents in Text Mode.. 237
Editing XML Documents in Grid Mode...272
Validating XML Documents...275
XML Quick Fixes.. 292
Associating a Schema to XML Documents...294
Finding and Replacing Text in the Current File..302
Finding and Replacing Text in Multiple Files...306

iv

Search and Refactoring Actions for IDs and IDREFS..309
Working with Modular XML Files in the Master Files Context... 311
XML Resource Hierarchy/Dependencies View.. 312
Working with XML Catalogs..314
Editing Large XML Documents with DTD Entities or XInclude... 316
Viewing Status Information...318
Making a Persistent Copy of Results...318
Editor Highlights...319
Printing a Document..320
Refactoring XML Documents..321

Editing XSLT Stylesheets.. 340
Editing XSLT Stylesheets in the Master Files Context.. 340
Validating XSLT Stylesheets..340
XSLT Quick Fix Support...342
Content Completion in XSLT Stylesheets...344
Syntax Highlighting in XSLT.. 348
XSLT Outline View..349
XSLT/XQuery Input View..352
XSLT Resource Hierarchy/Dependencies View..355
XSLT Component Dependencies View... 358
Highlight Component Occurrences.. 359
Finding XSLT References and Declarations... 359
XSLT Stylesheet Component Documentation Support..360
XSLT Refactoring Actions..360
XSLT Quick Assist Support... 363
XSLT Unit Test (XSpec)... 365
Generating Documentation for an XSLT Stylesheet.. 366
Compiling an XSL Stylesheet for Saxon.. 373

Editing Ant Build Files...374
Editing Ant Build Files in the Context of Master Files.. 374
Validating Ant Build Files.. 374
Ant Quick Fix Support..375
Content Completion in Ant Build Files... 375
Syntax Highlighting in Ant Files..376
Ant Outline View...376
Ant Resource Hierarchy/Dependencies View.. 379
Ant Component Dependencies View..380
Highlight Component Occurrences.. 380
Find References and Declarations of Ant Components..380
Ant Refactoring Actions.. 381
Ant Quick Assist Support.. 382

Editing XML Schemas...382
Design Editing Mode (XML Schema Diagram Editor)... 382
Editing XML Schema in Text Editing Mode... 413
Editing XML Schema in the Master Files Context...413
Validating XML Schema Documents..414
Quick Fixes for DTD, XSD, and Relax NG Errors.. 414
Content Completion in XML Schema...415
Syntax Highlighting in XML Schema.. 415
XML Schema Outline View..416
XML Schema Attributes View... 418
XML Schema Palette View..419
XML Schema Facets View.. 420
XML Schema Resource Hierarchy / Dependencies View... 421
Component Dependencies View for XML Schema... 423
Highlight Component Occurrences.. 425
Searching and Refactoring Actions in XML Schemas.. 425
XML Schema Quick Assist Support... 426

v

Generating Sample XML Files...427
Generating Documentation for an XML Schema...432
Converting Schema to Another Schema Language.. 440
Converting Database to XML Schema... 442
Flatten an XML Schema..443
XML Schema Regular Expressions Builder..445
XML Schema 1.1..446
Setting the XML Schema Version...447

Editing XQuery Documents...448
XQuery Validation...448
Content Completion in XQuery... 449
Syntax Highlighting in XQuery...449
Formatting and Indenting XQuery Documents.. 450
Folding in XQuery Documents.. 450
XQuery Outline View.. 451
XQuery Builder View.. 452
XSLT/XQuery Input View..454
Generating HTML Documentation for an XQuery Document... 456
Transforming XML Documents Using XQuery...457

Editing WSDL Documents...460
Editing WSDL Documents in the Master Files Context...461
Validating WSDL Documents.. 461
Content Completion Assistance in WSDL Documents... 461
WSDL Syntax Highlighting...462
WSDL Outline View.. 463
WSDL Resource Hierarchy/Dependencies View in WSDL Documents.. 466
Component Dependencies View in WSDL Documents... 468
Highlight Component Occurrences in WSDL Documents...469
Searching and Refactoring Operations in WSDL Documents...470
Quick Assist Support in WSDL Documents... 472
Generating Documentation for WSDL Documents..473
WSDL SOAP Analyzer.. 477

Editing CSS Stylesheets..479
Validating CSS Stylesheets... 480
Content Completion in CSS Stylesheets.. 480
Syntax Highlighting in CSS Files...481
CSS Outline View... 481
Folding in CSS Stylesheets... 482
Formatting and Indenting CSS Stylesheets (Pretty Print)...482
Minifying CSS Stylesheets...482

Editing LESS CSS Stylesheets..482
Validating LESS Stylesheets..483
Content Completion in LESS Stylesheets.. 483
Syntax Highlighting in LESS Files...483
Compiling LESS Stylesheets to CSS...484

Editing Relax NG Schemas...484
Editing Relax NG Schema in the Master Files Context...484
Relax NG Schema Diagram Editor..485
Validating Relax NG Schema Documents..488
Content Completion in Relax NG Schemas... 488
Syntax Highlighting in Relax NG Schemas.. 489
Quick Fixes for DTD, XSD, and Relax NG Errors.. 489
Relax NG Outline View...490
RNG Resource Hierarchy/Dependencies View.. 492
Component Dependencies View for RelaxNG Schemas...494
Searching and Refactoring Actions in RNG Schemas.. 495
RNG Quick Assist Support.. 496
Configuring a Custom Datatype Library for a RELAX NG Schema...497

vi

Editing NVDL Schemas... 498
NVDL Schema Diagram...498
Validating NVDL Schema Documents..500
Content Completion in NVDL Schemas... 500
Syntax Highlighting in NVDL Schemas.. 501
NVDL Outline View...501
Component Dependencies View for NVDL Schemas... 501
Searching and Refactoring Actions in NVDL Schemas.. 502

Editing JSON Documents... 503
Editing JSON Documents in Text Mode...503
Editing JSON Documents in Grid Mode...505
Validating JSON Documents...506
Syntax Highlighting in JSON Documents...506
Folding in JSON... 506
JSON Outline View...506
XML to JSON Converter.. 507

Editing StratML Documents..508
Editing XLIFF Documents... 508
Editing JavaScript Documents... 509

JavaScript Editing Actions.. 509
Validating JavaScript Files.. 510
Content Completion in JavaScript Documents... 511
Syntax Highlighting in JavaScript Documents...511
JavaScript Outline View...512

Editing XProc Scripts.. 512
Editing Schematron Schemas.. 514

Editing Schematron Schema in the Master Files Context.. 515
Validating Schematron Documents..515
Presenting Schematron Validation Issues... 515
Content Completion in Schematron Documents...516
Syntax Highlighting in Schematron.. 517
XML Schema or RELAX NG with Embedded Schematron Rules..517
Schematron Outline View..518
Schematron Resource Hierarchy/Dependencies View..519
Highlight Component Occurrences in Schematron Documents...521
Searching and Refactoring Operations in Schematron Documents...521
Quick Assist Support in Schematron Documents...523

Editing Schematron Quick Fixes.. 524
Schematron Quick Fixes (SQF)...524
Defining Schematron Quick Fixes...524
Validating Schematron Quick Fixes..529
Content Completion in SQF...530
Highlight Quick Fix Occurrences in SQF.. 530
Searching and Refactoring Operations in SQF.. 530
Embed Schematron Quick Fixes in Relax NG or XML Schema.. 531
Integrating SQF in a Framework... 532

Editing SVG Files... 533
Standalone SVG Viewer...533
Integrated SVG Viewer in the Results Panel..534

Editing XHTML Documents.. 535
Editing Markdown Documents... 535

Markdown Editor.. 536
Creating New Markdown Documents.. 537
Actions Available in the Markdown Editor...537
Syntax Highlighting in the Markdown Editor... 542
Automatic Validation in Markdown Documents..542
Working with Markdown Documents in DITA..543
Markdown Editor Syntax Rules and Specifications...543

vii

Editing Non-XML Files...552
Spell Checking... 553

Spell Check Dictionaries and Term Lists... 554
Learned Words... 558
Ignored Words (Elements)...558
Automatic Spell Check.. 558
Spell Check Multiple Files... 559

Loading Large Documents..559
File Sizes Smaller than 300 MB..560
File Sizes Greater than 300 MB..560

Scratch Buffer.. 560
Handling Read-Only Files..561
Editing Documents with Long Lines.. 561
XML Digital Signatures... 561

Digital Signatures Overview.. 561
Certificates..563
Canonicalizing Files... 563
Signing Files... 564
Verifying Signature...566
Example of How to Digitally Sign XML Files or Content...566

Compare Files or Directories..567
Compare Files.. 567
Compare Directories.. 579
Compare Directories Against a Base (3-Way)... 583

Chapter 8: Document Types and Frameworks... 588
Predefined Document Types (Frameworks)..588

DocBook 4 Document Type (Framework)..588
DocBook 5 Document Type (Framework)..595
DocBook 5.1 Assembly... 603
DocBook 5.1 Topic...604
DocBook Targetset Document Type (Framework).. 605
DITA Topics Document Type (Framework).. 605
DITA Map Document Type (Framework)..606
XHTML Document Type (Framework)..630
TEI P5 Document Type (Framework)... 631
TEI ODD Document Type (Framework).. 632
jTEI Document Type (Framework).. 633
JATS Document Type (Framework)... 634
EPUB Document Type (Framework)... 634

Other Supported Document Types...635

Chapter 9: Publishing..637
Transformation Scenarios.. 637

Built-in Transformation Scenarios.. 638
Creating New Transformation Scenarios...669
Editing a Transformation Scenario...706
Duplicating a Transformation Scenario..707
Configure Transformation Scenario(s) Dialog Box..707
Apply Batch Transformations... 710
Sharing Transformation Scenarios... 710
Transformation Scenarios View..711
Debugging PDF Transformations... 713
Configuring Calabash with XEP..714
Integration of an External XProc Engine..714
XSLT Processors.. 714
XSL-FO Processors.. 717

viii

WebHelp System Output...720
WebHelp Responsive System... 721
WebHelp Classic System.. 769
WebHelp Classic Mobile System (Deprecated)...804
Using the Oxygen XML WebHelp Plugin to Automate Output..826

Chapter 10: Working with XPath Expressions.. 838
XPath Toolbar.. 838
XPath Builder View..840
XPath Expression Results View... 842
XPath and XML Catalogs... 843
XPath Prefix Mapping... 843

Chapter 11: Working with Archives... 844
Browsing Archives...844
Working with Archive Files... 846

Creating an Archive..847
Editing and Saving Files Inside an Archive..848
Migrating Archives to DITA or TEI.. 848

Chapter 12: Databases and CMS.. 849
Working with Databases... 849

Data Source Explorer View..849
Table Explorer View... 850
Database Connection Support..853
WebDAV Connections..892
SQL Execution Support..894
XQuery and Databases.. 896

Content Management System (CMS) Integration...901
Integration with Documentum (CMS) (deprecated).. 902
Integration with Microsoft SharePoint... 907

Chapter 13: Importing Data..913
Import from Text Files.. 913
Import from MS Excel Files..915

Import Data from MS Excel 2007 or Newer.. 916
Import Database Data as an XML Document...916
Import from HTML Files... 918
Import Content Dynamically... 919

Chapter 14: XSLT / XQuery Debugging... 922
Debugger Layout..923

Control Toolbar...924
Debugging Information Views...926
Multiple Output Documents in XSLT 2.0 and XSLT 3.0...935

Working with the XSLT / XQuery Debugger.. 935
Steps in a Typical Debugging Process.. 936
Using Breakpoints.. 936
Identify the XSLT / XQuery Expression that Generated Particular Output... 937

Debugging Java Extensions... 939
Supported Processors for XSLT / XQuery Debugging..940
Performance Profiling of XSLT Stylesheets and XQuery Documents..940

XSLT/XQuery Performance Profiling Overview..940
Working with XSLT/XQuery Profiler.. 940

ix

Chapter 15: Using the Oxygen XML SDK.. 944
Extending Oxygen XML Developer with Plugins... 944

General Configuration of an Oxygen XML Developer Plugin.. 944
Installing an Oxygen XML Developer Plugin..945
Types of Plugin Extensions Available with the SDK..946
Oxygen XML Developer Plugin How to.. 955
Creating and Running Automated Tests.. 959
Debugging a Plugin Using the Eclipse Workbench... 960
Debugging an Oxygen SDK Extension Using the Eclipse Workbench.. 961
Disabling a Plugin.. 961

Chapter 16: Tools..963
XML Refactoring..963

Predefined Refactoring Operations.. 966
Custom Refactoring Operations... 970
Storing and Sharing Refactoring Operations... 978
Localizing XML Refactoring Operations...979

Generate Sample XML Files... 980
Schema Tab (Generate Sample XML Files Tool)...980
Options Tab (Generate Sample XML Files Tool)... 981
Advanced Tab (Generate Sample XML Files Tool)..983
Running the Generate Sample XML Files Tool from the Command Line.. 984

Generate/Convert Schema..985
Convert DB Structure to XML Schema.. 987
Flatten Schema..987
XML to JSON... 989
Compile XSL Stylesheet for Saxon.. 990
Format and Indent Files..991
Generate Documentation.. 992

XML Schema Documentation... 992
XSLT Stylesheet Documentation...995
XQuery Documentation..998
WSDL Documentation..999

Canonicalize...1001
Sign... 1002
Verify Signature... 1004
WSDL SOAP Analyzer... 1004

Testing Remote WSDL Files..1006
UDDI Registry Browser.. 1006

XML Schema Regular Expressions Builder... 1007
Large File Viewer...1009
Hex Viewer...1011
SVG Viewer.. 1011
Tree Editor..1013
Compare Files..1013

Toolbar and Contextual Menu Actions of the Compare Files Tool.. 1019
Compare Files Tool Menus... 1021

Compare Directories... 1024
Toolbar and Contextual Menu Actions of the Compare Directories Tool.. 1026
Compare Directories Tool Menus...1027
Compare Images..1028

Compare Directories Against a Base (3-Way).. 1028
Syncro SVN Client... 1033

Main Window..1033
Getting Started... 1043
Syncro SVN Client Views.. 1093

x

Revision Graph of a SVN Resource..1119
Oxygen XML Developer SVN Preferences... 1123
Entering Local Paths and URLs.. 1123
Technical Issues...1124

External Tools.. 1126

Chapter 17: Common Problems.. 1128
Performance Problems and Solutions.. 1128

Out of Memory on External Processes..1128
Too many nested apply-templates calls Error When Running a Transformation..............................1128
Performance Issues with Large Documents... 1129

Misc Problems and Solutions.. 1129
'Address Family Not Supported by Protocol Family; Connect' Error.. 1129
Alignment Issues of the Main Menu on Linux Systems Based on Gnome 3.x................................1130
Archive Distribution Fails to Run on Mac OS 10.12 (Sierra)...1130
Cannot Associate Oxygen XML Developer With a File Type on My Windows Computer................1130
Cannot Connect to SVN Repository from Repositories View...1131
Cannot Open XML Files in Internet Explorer... 1131
Compatibility Issue Between Java and Certain Graphics Card Drivers... 1132
Crash at Startup on Windows with an Error About the nvoglv32.dll File.................................. 1132
Damaged File Associations on OS X... 1132
Details to Submit in a Request for Technical Support Using the Online Form................................ 1133
DITA Map Transformation Fails (Cannot Connect to External Location)...1133
DITA PDF Transformation Fails.. 1134
DITA to CHM Transformation Fails.. 1134
Drag and Drop Without Initial Selection Does Not Work.. 1134
Gray Window on Linux With the Compiz / Beryl Window Manager... 1135
Image Appears Stretched Out in the PDF Output... 1135
Keyboard Shortcuts Do Not Work.. 1136
Keyboard Language Resets to Default on Windows...1136
MSXML 4.0 Transformation Issues..1136
Navigation to the web page was canceled when viewing CHM on a Network Drive...................... 1137
Out Of Memory Error When Opening Large Documents...1137
Oxygen XML Developer Crashed on My Mac OS X Computer... 1137
Oxygen XML Developer Takes Several Minutes to Start...1137
Scroll Function of my Notebook Trackpad is Not Working.. 1138
Segmentation Fault Error on Mac OS X...1138
Set Specific JVM Version on Mac OS X.. 1138
Signature Verification Failed Error on a Resource from Documentum..1138
Special Characters are Replaced with a Square in Editor...1139
Syntax Highlight Not Available in Eclipse Plugin.. 1139
TocJS Transformation Does not Generate All Files for a Tree-Like TOC... 1139
Topic References Outside the Main DITA Map Folder..1140
Wrong Highlights of Matched Words in a Search in User Manual...1140
XML Document Takes a Long Time to Open.. 1140
XSLT Debugger Is Very Slow...1141

Chapter 18: Glossary.. 1142

Index...1149

Copyright..

xii

Introduction 1
Welcome to the User Manual of Oxygen XML Developer 19.0.

Oxygen XML Developer is a cross-platform application designed to accommodate all of your XML editing, authoring,
developing, and publishing needs. It is the best XML editor available for document development using structured mark-
up languages such as XML, XSD, Relax NG, XSL, DTD.

It offers developers a powerful Integrated Development Environment and the intuitive Graphical User Interface of
Oxygen XML Developer is easy to use and provides robust functionality for content editing, project management,
and validation of structured mark-up sources. Coupled with XSLT and FOP transformation technologies, Oxygen XML
Developer offers support for generating output to multiple target formats, including: PDF, PS, TXT, HTML, JavaHelp,
WebHelp, and XML.

This user guide is focused on describing features, functionality, the application interface, and to help you quickly get
started. It also includes a vast amount of advanced technical information and instructional topics that are designed to
teach you how to use Oxygen XML Developer to accomplish your tasks. It is assumed that you are familiar with the use
of your operating system and the concepts related to XML technologies and structured mark-up.

1

Getting Started 2
Topics:

• What is Oxygen XML Developer
• Getting Familiar with the Layout
• Supported Document Types
• Resources to Help You Get Started Using Oxygen XML Developer
• Your First Document or Project
• Getting Help
• Frequently Used Shortcut Keys

This section provides a variety of resources to help you get the most out of the application. Typically, the first step
of getting started with Oxygen XML Developer would be to install the software. For detailed information about that
process, see the Installation chapter.

After installation, when you launch Oxygen XML Developer for the first time, you are greeted with a Welcome dialog
box. It presents upcoming events, useful video demonstrations, helpful resources, the tip of the day, and also gives you
easy access to recently used files and projects and to create new ones.

Figure 1: Welcome Dialog Box

If you do not want it to be displayed every time you launch Oxygen XML Developer, deselect the Show at startup option
in the bottom-left corner of the dialog box. To display it any time, go to Help > Welcome.

What is Oxygen XML Developer
Oxygen XML Developer is the best XML editor available and is a complete XML development and authoring
solution. It is designed to accommodate a large number of users, ranging from beginners to XML experts. It is the
only XML tool that supports all of the XML schema languages and provides a large variety of powerful tools for
editing and publishing XML documents.

2

You can use Oxygen XML Developer to work with most XML-based standards and technologies. It is a cross-
platform application available on all the major operating systems (Windows, Mac OS X, Linux, Solaris) and can be
used either as a standalone application or as an Eclipse plugin.

For a list of many of the features and technologies that are included in Oxygen XML Developer, see the Oxygen
Website.

Getting Familiar with the Layout
Oxygen XML Developer includes several perspectives and editing modes to help you accomplish a wide range of
tasks. Each perspective and editing mode also includes a large variety of helper view, menu actions, toolbars, and
contextual menu functions.

Regardless of the perspective or editing mode that you are working with, the default layout is comprised of the
following areas:
Menus

Menu driven access to all the features and functions available in Oxygen XML Developer. Most of the menus
are common for all types of documents, but Oxygen XML Developer also includes some context-sensitive and
framework-specific menus and actions that are only available for a specific context or type of document.

Toolbars
Easy access to common and frequently used functions. Each icon is a button that acts as a shortcut
to a related function. Some of the toolbars are common for all perspectives, editing modes, and types
of documents, while others are specific to the particular perspective or mode. Some toolbars are also
framework-specific, depending on the type of document that is being edited. All the toolbars can be configured
to suit your specific needs.

Helper Views
Oxygen XML Developer includes a large variety of dockable views to assist you with editing, viewing,
searching, validating, transforming, and organizing your documents. Many of the views also contain useful
contextual menu actions, toolbar buttons, or menus. The most commonly used views for each perspective
and editing mode are displayed by default and you can choose to display others to suit your specific needs.
The layout of the views can also be configured according to your preferences. \

Editor Pane
The main editing area in the center of the application. Each editing mode provides a main editor pane where
you spend most of your time reading, editing, applying markup, and validating your documents. The editor
pane in each editing mode also includes a variety of contextual menu actions and other features to help
streamline your editing tasks.

Perspectives
Oxygen XML Developer includes several different perspectives that you can use to work with your documents.
The Editor perspective is the most commonly used perspective used for displaying and editing the content
of your XML documents, and it is the default perspective when you start Oxygen XML Developer for the first
time. Oxygen XML Developer also includes a Database perspective that allows you to manage databases
and their connections and a few debugging perspectives that allow you to detect problems in XSLT or XQuery
transformations.

Status Bar
The status bar at the bottom of the application contains some useful information when your working with
documents. It includes the following information, in the order it is displayed from left to right:

• The path of the current document.
• The Unicode value for the character directly to the right of the current cursor position.
• The status of the current document. The status of Modified is displayed for documents that have not yet

been saved. Otherwise, this section is left blank.
• In Text editing mode, the current line and character position is displayed.
• If the Check for notifications option is selected, this section will show you when new messages have

been received. The types of messages include the addition of new videos on the Oxygen XML Developer

Getting Started 3

https://www.oxygenxml.com/#features
https://www.oxygenxml.com/#features

website, the announcement of upcoming webinars and conferences where the Oxygen XML Developer
team will participate, and more.

• The memory consumption, including the memory used by the application and the maximum amount that
is allocated to the application.

• If the Show memory status option is selected, a Free unused memory icon is displayed in the bottom-
right corner and you can use this icon to free up unused memory.

Supported Document Types
You can use the main editing pane in Oxygen XML Developer to edit a large variety of document types.

The supported document types include the following:

• - XML documents
• - XSLT stylesheets
• - XML Schema
• - DTD (Document Type Definition) schemas
• - RELAX NG full syntax schemas
• - RELAX NG compact syntax schemas
• - NVDL (Namespace-based Validation Dispatching Language) schemas
• - XSL:FO documents
• - XQuery documents
• - WSDL documents
• - Schematron documents
• - JavaScript documents
• - Python documents
• - CSS documents
• - LESS documents
• - XProc scripts
• - SQL documents
• - JSON documents
• - Ant build scripts
• - Markdown documents

Resources to Help You Get Started Using Oxygen XML Developer

Configuring Oxygen XML Developer

There are numerous ways that you can configure Oxygen XML Developer to accommodate your specific needs.

• See the Configuring Oxygen section for details on the various ways that you can configure the application and
its features.

Video Tutorials

The Oxygen XML Developer website includes numerous video demonstrations and webinars that present many of
the features that are available in Oxygen XML Developer and show you how to complete specific tasks or how to
use the various features.

• Go to the Oxygen XML Developer Videos Page to see the list of video tutorials and webinars.

Getting Started 4

https://www.oxygenxml.com/videos.html

Oxygen XML Developer Documentation

The Oxygen XML Developer documentation includes a plethora of sections and topics to provide you with a
variety of information, ranging from basic authoring tasks to advanced developer techniques. You can, of course,
search through the documentation using standard search mechanisms, but you can also place the cursor in
any particular position in the interface and use the F1 key to open a dialog box that presents a section in the
documentation that is appropriate for the context of the current cursor position. Aside from the other topics in
this Getting Started section, the following are links to other sections of the documentation that might be helpful
for your specific needs:

• Text Editing Mode Section - Provides information about the Text editor.
• Editing Documents Section - Includes information about editing numerous different types of documents.
• WebHelp System Output Section - Provides information about the WebHelp system that can be used for

publishing content.
• Importing Data Section - Provides information about importing data from text files, MS Excel files, database

data, and HTML files.

Sample Documents

Your installation of Oxygen XML Developer includes a large variety of sample documents and projects that you
can use as templates to get started and to experiment with the various features and technologies. They are
located in the samples folder that is located in the installation directory of Oxygen XML Developer. You will find
files and folders for various types of documents, including the following:

• sample.xpr file - A sample project file that will allow you to experiment with how projects can be structured
and used. When you open this project file, you will be able to see all the sample files and folders in the Project
view.

• personal files - A collection of interrelated sample files that will allow you to experiment with the structure
and relationship between XML files, stylesheets, and schemas.

• Various document type folders - The various folders contain sample files for numerous document types, such
as CSS, DITA, DocBook, ePub, TEI, XHTML, and many others.

Other Resources

The following list includes links to various other resources that will help you get started using the features of
Oxygen XML Developer:

• See the Oxygen XML Developer Blog Site for a large variety of current and archived blogs in regards to
numerous features, requests, and instructional topics.

• Take advantage of the Oxygen XML Developer Forum to see various announcements and learn more about
specific issues that other users have experienced.

• If you are using DITA, see the incredibly helpful DITA Style Guide Best Practices for Authors.
• To learn about the WebHelp features in Oxygen XML Developer, see the Publishing DITA and DocBook to

WebHelp section of the website.
• For more information about various additional tools that are integrated into Oxygen XML Developer, see the

Tools section.
• See the External Resource Page for links to various other helpful resources, such as discussion lists, external

tutorials, and more.
• See the Oxygen SDK section for details about the SDK that allows you to extend and develop Oxygen XML

Developer frameworks and plugins, and to integrate Eclipse plugins.
• For a list of new features that were implemented in the latest version of Oxygen XML Developer, see the What's

New Section of the Website
• You can select the Tip of the Day action in the Help menu to display a dialog box that includes a variety of tips

for using Oxygen XML Developer.
• You can select Show Dynamic Help view from the Help menu to dynamically opens a topic that is relevant to

the focused editor, view, or dialog box.

Getting Started 5

http://blog.oxygenxml.com/
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html
https://www.oxygenxml.com/xml_webhelp.html
https://www.oxygenxml.com/xml_webhelp.html
https://www.oxygenxml.com/external_resources.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/xml_developer/whats_new.html
https://www.oxygenxml.com/xml_developer/whats_new.html

Your First Document or Project
This section includes several topics that will help you get started with your first document or project.

Creating a New Project
Oxygen XML Developer allows you to organize your XML-related files into projects. This helps you manage and
organize your files and also allows you to perform batch operations (such as validation and transformation) over
multiple files. You can also share your project settings and transformation/validation scenarios with other users.
Use the Project view to manage projects, and the files and folders contained within.

Creating a New Project

To create a new project, select New Project from the Project menu, the New menu in the contextual menu, or
the drop-down menu at the top-left of the Project view. This opens a dialog box that allows you to assign a name
to the new project and adds it to the structure of the project in the Project view.

Adding Items to the Project

To add items to the project, select any of the following actions that are available when invoking the contextual
menu in the Project view:

New > File
Opens a New file dialog box that helps you create a new file and adds it to the project structure.

New > Folder
Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure
of the project.

The project itself is considered a logical folder. You can add a logical folder, or content to a logical folder, by using
one of the following actions that are available in the contextual menu, when invoked from the project root:

New > Logical Folder

Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X -).
New > Logical Folders from Web

Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical
folders. The newly created logical folders contain the file structure of the folder it points to.

Add Folder
Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file
system (the icon of this action is different on Mac OS X).

Add Files
Adds links to files on the local file system.

Add Edited File
Adds a link to the currently edited file in the project.

Using Linked Folders (Shortcuts)

Another easy way to organize your XML working files is to place them in a directory and then to create a
corresponding linked folder in you project. If you add new files to that folder, you can simply use the Refresh
(F5) action from the toolbar or contextual menu and the Project view will display the existing files and
subdirectories. If your files are scattered amongst several folders, but represent the same class of files, you might
find it useful to combine them in a logical folder.

Getting Started 6

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer (Mac OS
X Finder) to the project tree, or by selecting Add Folder in the contextual menu from the project root. Linked
folders are displayed in the Project view with bold text. To create a file inside a linked folder, select the New >

File action from the contextual menu. The linked files presented in the Project view are marked with a special
icon.

Note: Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

For more information on managing projects and their content, see Project View on page 165.

For more details about how you can share projects with other users, see Sharing a Project - Team Collaboration on
page 231.

Related Information:
Using Projects to Group Documents on page 222

Getting Help
If you run into specific problems while using Oxygen XML Developer you can take advantage of a variety of
support related resources. Those resources include the following:

• The Oxygen XML Developer Support Section of the Website
• The Oxygen XML Developer Forum
• The Oxygen XML Developer Video Tutorials
• The Common Problems and Solutions Section of the User Manual
• The Online Technical Support Form

The application also includes various specific help-related resources in the Help menu.

Help Menu
The Oxygen XML Developer Help menu provides various resources to assist you with your tasks.

This menu includes the following actions or options:
Welcome

This option opens the Welcome screen that includes some resources to assist you with using Oxygen XML
Developer.

Help (F1)
Use this action (or the F1 key) to open a dialog box that presents a section in the User Manual that is
appropriate for the context of the current cursor position. If the Use online help option is selected, this action
will open the User Manual in an online mode.

Use online help
If this option is selected, the Help (F1) action will open the Oxygen XML Developer User Manual in an online
mode.

Show Dynamic Help view
Use this action to open a view that loads the latest online WebHelp version of the Oxygen XML Developer
User Manual, and dynamically opens a topic that is relevant to the focused editor, view, or dialog box. It
requires Java 1.8 and an online connection. In Windows, if a Java 1.8 version is not detected, you will be
advised to upgrade, while in Linux and Mac OS X with Java 1.7 and lower, Oxygen XML Developer will attempt
to load an offline version of the documentation. In all three operating systems, with Java 1.8, if an online
connection is not detected, you will receive an error message advising you to check your proxy settings.

You can also open the Dynamic Help view by selecting it from the Window > Show View menu.

Install new add-ons
Opens a dialog box that allows you to install new add-ons to extend the functionality of Oxygen XML
Developer.

Getting Started 7

https://www.oxygenxml.com/support.html
https://www.oxygenxml.com/forum/
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/techSupport.html

Check for add-ons updates
Opens a dialog box that allows you to check for updates on installed add-ons.

Manage add-ons
Opens a dialog box that allows you to manage installed add-ons.

Check for a New Version
Use this action to view information about the latest version of Oxygen XML Developer.

Browse Oxygen Website
Opens the Oxygen XML Developer website in your default internet browser.

Register
If you encounter problems with your Oxygen XML Developer license, you can use this option to open a dialog
box that provides options for obtaining or using a license key.

Lock/Unlock floating license
If you are using a Floating License, you can lock it so that it does not get released to the pool unless you or the
system administrator unlocks it.

Report problem
You can use this option to open a dialog box that allows you to write the description of a problem that was
encountered while using the application. You can also select additional information to be sent to the technical
support team in the five tabs:

• General info - You can edit your contact details in case you want to be contacted for further details or to
be notified of a resolution.

• Class Loader URLs - You can choose whether or not to include the listed Class Loader URLs with your
report.

• System properties - You can choose whether or not to include the listed system property details with your
report.

Tip: You are able to change the URL where the reported problem is sent by using the
com.oxygenxml.report.problems.url system property. The report is sent in XML format through the report
parameter of the POST HTTP method.

• Plugins - You can choose whether or not to include details about your installed plugins with your report.
• Frameworks - You can choose whether or not to include details about your installed frameworks with your

report.

Support Center
Use this option to open the Oxygen XML Developer Support Section of the Website.

Support Tools > Clipboard Inspector
Opens a dialog box that displays extensive details of all the transferable objects from the clipboard. This is
helpful if you experience problems while copying content from other applications and pasting it into Oxygen
XML Developer. You can use the Copy button to copy all of this data and then paste it into an email to be sent
to the Oxygen support team.

Support Tools > Randomize XML text content
Use this action when you need to send samples to the Oxygen support team and you want to keep the text
content confidential. It opens a dialog box that allows you to select the resources for which the text content
will be randomized. You can then save the resources and send them to the Oxygen support team without fear
of compromising sensitive or private data. For more information, see Randomize XML Text Content on page
9.

Warning: Before using this action, it is highly recommended that you copy the XML resources to be
processed, save them in a separate folder, and then process this operation on the copies instead of
the original files. Otherwise, you may lose your original content.

Tip of the Day
Opens a dialog box that offers tips for using Oxygen XML Developer.

Getting Started 8

https://www.oxygenxml.com/support.html

About

Use this option to open a dialog box that contains information about Oxygen XML Developer and the installed
version. This dialog box includes the following tabs:

• Copyright - This tab contains general information about the product and the version of the product you
are using, along with contact details and the SGN number. Details regarding the memory usage are also
presented at the bottom of the dialog box.

• Libraries - This tab presents the list of third party libraries that Oxygen XML Developer uses. To view the
End User Licence Agreement of each library, double-click it.

• Frameworks - This tab contains a list with the framework that are bundled with Oxygen XML Developer.
• System Properties - This tab contains a list with system properties and their values. The contextual menu

allows you to select and copy the properties.

Related Information:
Details to Submit in a Request for Technical Support Using the Online Form on page 1133

Randomize XML Text Content

Oxygen XML Developer includes an action that randomizes the text content of an XML document. This action is
available in the Help > Support Tools menu. It is helpful if you need to send XML samples to the Oxygen support
team and you want to keep the text content confidential. It opens a dialog box that allows you to select the
resources for which the text content will be randomized. You can then save the resources and send them to the
Oxygen support team without fear of compromising sensitive or private data.

Warning: Before using this action, it is highly recommended that you copy the XML resources to be
processed, save them in a separate folder, and then perform this operation on the copies instead of the
original files. Otherwise, you may lose your original content.

Figure 2: Randomize XML Text Content Dialog Box

The Randomize XML Text Content dialog box includes the following options:

Scope
Allows you to select the set of files whose text content will be randomized by the operation. You can select
from predefined resource sets (such as the current file, your whole project, the current DITA map hierarchy for
DITA projects, etc.) or you can define your own set of resources by creating a working set.

Filters
This section includes the following options:

Getting Started 9

• Include files - Allows you to filter the selected resources by using a file pattern. For example, to restrict the
operation to only analyze build files you could use build*.xml for the file pattern.

• Restrict only to known XML file types - When selected, only resources with a known XML file type will be
affected by the operation.

• Look inside archives - When selected, the resources inside archives will also be affected.

Frequently Used Shortcut Keys
Oxygen XML Developer includes numerous shortcut keys that are assigned to actions to help you edit content. All
the shortcuts that are assigned to actions are displayed in the table in the Menu Shortcut Keys preference page.

For information about how to assign or configure shortcut keys, see How to Assign a Shortcut Key or Edit an
Existing Shortcut on page 131.

Table 1: Frequently Used Shortcut Keys in Oxygen XML Developer

Action Windows/Linux
Shortcut Keys

Mac/OS X Shortcut Keys Description of Default
Assigned Action

Attribute
Editor

Alt + Enter Alt + Enter • Opens the in-place
attribute editor

Beginning Ctrl + Home Command + Home • Navigates to the beginning
of the document

Check
Spelling

F7 F7 • Opens the spell
checking dialog box

Check
Well-

Formedness

Ctrl + Shift + W Command + Shift + W • Check well-formedness
of current document

Configure
Transformation

Ctrl + Shift + C Command + Shift + C • Opens the Configure
Transformation

Scenario dialog box

Content
Completion /

New Line

Enter Enter • Author mode - Opens the
content completion window

• Text mode - Moves
cursor to the next line

Content
Completion

(Text
Mode)

Ctrl + Space Command + Space • Text mode - Opens the
content completion window

Create
Bookmark

#

Ctrl + Shift + 1-9 Command + Shift + 1-9 • Create bookmarks
numbered 1 through 9

Create
Next

Bookmark

F9 F9 • Create bookmark numbered
whatever is next in sequence

Delete
Next Word

Ctrl + Delete Command + Delete • Deletes the next
word or whitespace

Getting Started 10

Action Windows/Linux
Shortcut Keys

Mac/OS X Shortcut Keys Description of Default
Assigned Action

Delete
Previous

Word

Ctrl + Backspace Command + Backspace • Deletes the previous
word or whitespace

Delete
Tags

Alt + Shift + X Command + Alt + X • Deletes the start and end
tag of the current element.

End Ctrl + End Command + End • Navigates to the end
of the document

Exit Ctrl + Q Command + Q • Exit the application

Find Ctrl + F Command + F • Opens Find/
Replace dialog box

Find Next F3 Command + G • Finds next occurrence of
the last searched term

Find
Previous

Shift + F3 Command + Shift + G • Finds previous occurrence
of the last searched term

Go To
Bookmark

Ctrl + 1-9 Command + 1-9 • Go to specific bookmark

Help F1 F1 • Opens help documentation

Insert
Para /

Format
Indent

Ctrl + Shift + P Command + Shift + P • Author mode - Inserts a
paragraph at cursor position

• Text mode - Formats and
indents current document

Move
Tab Left

Ctrl + Alt + Comma Ctrl + Alt + Comma • Moves the current file tab
one position to the left

Move
Tab Right

Ctrl + Alt + Period Ctrl + Alt + Period • Moves the current file tab
one position to the right

Move
Node
Down

(Author)

Alt + DownArrow Alt + DownArrow • Moves the selected XML
node down in Author mode

Move
Node
Down
(Text)

Ctrl + Alt + DownArrow Command + Alt
+ DownArrow

• Moves the selected XML
node down in Text mode

Move
Node Up
(Author)

Alt + UpArrow Alt + UpArrow • Moves the selected XML
node up in Author mode.

Move
Node Up

(Text)

Ctrl + Alt + UpArrow Command + Alt + UpArrow • Moves the selected XML
node up in Text mode

Getting Started 11

Action Windows/Linux
Shortcut Keys

Mac/OS X Shortcut Keys Description of Default
Assigned Action

New File Ctrl + N Command + N • Opens wizard for
creating new documents

Next Word Ctrl + RightArrow Command + RightArrow • Navigates to next word

Open/Find
Resource

Ctrl + Shift + R Command + Shift + R • Opens the Open/Find
Resource dialog box

Previous
Word

Ctrl + LeftArrow Command + LeftArrow • Navigates to previous word

Print
Preview

Ctrl + P Command + P • Opens the print preview
(page setup) dialog box

Quick
Assist

Alt + 1 Command + Alt + 1 • Opens Quick Assist menu
if actions are available in

the current context (usually
indicated with a bulb
icon in the left stripe)

Quick Find Alt + Shift + F Alt + Shift + F • Opens the Quick Find
mechanism at the

bottom of the editor

Redo Ctrl + Y (Windows) -
Ctrl + Shift + Z (Linux)

Command + Shift + Z • Redo last editing action

Refresh F5 F5 • Refresh

Remove
Bookmarks

Ctrl + F7 Command + F7 • Removes all bookmarks

Reopen
Last

Closed
Editor

Ctrl + Alt + T Command + Alt + T • Reopens the editor tab that
was closed most recently

Reset
Zoom

Ctrl + NumPad0 Command + NumPad0 • Resets zoom
(default font size)

Save Ctrl + S Command + S • Saves current document

Save All Ctrl + Shift + S Command + Shift + S • Saves all opened files

Scroll
Down

Ctrl + DownArrow Command + DownArrow • Scrolls the editor down

Scroll Up Ctrl + UpArrow Command + Up Arrow • Scrolls the editor up

Shift Left Shift + Tab Shift + Tab • Author mode - Moves cursor
to the previous XML node

• Text mode - Shifts
content to the left

Getting Started 12

Action Windows/Linux
Shortcut Keys

Mac/OS X Shortcut Keys Description of Default
Assigned Action

Shift Right Tab Tab • Author mode - Moves
cursor to the next XML node

• Text mode - Shifts
content to the right

Split
Element

Alt + Shift + D Ctrl + Alt + D • Splits the element
the cursor position

Surround
With

Ctrl + E Command + E • Surrounds selected
content with specified tag

Switch
Tabs

Ctrl + Tab Command + Tab • Switches between
opened tabs

Transform Ctrl + Shift + T Command + Shift + T • Opens a dialog
box for selecting a

transformation scenario

Underline /
Open URL

Ctrl + U Command + U • Underlines select
content (in main editor)

• Opens URL (when focus
is outside the main editor)

Undo Ctrl + Z Command + Z • Undo last editing action

Validate Ctrl + Shift + V Command + Shift + V • Validates current document

Zoom In Ctrl + NumPad+ Command + NumPad+ • Zooms in (increase font size)

Zoom Out Ctrl + NumPad- Command + NumPad- • Zooms out
(decrease font size)

Getting Started 13

Installation 3
Topics:

• Installation Options for Oxygen XML Developer
• Install Oxygen XML Developer on Windows
• Install Oxygen XML Developer on Mac OS X
• Install Oxygen XML Developer on Linux
• Installing Oxygen XML Developer on Windows Server
• Installing Oxygen XML Developer on a Linux / UNIX Server
• Installing Oxygen XML Developer using the Java Web Start (JWS) Installer
• Group Deployment
• Obtaining and Registering a License Key for Oxygen XML Developer
• Setting Up a Floating License Server
• Transferring a License Key
• Upgrading Oxygen XML Developer
• Installing and Updating Add-ons in Oxygen XML Developer
• Uninstalling Oxygen XML Developer
• Oxygen XML Developer Installer Command Line Reference

This chapter includes information about installing and licensing Oxygen XML Developer on various platforms. Oxygen
XML Developer is available on Windows, Linux, and Mac OS X and there are a variety of methods and options for
installing and running Oxygen XML Developer on your system or server. This section also includes information about
registering, transferring, or releasing licenses, upgrading, installing add-ons, and uninstalling.

Installation Options for Oxygen XML Developer

Choosing how Oxygen XML Developer runs

You can install Oxygen XML Developer to run in a number of ways:

• As a desktop application (running standalone or as an Eclipse plugin) on Windows, Linux, or Mac.
• As a desktop application (running standalone or as an Eclipse plugin) on a Unix or Linux server or on Windows

Terminal Server.

Choosing an installer

You have a choice of installers;

• The native installer for your platform. On Windows and Linux, the native installer can run also in unattended
mode.

The installation packages were checked before publication with an antivirus program to make sure they are not
infected with viruses, trojan horses, or other malicious software.

Choosing a license option

You must obtain and register a license key to run Oxygen XML Developer.

You can choose from two kinds of license:

• A named-person license, which can be used by a single person on multiple computers.

14

• A floating license, which can be used by different people at different times. Only one person can use a floating
license at a time.

Upgrading, transferring, and uninstalling.

You can also upgrade Oxygen XML Developer, transfer a license, or uninstall Oxygen XML Developer.

Getting help with installation

If you need help at any point during these procedures, please send us an email at support@oxygenxml.com.

Install Oxygen XML Developer on Windows

Choosing an Installer
You can install Oxygen XML Developer on Windows using one of the following methods:

• Windows installer
• Windows installer in unattended mode

System Requirements
System requirements for a Windows install:

Operating systems

Windows Vista, Windows 7, Windows 8, Windows 10, Windows Server 2008, Windows Server 2012

CPU

• Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
• Recommended - Dual Core class processor

Memory

• Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Storage

• Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

Java

Oxygen XML Developer requires Java. If you use the native Windows installer, Oxygen XML Developer will be
installed with its own copy of Java. If you use the all platforms installer, your system must have a compatible
Java virtual machine installed.

Oxygen XML Developer only supports official and stable Java Virtual Machines with the version number
1.6.0 or later (the recommended version is 1.7) from Oracle available at http://www.oracle.com/technetwork/
java/javase/downloads/index.html. Oxygen XML Developer may work with JVM implementations from other
vendors, but there is no guarantee that those implementations will work with future Oxygen XML Developer
updates and releases.

Oxygen XML Developer uses the following rules to determine which installed version of Java to use:

1. If you install using the native Windows installer, which installs a version of Java as part of the Oxygen XML
Developer installation, the version in the jre subdirectory of the installation directory is used.

2. Otherwise, if the Windows environment variable JAVA_HOME is set, Oxygen XML Developer uses the Java
version pointed to by this variable.

3. Otherwise, the version of Java pointed to by your PATH environment variable is used.

If you run Oxygen XML Developer using the batch file, oxygenDeveloper.bat, you can edit the batch file to
specify a particular version to use.

Installation 15

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Install Using the Windows Installer
To install Oxygen XML Developer using the Windows installer, follow these steps:

1. Make sure that your system meets the system requirements.
2. Download the Windows installer.
3. Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download

page.
4. Run the installer and follow the instructions in the installation program.
5. Start Oxygen XML Developer using one of the following methods:

• Using one of the shortcuts created by the installer.
• By running oxygenDeveloper.bat, which is located in the install folder.

6. To license your copy of Oxygen XML Developer go to Help > Register and enter your license information.

Unattended Installation
You can run the installation in unattended mode by running the installer from the command line with the -q
parameter. By default, running the installer in unattended mode installs Oxygen XML Developer with the default
options and does not overwrite existing files. You can change many options for the unattended installer using the
installer command line parameters.

Install Oxygen XML Developer on Mac OS X

Choosing an Installer
You can install Oxygen XML Developer on Mac OS X using one of the following methods:

• Install using the Mac OS X installation package, oxygenDeveloper.dmg.

System Requirements
System requirements for a Mac OS X install:

Operating system

OS X version 10.8 64-bit or later

CPU

• Minimum - Intel-based Mac, 1 GHz
• Recommended - Dual Core class processor

Memory

• Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Storage

• Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

Java

Oxygen XML Developer requires Java to run. OS X includes Java by default or it will install it on the first
attempt to run a Java application.

Oxygen XML Developer only supports official and stable Java Virtual Machines with the version number
1.6.0 or later (the recommended version is 1.6.0 from Apple). Oxygen XML Developer may work with JVM
implementations from other vendors, but there is no guarantee that other implementations will work with
future Oxygen XML Developer updates and releases.

Oxygen XML Developer uses the following rules to determine which installed version of Java to use:

Installation 16

http://en.wikipedia.org/wiki/Md5sum

1. If you start Oxygen XML Developer with the application launcher (.app) file then:

a. If you use the zip distribution for OS X Oxygen XML Developer uses the Apple Java SE 6 available on
your Mac computer

b. If you use the tar.gz distribution that contains a bundled JRE then Oxygen XML Developer will use that
bundled JRE

2. If you start Oxygen XML Developer using a startup .sh script then:

a. If a bundled JRE is available then it will be used
b. Otherwise, if the JAVA_HOME environment variable is set then the Java distribution indicated by it will

be used
c. Otherwise, the version of Java pointed to by your PATH environment variable will be used

If you run Oxygen XML Developer using the oxygenDeveloper.sh script, you can change the version of
Java used by editing to script file. Go to the Java command at the end of the script file and specify the full
path to the Java executable of the desired JVM version. For example:

/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home/bin/java "-
Xdock:name= ...

OS X Installation
To install Oxygen XML Developer on OS X, follow these steps:

1. Download the OS X installation package (oxygenDeveloper.dmg).
2. Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download

page.
3. Double-click the oxygenDeveloper.dmg disk image file to mount it.
4. Drag/Copy the Oxygen XML Developer folder to your /Applications folder (or another location if you

wish).
Do not copy the files/folders from within the Oxygen XML Developer folder (always copy the folder itself),
otherwise you will omit invisible files/folders and the application may no longer start.
Oxygen XML Developer is now installed.

5. Start Oxygen XML Developer, using one of the following methods:

• Double-click Oxygen XML Developer.app.
• Run sh oxygenDeveloperMac.sh in the command line interface.

Notice: You can start multiple instances on the same computer by running the following command for each
new instance:

open -n OxygenDeveloper.app

6. To license your copy of Oxygen XML Developer, go to Help > Register to enter your license key.

Install Oxygen XML Developer on Linux

Choosing an Installer
You can install Oxygen XML Developer on Linux using any of the following methods:

• Install using the Linux installer.
• Install using the Linux installer in unattended mode.

System Requirements
System requirements for a Linux install:

Operating system

Any Unix/Linux distribution with an available Java SE Runtime Environment version 1.6.0 or later from Oracle

Installation 17

http://en.wikipedia.org/wiki/Md5sum

CPU

• Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
• Recommended - Dual Core class processor

Memory

• Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Storage

• Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

Java

Oxygen XML Developer requires Java. Oxygen XML Developer only supports official and stable Java Virtual
Machines with the version number 1.6.0 or later (the recommended version is 1.6.0) from Oracle available
at http://www.oracle.com/technetwork/java/javase/downloads/index.html. Oxygen XML Developer may work
with JVM implementations from other vendors, but there is no guarantee that other implementations will
work with future Oxygen XML Developer updates and releases. Oxygen XML Developer does not work with the
GNU libgcj Java Virtual Machine.

Oxygen XML Developer uses the following rules to determine which installed version of Java to use:

1. If you used the Linux installer, which installs a version of Java as part of the Oxygen XML Developer
installation, the version in the jre subdirectory of the installation directory is used.

2. Otherwise, if the Linux environment variable JAVA_HOME is set, Oxygen XML Developer uses the Java
version pointed to by this variable.

3. Otherwise the version of Java pointed to by your PATH environment variable is used.

You can also change the version of the Java Virtual Machine that runs Oxygen XML Developer by editing the
script file, oxygenDeveloper.sh. Go to the Java command at the end of the script file and specify the full
path to the Java executable of the desired JVM version. For example:

/usr/bin/jre1.6.0_45/bin/java -Xmx256m ...

Linux Installation
Linux installation procedure.

To install Oxygen XML Developer on Linux, follow these steps:

1. Download the Linux installer.
2. Optionally, you can validate the integrity of the downloaded file by checking it against the MD5 sum published

on the download page.
3. Run the installer that you downloaded.

For example, open a shell, cd to the installation directory, and at the prompt type sh ./oxygen-32bit.sh or
sh ./oxygen-64bit.sh, depending on which installer you downloaded.

4. Start Oxygen XML Developer using one of the following methods:

• Use the developer shortcut created by the installer.
• From a command line, type sh oxygenDeveloper.sh. This file is located in the installation folder.

5. To license your copy of Oxygen XML Developer go to Help > Register and enter your license key.

Unattended Installation
You can run the installation in unattended mode by running the installer from the command line with the -q
parameter. By default, running the installer in unattended mode installs Oxygen XML Developer with the default
options and does not overwrite existing files. You can change many options for the unattended installer using the
installer command line parameters.

Installation 18

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://en.wikipedia.org/wiki/Md5sum

Installing Oxygen XML Developer on Windows Server

Choosing an Installer
You can install Oxygen XML Developer on Windows using one of the following methods:

• Windows installer
• Windows installer in unattended mode

System Requirements
System requirements for a Windows Server install:

Operating systems

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2

CPU

• Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
• Recommended - Dual Core class processor

Memory

• Minimum values per user - 512 MB of RAM
• Recommended values per user - 2 GB of RAM

Storage

• Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

Java

Oxygen XML Developer requires Java. If you use the native Windows installer, Oxygen XML Developer will be
installed with its own copy of Java. If you use the all platforms installer, your system must have a compatible
Java virtual machine installed.

Oxygen XML Developer only supports official and stable Java Virtual Machines with the version number
1.6.0 or later (the recommended version is 1.7) from Oracle available at http://www.oracle.com/technetwork/
java/javase/downloads/index.html. Oxygen XML Developer may work with JVM implementations from other
vendors, but there is no guarantee that those implementations will work with future Oxygen XML Developer
updates and releases.

Oxygen XML Developer uses the following rules to determine which installed version of Java to use:

1. If you install using the native Windows installer, which installs a version of Java as part of the Oxygen XML
Developer installation, the version in the jre subdirectory of the installation directory is used.

2. Otherwise, if the Windows environment variable JAVA_HOME is set, Oxygen XML Developer uses the Java
version pointed to by this variable.

3. Otherwise, the version of Java pointed to by your PATH environment variable is used.

If you run Oxygen XML Developer using the batch file, oxygenDeveloper.bat, you can edit the batch file to
specify a particular version to use.

Install Using the Windows Installer
To install Oxygen XML Developer using the Windows installer, follow these steps:

1. Make sure that your system meets the system requirements.
2. Download the Windows installer.
3. Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download

page.
4. Run the installer and follow the instructions in the installation program.

Installation 19

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://en.wikipedia.org/wiki/Md5sum

5. Start Oxygen XML Developer using one of the following methods:

• Using one of the shortcuts created by the installer.
• By running oxygenDeveloper.bat, which is located in the install folder.

6. To license your copy of Oxygen XML Developer go to Help > Register and enter your license information.

Configuring Windows Terminal Server
Windows Terminal Server configuration procedure.

1. Install Oxygen XML Developer on the server and make its shortcuts available to all users.
2. If you need to run multiple instances of Oxygen XML Developer, make sure you add the -

Dcom.oxygenxml.MultipleInstances=true parameter in the .bat startup script.
3. Make sure you allocate sufficient memory to Oxygen XML Developer by adding the -Xmx parameter either in

the .bat startup script, or in the .vmoptions configuration file (if you start it from an executable launcher).

Installing Oxygen XML Developer on a Linux / UNIX Server

Choosing an Installer
You can install Oxygen XML Developer on Linux using any of the following methods:

• Install using the Linux installer.
• Install using the Linux installer in unattended mode.

System Requirements
System requirements for a Linux install:

Operating system

Any Unix/Linux distribution with an available Java SE Runtime Environment version 1.6.0 or later from Oracle

CPU

• Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
• Recommended - Dual Core class processor

Memory

• Minimum - 2 GB of RAM
• Recommended - 4 GB of RAM

Storage

• Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

Java

Oxygen XML Developer requires Java. Oxygen XML Developer only supports official and stable Java Virtual
Machines with the version number 1.6.0 or later (the recommended version is 1.6.0) from Oracle available
at http://www.oracle.com/technetwork/java/javase/downloads/index.html. Oxygen XML Developer may work
with JVM implementations from other vendors, but there is no guarantee that other implementations will
work with future Oxygen XML Developer updates and releases. Oxygen XML Developer does not work with the
GNU libgcj Java Virtual Machine.

Oxygen XML Developer uses the following rules to determine which installed version of Java to use:

1. If you used the Linux installer, which installs a version of Java as part of the Oxygen XML Developer
installation, the version in the jre subdirectory of the installation directory is used.

2. Otherwise, if the Linux environment variable JAVA_HOME is set, Oxygen XML Developer uses the Java
version pointed to by this variable.

3. Otherwise the version of Java pointed to by your PATH environment variable is used.

Installation 20

http://www.oracle.com/technetwork/java/javase/downloads/index.html

You can also change the version of the Java Virtual Machine that runs Oxygen XML Developer by editing the
script file, oxygenDeveloper.sh. Go to the Java command at the end of the script file and specify the full
path to the Java executable of the desired JVM version. For example:

/usr/bin/jre1.6.0_45/bin/java -Xmx256m ...

Linux Installation
Linux installation procedure.

To install Oxygen XML Developer on Linux, follow these steps:

1. Download the Linux installer.
2. Optionally, you can validate the integrity of the downloaded file by checking it against the MD5 sum published

on the download page.
3. Run the installer that you downloaded.

For example, open a shell, cd to the installation directory, and at the prompt type sh ./oxygen-32bit.sh or
sh ./oxygen-64bit.sh, depending on which installer you downloaded.

4. Start Oxygen XML Developer using one of the following methods:

• Use the developer shortcut created by the installer.
• From a command line, type sh oxygenDeveloper.sh. This file is located in the installation folder.

5. To license your copy of Oxygen XML Developer go to Help > Register and enter your license key.

Unix / Linux Server Configuration
To install Oxygen XML Developer on a Unix / Linux server:

1. Install Oxygen XML Developer on the server and make sure the oxygenDeveloper.sh script is executable and
the installation directory is in the PATH of the users that need to use the application.

2. Make sure you allocate sufficient memory to Oxygen XML Developer by setting an appropriate value for the -
Xmx parameter in the .sh startup script.
The default value of the -Xmx parameter is 512 MB. To avoid performance issues with large documents, you
may need to adjust it.

3. Make sure the X server processes located on the workstations allow connections from the server host. For
this, use the xhost command.

4. Start telnet (or ssh) on the server host.
5. Start an xterm process with the display parameter set on the current workstation. For example: xterm -

display workstationip:0.0.
6. Start Oxygen XML Developer by typing sh oxygenDeveloper.sh from the command line. This file is

located in the installation folder.

Installing Oxygen XML Developer using the Java Web Start (JWS) Installer
Oxygen XML Developer provides the tools to create your own JWS distribution that can be installed on a custom
web server. The advantages of a JWS distribution include:

• Oxygen XML Developer is run locally, not inside a web browser, overcoming many of the browser compatibility
problems common to applets.

• JWS ensures that the most current version of the application will be deployed, as well as the correct version of
JRE.

• Applications launched with Java Web Start are cached locally. Thus, an already downloaded application is
launched on par with a traditionally installed application.

• You can preconfigure Oxygen XML Developer and the rest of your team will use the same preferences and
frameworks.

Important: If you want to create your own JWS distribution package, please contact Syncro Soft for permission
through a Value Added Reseller Agreement.

Installation 21

http://en.wikipedia.org/wiki/Md5sum
https://www.oxygenxml.com/contact.html

Note: A code signing certificate is needed to sign the JWS distribution. The following procedure assumes that
you already have such a certificate (for example, Thawte™, or Verisign™).

The following schematics depicts the Oxygen XML Developer Java Web Start deployment procedure:

Figure 3: Java Web Start Deployment Procedure

To deploy an Oxygen XML Developer installation on a server.

1. Go to https://www.oxygenxml.com/InstData/Developer/All/oxygenDeveloper.tar.gz and download the All
Platforms Installation package to a local drive.

2. Expand the archive to a temporary location.
The oxygenDeveloper folder is created.

3. Optionally, you can customize your own framework.
4. Edit the oxygenDeveloper\tools\jwsPackager\packager.properties configuration file. Adjust the

following properties appropriately for your server:

• codebase - Represents the location of the future JWS distribution.
• keystore - The keystore location path.
• storepass - The password for keystore integrity.
• storetype - The type of the certificate file, such as PKCS12 or JKS.
• alias - The keystore alias.
• optionsDir - Points to the options directory that may be distributed with the JWS installer. If the directory

contains an XML document named options.xml or default.xml containing exported options, these
options will be used. Otherwise, the structure of the options folder has to match the structure of a stand
alone application options folder.

Note: This property is optional. It is provided only if custom options need to be delivered to the end users.

The values of keystore, storepass, and alias properties are all provided by the code signing certificate. For
more information, see the documentation for your jarsigner tool.

Installation 22

https://www.oxygenxml.com/InstData/Developer/All/oxygenDeveloper.tar.gz

5. If you want to modify the default settings, edit the JNLP oxygenDeveloper\tools\jwsPackager\dist
\javawebstart\author\developer.jnlp template file. You can specify the list of files opened at
startup by modifying the <argument> list. To pass system properties directly to Oxygen XML Developer
when it is started, add the oxy prefix to them (for example: <property name="oxyPropertyName"
value="testValue"/>). The system property is passed to Oxygen XML Developer with the prefix stripped.

6. Open a command-line console and run ant in the oxygenDeveloper\tools\jwsPackager folder.
The ant process creates the oxygenDeveloper\tools\jwsPackager\dist\InstData
\authorJWS.zip archive that contains the actual remote JWS installer.

7. Copy the expanded content of the archive to the folder specified in the codebase property, previously set in the
packager.properties file.

8. Using your favorite web browser, go to the address specified in the codebase property or to its parent folder
and start the remote installer.

Important: When running the Java Web Start distribution on OS X, due to changes in this security release,
clicking the link to the JNLP file does not start the application. The selected JNLP is downloaded locally.
Right-click it and choose to open the resource.

Group Deployment
If you are deploying Oxygen XML Developer for a group, there are a number of things you can do to customize
Oxygen XML Developer for your users and to make the deployment more efficient.

Creating custom default options
You can create a custom set of default options for Oxygen XML Developer. These will become the default
options for each of your users, replacing the normal default settings. Users can still set options to suit
themselves in their own copies of Oxygen XML Developer, but if they choose to reset their options to defaults,
the custom defaults that you set will be used.

Creating default project files
Oxygen XML Developer project files are used to configure a project. You can create and deploy default project
files for your projects so that your users will have a preconfigured project file to begin work with.

Shared project files
Rather than each user having their own project file, you can create and deploy shared project files so that all
users share the same project configuration and settings and automatically inherit all project changes.

Using the unattended installer
You can speed up the installation process by using the unattended installer for Windows or Linux installs.

Using floating licenses
If you have a number of people using Oxygen XML Developer on a part-time basis or in different time zones,
you can use a floating license so that multiple people can share a license.

Obtaining and Registering a License Key for Oxygen XML Developer
Oxygen XML Developer is not free software. To activate and use Oxygen XML Developer, you need a license.

For demonstration and evaluation purposes, a time limited license is available upon request at https://
www.oxygenxml.com/register.html. This license is supplied at no cost for a period of 30 days from the date of
issue. During this period, the software is fully functional, enabling you to test all its functionality. To continue
using the software after the trial period, you must purchase a permanent license.

Choosing a License Type
You can use one of the following license types with Oxygen XML Developer:

1. A Named-User License may be used by a single Named User on one or more computers. Named-user licenses
are not transferable to a new Named User. If you order multiple named-user licenses, you will receive a single
license key good for a specified number of named users. It is your responsibility to keep track of the named
users that each license is assigned to.

Installation 23

http://support.apple.com/kb/HT5672
https://www.oxygenxml.com/register.html
https://www.oxygenxml.com/register.html

2. A Floating License may be used by any user on any machine. However, the total number of copies of Oxygen
XML Developer in use at one time must not be more than the number of floating licenses available. A user who
runs two different distributions of Oxygen XML Developer (for example, Standalone and Eclipse Plugin) at the
same time on the same computer, consumes a single floating license.

3. A Subscription license that allows you to use the application for a specific period of time (either 6 months or 1
year). This type of license is user-based and is covered by a Support and Maintenance Pack, which means that
during the subscription period you will get free upgrades to all major and minor releases and priority technical
support.

For definitions and legal details of the license types, consult the End User License Agreement available at https://
www.oxygenxml.com/eula_developer.html.

Obtaining a License
You can obtain a license for Oxygen XML Developer in one of the following ways:

• You can purchase one or more licenses from the Oxygen XML Developer website at https://
www.oxygenxml.com/buy.html. A license key will be sent to you by email.

• If your company or organization has already purchased licenses, please contact your license administrator to
obtain a license key.

• If you purchased a subscription and you received a registration code, you can use it to obtain a license key
from https://www.oxygenxml.com/registerCode.html. A license key will be sent to you by email.

• If you want to evaluate the product, you can obtain a trial license key for 30 days from the Oxygen XML
Developer website at https://www.oxygenxml.com/register.html.

Register a Named-User or Subscription License
To register a Named-User License or Subscription License on a machine owned by the Named User, follow these
steps:

1. Purchase a license from the Oxygen XML Developer website. You will receive an email that contains your
license key.

2. Save a backup copy of your email message that contains the new license key.
3. Start Oxygen XML Developer.

If this is a new install of Oxygen XML Developer, the registration dialog box is displayed. If the registration
dialog box is not displayed, go to Help > Register.

Figure 4: License Registration Dialog Box
4. Select Use a license key as licensing method.

Installation 24

https://www.oxygenxml.com/eula_developer.html
https://www.oxygenxml.com/eula_developer.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/registerCode.html
https://www.oxygenxml.com/register.html
https://www.oxygenxml.com/buy.html

5. Paste your license key into the registration dialog box. The license key is composed of nine lines of text
between two text markers.

6. Press OK.

Related Information:
Oxygen XML Developer End-User License Agreement

Registering a Floating License
How you register to use a floating license will depend on how floating licenses are managed in your organization.

• If the machines that share the pool of floating licenses are on multiple network segments, someone in your
company will need to set up a license server. Consult that person to determine if they have set up a license
server as a TCP or HTTP server as the registration process is different for each.

• If all the machines sharing a pool of floating licenses are on the same network segment, you will register your
licence the same way you register a Named-User Licence. Oxygen XML Developer will use your connection to
a local area network, without additional notice, to automatically connect to other running instances of Oxygen
XML Developer. These connections may transmit your IP address to the local network.

Note: [For System Administrators] Multiple running instances of Oxygen XML Developer communicate with
each other using UDP broadcast on the 59153 port, to the 239.255.255.255 group.

Warning: This mechanism was deprecated starting with version 17.0 and it is scheduled for removal in
a future version. It is recommended to switch to the license server licensing mechanism.

Request a Floating License from a TCP License Server

Use this procedure if your company uses an Oxygen XML Developer TCP license server and the license server has
already been set up by your server administrator:

1. Contact your server administrator to get network address and login details for the license server.
2. Start Oxygen XML Developer.
3. Go to Help > Register .

The license registration dialog box is displayed.
4. Choose Use a license server as licensing method.
5. Select TCP server as server type.
6. In the Host field, enter the host name or IP address of the license server.
7. In the Port field, enter the port number used to communicate with the license server.
8. Click the OK button.

If a floating license is available, it is registered in Oxygen XML Developer. To display the license details, open
the About dialog box from the Help menu. If a floating license is not available, you will get a message listing the
users currently using floating licenses.

Related Information:
Setting up a TCP Floating License Server Using a 32-bit Windows Installer on page 32
Setting up the TCP floating license server as a Windows process.

Setting up a TCP Floating License Server Using All-Platforms Distribution on page 33
This installation method can be used for running the TCP license server on any platform where a Java virtual
machine can run (OS X, Linux/Unix, Windows).

Request a Floating License from an HTTP License Server

Use this procedure if your company uses an Oxygen XML Developer HTTP license server and the license server
has already been set up by your server administrator:

1. Contact your server administrator to get network address and login details for the license server.
2. Start Oxygen XML Developer.
3. Go to Help > Register.

The license registration dialog box is displayed.

Installation 25

https://www.oxygenxml.com/eula.html

4. Choose Use a license server as licensing method.
5. Select HTTP/HTTPS Server as server type.
6. In the URL field, enter the address of the license server.

The URL address has the following format: http://hostName:port/oXygenLicenseServlet/
license-servlet.

7. Complete the User and Password fields.
8. Click the OK button.

If a floating license is available, it is registered in Oxygen XML Developer. To display the license details, open
the About dialog box from the Help menu. If a floating license is not available, you will get a message listing the
users currently using floating licenses.

Related Information:
Setting up an HTTP Floating License Server on page 27

Release a Floating License

The floating license you are using will be released and returned to the pool if any of the following occur:

• The connection with the license server is lost.
• You exit the application running on your machine, and no other copies of Oxygen XML Developer running on

your machine are using your floating license.
• You register a Named User license with your copy of Oxygen XML Developer, and no other copies of Oxygen

XML Developer running on your machine are using your floating license.
• Your computer idles for more than 2 hours.
• Your system administrator manually revokes the license.

Tip: To prevent your floating license from being released, you can use the Lock floating license action available
in the Help menu. You can use the same action to unlock the license and your system administrator also has the
ability unlock your license.

To release a floating license on demand, follow these steps:

1. Go to Help > Register.
The license registration dialog box is displayed.

2. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.
3. Make sure the Use a license key option is selected.
4. Click OK.

A dialog box is displayed asking if you want to reset your license key.
5. Select between:

• Use the last one - Falls back to your previous license key. Use this option if you want to release a floating
license and revert to a Named User license.

• Reset - Removes your license key from your user account on the current computer.

The Reset button erases all the licensing information. To complete the reset operation, close and restart
Oxygen XML Developer.

Register a Floating License for Multiple Users

If you are an administrator registering floating licenses for multiple users, you can avoid having to open Oxygen
XML Developer on each machine and configuring the registration details by using the following procedure:

1. Reset the registration details:

a. Select Register from the Help menu.
b. Click OK without entering any information in this dialog box.
c. Click Reset and restart the application.

2. Register the license using one of the floating license registration procedures.
3. Copy the license.xml file from the Oxygen XML Developer preferences directory to the installation folder on

each installation to be registered.

Installation 26

Setting Up a Floating License Server

Installing a License Server to Manage Floating Licenses

If you are using floating licenses for Oxygen XML Developer, you must set up an Oxygen XML Developer floating
license server. A floating license server can be installed as one of the following:

• An HTTP server. This is the recommended method.
• A TCP server (deprecated).

Note: Oxygen XML Developer version 17 or higher requires a license server version 17 or higher. License servers
version 17 or higher can be used with any version of a floating license key.

Activating Floating License Keys

To help you comply with the Oxygen XML Developer EULA (terms of licensing), all floating licenses require
activation. This means that the license key will be locked to a particular license server deployment and no
multiple uses of the same license key are possible.

During the activation process, a code that uniquely identifies your license server deployment is sent to the Oxygen
XML Developer servers, which in turn will sign the license key.

Split or Combine License Keys to Work with Your License Servers

A license server can only manage one license key (which can cover any number of floating licenses). If you have
multiple license keys for the same Oxygen XML Developer version and you want to have all of them managed
by the same server, or if you have a multiple-user floating license and you want to split it between two or more
license servers, please contact support@oxygenxml.com and ask for a new license key.

Setting up an HTTP Floating License Server

Figure 5: Floating License Server (HTTP Server)

The Oxygen XML Developer license server is available in several distributions, tailored for covering a variety of
deployment configurations:

• Windows installer - Easy-to-use Windows installation wizard. Requires elevated permissions to run it.
• All-platform distribution - Script-based deployment that does not require elevated permissions to run it.

Provides scripts for Windows, Mac, and Linux.
• Web Archive (WAR) distribution - Provides more flexibility in your deployment configuration, but it requires an

existing HTTP server (such as Apache Tomcat).

Installation 27

Installation Steps for the HTTP License Server Installer Distribution for Windows

1. Download the HTTP license server installer from the Oxygen XML Developer website.
2. Run the installer and follow the on-screen instructions.
3. You need to configure two sets of credentials:

a. Administrator credentials - used for accessing the Oxygen XML Developer license server administrative
interface. Optionally you can choose to change the standard 8080 port.

b. Standard user credentials - used by an Oxygen XML Developer application to connect to the license server.
4. Optionally you can choose to install the server as a Windows service. In this case, you can choose the name of

the Windows service.

Installation Steps for the HTTP License Server All-Platform Distribution

1. Download the HTTP license server all-platform archive from the Oxygen XML Developer website.
2. Unpack the archive.
3. Run the license server scripts suitable for your operating system (licenseServer.bat for Windows or

licenseServer.sh for Linux and Mac).

Note: To specify a different port (other than the default 8080), you can pass the new port number as an
argument to the scripts (for example, licenseServer.bat 8082).

4. On the first run, you will be prompted to set two sets of credentials:

a. Administrator credentials - used for accessing the Oxygen XML Developer license server administrative
interface.

b. Standard user credentials - used by an Oxygen XML Developer application to connect to the license server.

Installation Steps for the HTTP License Server WAR Distribution

1. Make sure that Apache Tomcat 5.5 or higher is running on the machine you have selected to be the license
server. To get it, go to http://tomcat.apache.org.

2. Download the HTTP license server Web ARchive (.war) from the Oxygen XML Developer website.
3. Configure two Tomcat users:

a. One user with the role user, used by an Oxygen XML Developer application to connect to the license server.
In the subsequent example, this user name is John.

b. Another user with the roles admin and manager-gui, used for accessing the Oxygen XML Developer license
server administrative interface and the Tomcat management interface. In the subsequent example, this
user name is Mary.

A typical way to achieve this is to edit the tomcat-users.xml file from your Tomcat installation (if using a
Tomcat zip/tar.gz distribution, by default this configuration file is found in the /TomcatInstallFolder/
conf/ directory). After adding the two users, the configuration file might look like this:

<tomcat-users xmlns="http://tomcat.apache.org/xml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://tomcat.apache.org/xml tomcat-users.xsd"
 version="1.0">
 <!-- ... other user and role definitions ... -->
 <role rolename="user"/>
 <role rolename="admin"/>
 <role rolename="manager-gui"/>
 <user username="John" password="user_pass" roles="user"/>
 <user username="Mary" password="admin_pass" roles="admin,manager-gui"/>
</tomcat-users>

4. Go to the Tomcat Web Application Manager page and log-in with the user you configured with the manager-
gui role (Mary in the example above). In the WAR file to deploy section, choose the WAR file and click the
Deploy button. The oXygenLicenseServlet application is now up and running, but the license key is not yet
registered.

5. Go to the Oxygen license server administration page by clicking the oXygenLicenseServlet link in the
manager page. You will need to authenticate with the user configured with the admin role (Mary in our
example).

Installation 28

https://www.oxygenxml.com/license_server.html
https://www.oxygenxml.com/license_server.html
http://tomcat.apache.org
https://www.oxygenxml.com/license_server.html

6. Activate the floating license key. This process involves binding your license key to your license server
deployment. Once the process is completed you cannot activate the floating license with another license
server. Follow these steps to activate the license:

a. Access the HTTP license server by following the link provided by the Tomcat Web Application Manager
page. If prompted for authentication, use the credentials configured for the admin or manager users.

Result: A page is displayed that prompts for a license key.
b. Paste your floating license key into the form and press Submit. The browser used in the activation process

needs to have Internet access.

Result: You will be redirected to an online form hosted on the Oxygen XML Developer website. This form is
pre-filled with an activation code that uniquely identifies your license server deployment, and your license
key.

Note: If, for some reason, your browser does not take you to this activation form, refer to the Manual
Activation Procedure.

c. Press Activate.

If the activation process is successfully completed, your license server is running. Follow the on-screen
instructions to configure the Oxygen XML Developer client applications.

7. By default, the license server logs its activity in the TomcatInstallDir/logs/
oxygenLicenseServlet.log file. To change the log file location, edit the log4j.appender.R2.File
property from the TomcatInstallDir/webapps/oXygenLicenseServlet/WEB-INF/lib/
log4j.properties configuration file.

Manual License Activation Procedure

1. Access the HTTP license server by following the link provided by the Tomcat Web Application Manager page.
You will be taken to the license registration page.

2. Copy the license server activation code.
3. Go to the activation page at http://www.oxygenxml.com/activation/.
4. Paste the license server activation code and floating license key in the displayed form, then click Activate.
5. The activated license key is displayed on-screen. Copy the activated license key and paste it in the license

registration page of the HTTP server.

Automatic Subscription Renewal

If the HTTP license server is configured with a subscription license, then the license server will automatically
check to see if a new subscription license was purchased and will automatically download and install it for you.

Important: This automatic checking procedure implies a connection to a web service located at
oxygenxml.com. You can deactivate this automatic behavior by deselecting the Automatically check for
subscription renewal option from the main management page of the license server.

If the automatic renewal process fails, you can try either of the following possible solutions:

• If your server uses a proxy to connect to the Internet, go to the main management page of the license server
and configure the proxy settings by clicking the Proxy settings link in the Management tasks section.

• Manually replace the floating license key.

Floating License Server Management and Statistics Pages

A system administrator can manage and access information about the floating license server at: http://
hostName:port/oXygenLicenseServlet.

This page provides access to several statistics reports and management tasks. It also shows the current status
of the server and provides additional instructions for using the license server with Oxygen XML Developer.

This page includes the following links for accessing statistics or managing tasks:

• Current Allocated Licenses - Opens the Allocated License Report page.
• Usage Statistics - Opens the Floating License Usage Statistics page.
• View License Key - Use this link to view details about the license key.

Installation 29

• Replace License Key - Use this link if you need to replace a license key.
• Configuration - Opens a page where you can configure notification settings and specify whether or not users

are allowed to lock licenses. This page can be used for setting up the mail server used for sending rejection
emails.

Allocated License Report Page

This report page provides a system administrator the ability to revoke or unlock current running instances of
licenses and includes the following information:

• License load - A graphical indicator that shows how many licenses are available.
• Floating license server status - General information about the license server status, such as start time, license

counts, rejected and acknowledged requests, average usage time, license refresh and timeout intervals,
location of the license key, and the server version.

• Current running instances - Lists all currently acknowledged users, including user name, date and time when
the license was granted, IP and MAC address of the computer where Oxygen XML Developer runs, and lock
status.

• Revoke - A system administrator can click on the Revoke icon next to a user name to release that
particular license and return it to the pool.

• Unlock - If a user has locked their floating license, the system administrator can also unlock it from this
page.

Note: This report is also available in XML format at: http://hostName:port/oXygenLicenseServlet/
license-servlet/report-xml.

Floating License Usage Statistics Page

This report page provides some usage statistics for the floating licenses. It is helpful for determining the
number of licenses that are needed and monitoring times when licenses are consumed. It includes the following
information:

• Maximum number of concurrent licenses - Shows the maximum number of floating licenses that can be
consumed at any given time.

• Concurrent license consumption per day - A chart that shows the peak number of licenses that were
consumed and the total number of users that were rejected, on a daily basis. This chart can be used to detect
the amount of concurrent licenses that are needed to avoid having rejected users.

Tip: You can click on any bar to see the license consumption per hour for that particular day.

Figure 6: Concurrent License Consumption per Day Chart
• Concurrent license consumption per hour - A chart that shows the peak number of licenses that were

consumed per hour throughout that particular month. This is useful for identifying the time of day when the
most licenses were consumed.

Installation 30

Figure 7: Concurrent License Consumption per Hour Chart

Replacing a Floating License Key in an HTTP Floating License Server

The following procedure assumes that your Oxygen XML Developer HTTP floating license server contains a
previously activated license key and provides instructions for replacing it with another one. The goal of the
procedure is to allow you to activate and configure the new license key without any downtime.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a
new license key that accommodates a different number of users.

To replace a floating license key that is activated on your HTTP floating license server with a new one, follow
these steps:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page.
2. Click the Replace license key link. This will open a page that contains details about the license currently in

use.
3. Click the Yes button to begin the replacement procedure.
4. Paste the new floating license key in the displayed form, then click Submit. The browser used in the process

needs to have Internet access.

You will be redirected to an online form hosted on the Oxygen XML Developer website. This form is pre-filled
with an activation code that uniquely identifies your license server deployment and your license key.

Note: If for some reason your browser does not take you to this activation form, refer to the Manual Activation
Procedure.

5. Press Activate.

If the activation process is completed successfully, your license server is now running using the new license
key. You can click View license key to inspect the key currently used by the license server.

Upgrading Your HTTP Floating License Server

The goal of the following procedure is to help you minimize the downtime when you upgrade the Oxygen XML
Developer HTTP floating license server to its latest version.

Follow this procedure:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page. If
prompted for authentication, use the admin or manager credentials.

2. Click the View license key link and copy the displayed license key to a file for later use.
3. Go to the Tomcat Web Application Manager page, log in with the user you configured with the manager role,

and Undeploy the floating license server.

Installation 31

4. Go to Oxygen XML Developer website and download the HTTP license server.
5. Deploy the downloaded license server.
6. Access the license server by following the link provided by the Tomcat Web Application Manager page. If

prompted for authentication, use the credentials configured for the admin or manager users.
7. Paste the license key into the form and register it.

Setting up a TCP Floating License Server Using a 32-bit Windows Installer
Setting up the TCP floating license server as a Windows process.

Figure 8: TCP Floating License Server (Process in Windows)

Installation Steps

1. Download the license server installation kit for Windows from the Oxygen XML Developer website.
2. Run the downloaded installer and follow the on-screen instructions.

By default, the installer installs the license server as a Windows service. Optionally, you have the ability to start
the Windows service automatically at Windows startup or create shortcuts on the Start menu for starting and
stopping the Windows service manually. If you want to manually install, start, stop, or uninstall the server as a
Windows service, run the following scripts from a command line as an Administrator:

• installWindowsService.bat [serviceName] - Installs the server as a Windows service with
the name serviceName. The parameters for the license key folder and the server port can be set in the
oXygenLicenseServer.vmoptions file.

• startWindowsService.bat [serviceName] - Starts the Windows service.
• stopWindowsService.bat [serviceName] - Stops the Windows service.
• uninstallWindowsService.bat [serviceName] - Uninstalls the Windows service.

Note: If you do not provide the serviceName argument, the default name oXygenLicenseServer is used.

If the license server is installed as a Windows service, the output and error messages are automatically
redirected to the following log files that are created in the install folder:

• outLicenseServer.log - Standard output stream of the server.
• errLicenseServer.log - Standard error stream of the server.

3. Manually add the oXygenLicenseServer.exe file in the Windows Firewall list of exceptions. Go to Control
Panel > System and Security > Windows Firewall > Allow a program or feature through Windows Firewall >
Allow another program and browse for oXygenLicenseServer.exe from the Oxygen XML Developer License
Server installation folder.

4. Floating licenses require activation prior to use. More details are available either on-screen (if the license
server is started in a command line interface) or in the outLicenseServer.log log file.

Note: A license server can only manage one license key (which can cover any number of floating licenses). If
you have multiple license keys for the same Oxygen XML Developer version and you want to have all of them
managed by the same server, or if you have a multiple-user floating license and you want to split it between
two or more license servers, please contact support@oxygenxml.com and ask for a new license key.

Installation 32

https://www.oxygenxml.com/license_server.html#floating_license_servlet
https://www.oxygenxml.com/license_server.html

Replacing a Floating License Key in a TCP Floating License Server

The following procedure assumes that your Oxygen XML Developer TCP floating license server contains a
previously activated license key and provides instructions for replacing the activated license key with another
one. The goal of the procedure is to minimize the license server downtime during the activation step of the new
license key.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a
new license key that accommodates a different number of users.

To replace a floating license key that is activated on your floating license server with a new one, follow these
steps:

1. Stop the service that runs the floating license server.
2. Locate the folder that holds the previous activated license key (by default, it is named license and it is

located in the installation directory of the license server).
3. Remove the license.txt file and try to restart the server. Since the file that stores the license key is

missing, the server will fail to start.
4. Find the license activation procedure in the on-screen instructions (if the license server is started in a

command line interface) or in the outLicenseServer.log log file.
5. After you copy the activated license key in the license.txt file, restart the license server.

Upgrading Your TCP Floating License Server

The goal of the following procedure is to help you minimize the downtime generated when you upgrade the
Oxygen XML Developer floating license server to its newest version.

Follow this procedure:

1. Go to the Oxygen XML Developer website and download the latest floating license server.
2. Run the installation kit.
3. Leave the default Update the existing installation option selected. This will ensure that some options set in

the previous version (namely the installation folder, port number, and the floating license key in use) of the
license server will be preserved.

4. Follow the on-screen instructions to complete the installation process.

Common Problems

This section includes some common problems that may appear when setting up a TCP floating license server.

Windows Service Reports 'Incorrect Function When Started'

The "Incorrect Function" error message when starting the Windows service usually appears because the Windows
service launcher cannot locate a Java virtual machine on your system.

Make sure that you have installed a 32-bit Java SE from Oracle (or Sun) on the system: http://www.oracle.com/
technetwork/java/javase/downloads/index.html.

Windows Service Reports 'Error 1067: Process Terminated Unexpectedly'

This error message appears if the Windows service launcher quits immediately after being started.

This problem usually happens because the license key has not been correctly deployed (license.txt file in the
license folder). For more information, see the Setting up a Floating License Server section.

Setting up a TCP Floating License Server Using All-Platforms Distribution
This installation method can be used for running the TCP license server on any platform where a Java virtual
machine can run (OS X, Linux/Unix, Windows).

Installation 33

https://www.oxygenxml.com/license_server.html#floating_license_server
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure 9: TCP Floating License Server (All-Platforms Distribution)

Installation Steps

1. Ensure that a Java runtime version 6 or later is installed on the server machine.
2. Download the license server installation kit for your platform from the Oxygen XML Developer website.
3. Unzip the installation kit into a new folder.
4. Start the server using the startup script from a command line console.

The startup script is called licenseServer.sh for OS X and Unix/Linux or licenseServer.bat for
Windows. The following parameters are accepted:

• licenseDir - The path of the directory where the license files will be placed. The default value is
license.

• port - The TCP port number used to communicate with Oxygen XML Developer instances. The default
value is 12346.

Example: The following is an example of the command line for starting the license server on Unix/Linux and
OS X:

sh licenseServer.sh myLicenseDir 54321

5. Floating licenses require activation prior to use. Follow the on-screen instruction to complete the license
activation process.

Replacing a Floating License Key in a TCP Floating License Server

The following procedure assumes that your Oxygen XML Developer TCP floating license server contains a
previously activated license key and provides instructions for replacing the activated license key with another one.
The goal of the procedure is to minimize the HTTP license server downtime during the activation step of the new
license key.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a
new license key that accommodates a different number of users.

To replace a floating license key that is activated on your floating license server with a new one, follow these
steps:

1. Stop the process that runs the floating license server.
2. Locate the folder that holds the previous activated license key (by default, it is named license and it is

located in the installation directory of the license server).
3. Remove the license.txt file and try to restart the server. Since the file that stores the license key is

missing, the server will fail to start.
4. Find the license activation procedure in the on-screen instructions.
5. After you copy the activated license key in the license.txt file, restart the license server.

Upgrading Your TCP Floating License Server

The goal of the following procedure is to help you minimize the downtime generated when you upgrade the
Oxygen XML Developer TCP floating license server to its newest version.

Installation 34

https://www.oxygenxml.com/license_server.html

Follow this procedure:

1. Stop the current license server process.
2. Locate and open the floating server startup script. It should look like this:

sh licenseServer.sh pathToLicenseDir 54321

3. Make a note of the path to the license directory (in our example is pathToLicenseDir) and the port number
(in our example is 54321).

4. Go to the license directory and copy the license key file (license.txt) for later use.
5. Go to the Oxygen XML Developer website and download the all-platforms floating license server installation kit.
6. Unzip the archive and overwrite the content of your current floating license server installation.
7. Copy the license key file (license.txt) saved in step 4 to license directory of the floating license server

installation.
8. Edit the floating server startup script and configure with the info you made note of in step 3.
9. Start the floating license server process.

Transferring a License Key
If you want to transfer your Oxygen XML Developer license key to another computer (for example, if you are
disposing of your old computer or transferring it to another person), you must first unregister your license. You
can then register your license on the new computer in the normal way.

1. Go to Help > Register.
The license registration dialog box is displayed.

2. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.
3. Make sure the Use a license key option is selected.
4. Click OK.

A dialog box is displayed asking if you want to reset your license key.
5. Select between:

• Use the last one - Falls back to your previous license key, if applicable.
• Reset - Removes your license key from your user account on the current computer.

The Reset button erases all the licensing information. To complete the reset operation, close and restart
Oxygen XML Developer.

Upgrading Oxygen XML Developer
From time to time, upgrade and patch versions of Oxygen XML Developer are released to provide enhancements
that fix problems, and add new features.

Checking for New Versions of Oxygen XML Developer
Oxygen XML Developer checks for new versions automatically at start up. To disable this check, open the
Preferences dialog box (Options > Preferences), go to Global, and deselect Automatic Version Checking.

To check for new versions manually, go to Help > Check for New Versions.

What is Preserved During an Upgrade?
When you install a new version of Oxygen XML Developer, some data is preserved and some is overwritten. If
there is a previous version of Oxygen XML Developer already installed on your computer, it can coexist with the
new one, which means you do not have to uninstall it.

If you install over a previously installed version:

• All the files from its install directory will be removed, including any modification in framework files, XSLT
stylesheets, XML Catalogs, and templates.

Installation 35

https://www.oxygenxml.com/license_server.html#floating_license_server

• All global user preferences are preserved in the new version.
• All project preferences will be preserved in their project files.
• Any custom frameworks that were stored outside the installation directory (as configured in Document type

associations > Locations) will be preserved and will be found by the new installation.

If you install in a new directory.

• All the files from the old install directory will be preserved, including any modification in framework files, XSLT
stylesheets, XML Catalogs, and templates. However, these modifications will not be automatically imported
into the new installation.

• All global user preferences are preserved in the new version.
• All project preferences will be preserved in their project files.
• Any custom frameworks that were stored outside the installation directory (as configured in Document type

associations > Locations) will be preserved and will be found by the new installation.

Upgrading the Standalone Application
1. Upgrading to a new version might require a new license key. To check if your license key is compatible with the

new version, select Help > Check for New Version. Note that the application needs an Internet connection to
check the license compatibility.

2. Download and install the new version according to the instructions for your platform and the type of installer
you selected.

3. If you installed from an archive (as opposed to an executable installer) you may have to update any shortcuts
you have created or modify the system PATH to point to the new installation folder.

4. Start Oxygen XML Developer.
5. If you require an new license for your upgrade, install it now according to the procedure for your platform and

the type of installer you selected.

Installing and Updating Add-ons in Oxygen XML Developer
Oxygen XML Developer provides an add-on mechanism that can automatically discover and install plugins from a
remote location.

Note: Frameworks that you install through the add-ons system are read-only.

Installing Add-ons

To install a new add-on, follow these steps:

1. Go to Help > Install new add-ons.
2. In the displayed dialog box, fill-in the Show add-ons from with the update site that hosts add-ons. If you

want to see all Oxygen XML Developer default add-ons, choose the ALL AVAILABLE SITES option from the
Show add-ons from drop down. The add-ons list contains the name, status, update version, Oxygen XML
Developer version, and the type of the add-on (either framework, or plugin). A short description of each add-on
is presented under the add-ons list.

Note: To see all the add-ons from the remote update site, deselect Show only compatible add-ons and Show
only the latest version of the add-ons. Incompatible add-ons are shown only to acknowledge their presence
on the remote update site. You cannot install an incompatible add-on.

3. By default, only the latest versions of the add-ons that are compatible with the current version of Oxygen XML
Developer are displayed.

4. Choose the add-ons you want to install, press the Next button, then follow the on-screen instructions.

Note: Accepting the license agreement of the add-on is a mandatory step in the installation process.

Note: All add-ons are installed in the extensions directory inside the Oxygen XML Developer preferences
directory.

Installation 36

Managing installed add-ons

To manage the installed add-ons, follow these steps:

1. Go to Help > Manage add-ons
2. The displayed dialog box presents a list of the available updates (compatible with the current version of

Oxygen XML Developer) and with the already installed updates. Under the updates list, Oxygen XML Developer
presents a short description of each update.

3. Select the checkbox for a specific add-on, then press Update to update it (or Uninstall to remove it). If there
is a newer version of the add-on available, Oxygen XML Developer will download the package and install it.
Follow the on-screen instructions to complete the installation process.

Note: Accepting the license agreement of the add-on is a mandatory step in the installation process.

Checking for add-on updates

To check if there are available updates for the installed add-ons, go to Help > Check for add-ons updates. This
action only displays updates that are compatible with the current Oxygen XML Developer version.

To watch a video demonstration about the add-ons support in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/AddonsSupport.html.

Related Information:
Packing and Deploying Plugins or Frameworks as Add-ons

Uninstalling Oxygen XML Developer

Uninstalling the Oxygen XML Developer Standalone
CAUTION: The following procedure will remove Oxygen XML Developer from your system. All data stored
in the installation directory will be removed, including any customizations or any other data you have
stored within that directory. Make a back up of any data you want to keep before uninstalling Oxygen
XML Developer.

1. Backup any data you want to keep from the Oxygen XML Developer installation folder.
2. Remove the application.

• On Windows use the appropriate uninstaller shortcut provided with your OS.
• On OS X and Unix manually delete the installation folder and all its contents.

3. If you want to remove the user preferences:

• On Windows Vista/7/8/10, remove the directory: %APPDATA%\Roaming\com.oxygenxml.developer
(usually %APPDATA% has the value: [user-home-dir]\Application Data). Note that this directory is
hidden.

• On Windows XP, remove the directory: %APPDATA%\com.oxygenxml.developer (usually %APPDATA%
has the value: [user-home-dir]\Application Data).

• On Linux, remove the directory: .com.oxygenxml.developer from the user home directory.
• On OS X, remove the directory: Library/Preferences/com.oxygenxml.developer of the user home

folder .

Unattended Uninstall
The unattended uninstall procedure is available only on Windows and Linux.

Run the uninstaller executable from command line with the -q parameter.
The uninstaller executable is called uninstall.exe on Windows and uninstall on Linux and is located in
the application's install folder.

Installation 37

https://www.oxygenxml.com/demo/AddonsSupport.html
https://www.oxygenxml.com/demo/AddonsSupport.html

Oxygen XML Developer Installer Command Line Reference
The Oxygen XML Developer installers for Windows and Linux creates a file called response.varfile,
which records the choices that the user made when running the installer interactively. You can use a
response.varfile to set the options for an unintended install. Here is an example of a response.varfile:

#install4j response file for Oxygen XML Editor 18.0
#Fri Jul 18 21:52:15 EDT 2014
sys.adminRights$Boolean=true
sys.programGroupDisabled$Boolean=false
createDesktopLinkAction$Boolean=true
autoVersionChecking=true
sys.fileAssociation.launchers$StringArray="19","19","19","19","19","19",
 "19","19","19","19","19","19","19","19","19","19","19","19","19","19",
 "19","19","19","19","19","19"
sys.programGroupAllUsers$Boolean=true
reportProblem=true
downloadResources=true
sys.languageId=en
sys.installationDir=C\:\\Program Files (x86)\\Oxygen XML Editor 18
createQuicklaunchIconAction$Boolean=true
sys.programGroupName=Oxygen XML Editor 18.0
executeLauncherAction$Boolean=true
sys.fileAssociation.extensions$StringArray="xml","dita","ditamap","ditaval",
 "xsl","xslt","xspec","xsd","rng","rnc","sch","dtd","mod","ent","nvdl","fo",
 "wsdl","xquery","xq","xqy","xqm","xql","xpl","css","json","xpr"

The following table describes some of the settings that can be used in the response.varfile:

Table 2: response.varfile Options Parameters

Parameter Name Description Values

autoVersionCheckingAutomatic version checking. true / false. Default setting is
true.

reportProblem Allows you to report a problem encountered while
using Oxygen XML Developer.

true / false. Default setting is
true.

downloadResources Allows Oxygen XML Developer to download
resources (links to video demonstrations,
webinars and upcoming events) from https://
www.oxygenxml.com to populate the application
welcome screen.

true / false. Default setting is
true.

The Oxygen XML Developer installation uses the install4j installer. A description of the response.varfile
format can be found on the install4j site.

Command line parameters

The Oxygen XML Developer installer supports the following command line parameters:

Option Meaning

-q Run the installer in unattended mode. The installer
will not prompt the user for input during the install.
Default settings will be used for all options unless a
response.varfile is specified using the -varfile
option or individual settings are specified using

- on Windows:

oxygenDeveloper.exe -q

- on Linux:

oxygenDeveloper.sh -q

Installation 38

https://www.oxygenxml.com
https://www.oxygenxml.com
http://resources.ej-technologies.com/install4j/help/doc/index.html#install4j.helptopics.installers.responseFile

Option Meaning

-overwrite In unattended mode, the installer does not overwrite
files with the same name if a previous version of the
Oxygen XML Developer is installed in the same folder.
The -overwrite parameter added after the -q parameter
forces the overwriting of these files.

- on Windows:

oxygenDeveloper.exe -q -overwrite

- on Linux:

oxygenDeveloper.sh -q -overwrite

-console To display a console for the unattended installation,
add a -console parameter to the command line.
- on Windows:

start /wait oxygenDeveloper.exe -q -console

Note: The use of start /wait on Windows is required
to make the installer run in the foreground. It
you run it without start /wait, it will run in the
background.

- on Linux:

oxygenDeveloper.sh -q -console

-varfile Points to the location of a response.varfile to be
used during an unattended installation. For example:

- on Windows:

oxygenDeveloper.exe -q -varfile response.varfile

- on Linux:

oxygenDeveloper.sh -q -varfile response.varfile

-V Is used to define a variable to be used by an
unattended installation. For example:

- on Windows:

oxygenDeveloper.exe -q -VusageDataCollector=false

- on Linux:

oxygenDeveloper.sh -q -VusageDataCollector=false

The Oxygen XML Developer installation uses the install4j installer. A full list of the command line parameters
supported by the install4j installer can be found on the install4j site.

Installation 39

http://resources.ej-technologies.com/install4j/help/doc/index.html#install4j.helptopics.installers.responseFile

Configuring Oxygen XML Developer 4
Topics:

• Preferences
• Configuring Options
• Associating a File Extension with Oxygen XML Developer
• Configuring the Layout of the Views and Editors
• Configure Toolbars
• Import/Export Transformation or Validation Scenarios
• Editor Variables
• Custom System Properties
• Localizing the User Interface
• Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer

This chapter presents all the user preferences and options that allow you to configure various features and aspects of
the application itself. It also includes information about storing and sharing options, importing and exporting options
or scenarios, customizing system properties, setting startup parameters, and the editor variables that are available for
customizing user-defined commands..

Preferences
You can configure Oxygen XML Developer options using the Preferences dialog box.

To open the preferences dialog box, go to Options > Preferences.

You can select the preference page you are interested in from the tree on the left of the Preferences dialog box.
You can filter the tree by using the filter text box and the following buttons are available to the right of the text
box:

• Expand All - Expands the structure of the tree to show all preference pages.
• Collapse All - Collapses the structure of the tree to show only the 1st level preference pages.
• Project-Level Options Only - If toggled on, it filters the tree to only show the preference pages that are

saved at project level.

40

Figure 10: Preferences Dialog Box

Press or F1 for help on any preferences page.

Some preference pages include a option to control how the options are stored, either as Global Options or Project
Options.

Figure 11: Controlling the Storage of the Preferences

You can restore options to their default values by pressing the Restore Defaults button, available in each
preferences page.

Preferences Directory Location

A variety of resources (such as global options, license information, and history files) are stored in a preferences
directory (com.oxygenxml) that is in the following locations:

• Windows (Vista, 7, 8, 10) - [user_home_directory]\AppData\Roaming\com.oxygenxml
• Windows XP - [user_home_directory]\Application Data\com.oxygenxml
• Mac OS X - [user_home_directory]/Library/Preferences/com.oxygenxml
• Linux/Unix - [user_home_directory]/.com.oxygenxml

Configuring Oxygen XML Developer 41

Global Preferences
The global options cover a number of aspects of the overall operation of Oxygen XML Developer. To configure the
Global options, open the Preferences dialog box (Options > Preferences) and go to Global.

The following options are available in the Global preferences page:
Automatic Version Checking

If this option is selected, Oxygen XML Developer will check for a new version on startup.
Check for notifications

If selected (default value), the application will check for various types of messages from the Oxygen XML
Developer website and they will be displayed in the status bar. The types of messages include the addition
of new videos on the website, the announcement of upcoming webinars and conferences where the Oxygen
XML Developer team will participate, and more.

Language
This option specifies the language used in the user interface. You can choose between English, French,
German, Dutch, or Japanese. You must restart Oxygen XML Developer for the change to take effect.

Other language
This option sets the language used in the user interface using an interface localization file. For details about
creating this file, see Localizing the User Interface on page 155. You can use this option to set the language
of the user interface to a language that is not shipped with Oxygen XML Developer.

Note: If some interface labels are not rendered correctly after restarting the application, (for example,
Chinese or Korean characters are not displayed correctly), make sure that your operating system has the
appropriate language pack installed (for example, the East-Asian language pack).

Line separator
This option sets the line separator used when saving files. Use System Default to select the normal line
separator for your OS. If you want the existing file separator of a file to be maintained, regardless of your
current OS, select Detect the line separator on file open.

Detect the line separator on file open
When this option is selected, the editor detects the line separator when a file is loaded and it uses it when the
file is saved. New files are saved using the line separator defined by the Line separator option.

Default Internet browser
This option sets the Web browser that Oxygen XML Developer will use to do the following:

• Open (X)HTML or PDF transformation results.
• Open a web page (for example, pointing to specific paragraphs in the W3C recommendation of XML

Schema if there are XML Schema validation errors).

If you leave this setting blank, the system default browser will be used.
Open last edited files from project

When this option is selected, Oxygen XML Developer opens the files you had open the last time you used a
project whenever you open the application or switch to that project.

Beep on operation finished
When this option is selected, Oxygen XML Developer beeps when a validation or transform action ends.
Different tones are used for success and failure. The tones used may depend on the sound settings in your
operating system.

Show memory status
When this option is selected, the memoryOxygen XML Developer uses is displayed in the status bar. To free
memory, click the Free unused memory button located at the right side of the status bar. The memory
status bar turns yellow or red when Oxygen XML Developer uses too much memory. You can change the
amount of memory available to Oxygen XML Developer by changing the parameters of the application
launcher.

Configuring Oxygen XML Developer 42

Check opened files for file system changes
When this option is selected, Oxygen XML Developer checks the content of the all opened editors to see if
they have been updated by another application. If the file has changed, Oxygen XML Developer will ask you if
you want to reload the file.

Auto update unmodified editors on file system changes
If this option is selected, Oxygen XML Developer automatically updates unmodified editors if the edited file
changes externally.

Show Java vendor warning at startup
If this option is selected, Oxygen XML Developer displays a warning on startup if a non-recommended version
of the Java virtual machine is being used.

File Chooser Dialog

This options specifies the directory that will be shown when the Open file dialog box is displayed. You can
choose between:

• Last visited directory - The last visited folder will be displayed.
• Directory of the edited file - The folder where the currently edited file is stored will be displayed.

Show hidden files and directories
If this option is selected, Oxygen XML Developer shows system hidden files and folders in the file browser
dialog box and the folder browser dialog box. This setting is not available on OS X.

Appearance Preferences
This preferences page contains various options that allow you to change the appearance of the user interface
of Oxygen XML Developer. To configure the Appearance options, open the Preferences dialog box (Options >
Preferences) and go to Appearance.

The following options are available in the Appearance preferences page:
Look and Feel

This option allows you to change the graphic style (look and feel) of the user interface. Depending on the
operating system, you can choose between various predefined style options.

Theme
This option allows you to choose predefined color themes that will be applied over the entire user interface.
You can select between the following:

• Light (default theme in Windows)
• Classic (default theme in MAC OS)

Note: In Windows, if a high contrast theme is detected and the Theme option is set to Classic and the
Look and Feel option is set to Default or Windows, Oxygen XML Developer inherits the high contrast
theme colors that are set in the operating system.

• Graphite
• Ultramarine

You can also change various appearance related options in other preference pages for the selected theme by
clicking on the various links in this section.

Custom Themes
You can also create custom themes to share with others or use in other installations of Oxygen XML
Developer. To create a custom theme, follow these steps:

1. Select a Theme to use as a base.
2. Configure the desired options in any of the option pages listed in this preferences page.
3. Click Export and specify a name for your custom theme. If you save the theme to the default file path,

your custom theme will immediately appear in the Theme drop-down list. Otherwise, if you save it to
another location, you can use the Import button to make it appear in the drop-down list.

Configuring Oxygen XML Developer 43

Note: In OS X (starting with Yosemite), if you choose Graphite for the Theme, it is recommended that you
select the Use dark menu and Dock option that is found in System Preferences > General.

Theme preview area
Displays a preview of the current Theme selection (available for predefined color themes).

Theme management section

Reset
Resets the theme to its default values (this option is available when the theme is modified).

Rename
Changes the name of the theme (not available for default or predefined themes).

Delete
Removes the selected theme (not available for default or predefined themes).

Import
Allows you to import a color theme from an XML theme file. You can use this option to load an exported
custom theme.

Export
Allows you to export the current color theme into an XML theme file that can then be shared with others or
imported into another installation of Oxygen XML Developer.

Configure icon saturation and brightness link
This link is available if you are using a dark theme (such as Graphite or Ultramarine). It opens a dialog box
that allows you to configure the saturation and brightness for all the icons in Oxygen XML Developer.

Figure 12: Configure Icon Saturation and Brightness Dialog Box

Colors Preferences

Oxygen XML Developer allows you configure the colors for frames, dialog boxes, controls, and commands. To
configure the Colors, open the Preferences dialog box (Options > Preferences) and go to Appearance > Colors.

Clicking the color button for any of the options opens a Choose color dialog box. It includes several tabs that
allow you to configure the color in numerous ways. This page allows you to select and configure the color for the
following:
Background Colors

Background
Background color for various general user interface items.

Components background
Background color for various components (such as text fields, views, tables, and dialog boxes).

Configuring Oxygen XML Developer 44

Components selection background
Background color for the current selections in certain components, such as some views and panes.

Components inactive selection background
Background color for a selection in a view that is not the current focus.

Menus, toolbars and frame backround
Background color for specific components such as menus, toolbars, and the application frame.

Menus and toolbars selection background
(This option is not available for Mac OS) Background color for menu selections and toolbar buttons.

View titles background
Background color for the titles of view and tabs.

Status bar background
Background color of the status bar at the bottom of the editor.

Foreground Colors

Foreground
Foreground color for various general user interface items.

Component selection foreground
Foreground color for the current selection.

Disabled foreground
Foreground color for various components that are not the current focus (such as views other than the
currently selected one).

Link foreground
Foreground color for links in views and dialog boxes.

View titles foreground
Foreground color for the title bar of views.

Status bar foreground
Foreground color for the text in the status bar at the bottom of the editor.

Other Colors

Borders and table grids
Color for certain borders and table grid lines.

Text component border
Color for the borders of text fields and drop-down lists.

View/Editor tabs border
Color for the borders of views and tabs.

Scroll bars, chevrons
Color for scroll bars (navigation bars) and chevrons (button to expand a non-visible area).

Separator
Color for the separators in toolbars, menus, and dialog boxes.

Note: You must restart the application for your changes to be applied.

Fonts Preferences

Oxygen XML Developer allows you to choose the fonts to be used in the Text, Design, and Grid editor modes.
To configure the font options, open the Preferences dialog box (Options > Preferences) and go to Appearance >
Fonts.

The following options are available:
Editor

Allows you to choose the font that will be used in the editor.

Configuring Oxygen XML Developer 45

Note: On Mac OS X, the default font, Monaco, cannot be rendered in bold.

Schema default font
This option allows you to choose the font to be used in:

• The Design mode of the XML Schema editor.
• Images with schema diagram fragments that are included in the HTML documentation generated from an

XML Schema.

Text antialiasing
This option allows you to set the text anti-aliasing behavior:

• Default - Allows the application to use the setting of the operating system, if available.
• On - Sets the text anti-aliasing to pixel level.
• Off - Disables text anti-aliasing.
• Sub-pixel anti-aliasing modes, such as GASP, LCD_HRGB, LCD_HBGR, LCD_VRGB, and LCD_VBGR.

Text components
This option allows you to choose the font to be used in text boxes within the interface.

GUI
This option allows you to choose the font to be used for user interface labels.

View titles font
This option allows you to choose the font to be used in the titles of the various views that are opened within
the interface.

Note: You must restart the application for your changes to be applied.

Related Information:
Changing the Font Size in the Editor on page 239

Application Layout Preferences
Oxygen XML Developer offers various perspectives and views that you can arrange in a variety of layouts to suit
your needs.

To configure the application layout options, open the Preferences dialog box (Options > Preferences) and go to
Application Layout. The following options are available:
Select application layout

You can choose between the following three layouts:

Default
Uses the default layout for all perspectives. Any modification of this layout (such as closing views,
displaying views, or a new view arrangement) is saved on exit and reloaded at start-up.

Predefined
Allows you to choose one of the predefined layouts:

• Advanced - All views are displayed.
• Basic - Only the Project view and Outline view are visible. Recommended when you edit XML content

and you need maximum screen space.
• Schema development - The Project, Component Dependencies, Resource Hierarchy/Dependencies,

Outline, Palette, and Attributes views are displayed.
• XQuery development - The Project, Outline, XSLT/XQuery Input, XPath/XQuery Builder, and

Transformation Scenarios views are displayed.
• XSLT development - The Project, Component Dependencies, Resource Hierarchy/Dependencies,

Outline, Attributes, Model, XSLT/XQuery Input, XPath/XQuery Builder, and Transformation Scenarios
views are displayed.

Configuring Oxygen XML Developer 46

Custom
Allows you to specify a custom layout to be used. You can save your preferred layout using Window >
Export Layout, then enter the location of the saved layout file in this setting.

Reset layout at startup
When this option is selected, Oxygen XML Developer forgets any changes made to the layout during a session
and reloads the default layout the next time it is started. This is useful when you want to keep a fixed layout
from one session to another.

Remember layout changes for each project
When this options is selected, Oxygen XML Developer saves layouts individually for each project. When you
switch projects, the layout you last used for that project is loaded automatically.

Allow detaching of editors from main window
When this options is selected, you can drag and drop an editor window outside of the main screen. This is
useful especially when you are using two monitors and you want to view files side by side.

Note: If the main screen is maximized, you cannot drag and drop an editor outside of it.

View tab placement
Specifies whether the View tabs are located at the top or bottom of the window.

Editor tab placement
Specifies whether the Editor tabs are located at the top or bottom of the window.

The changes you make to any layout are preserved between working sessions. The predefined layout files are
saved in the preferences directory of Oxygen XML Developer.

To watch our video demonstration about configuring the user interface of Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/Dockable_Views.html.

Add-ons Preferences
You can use add-ons to enhance the functionality of Oxygen XML Developer. To configure the Add-ons options,
open the Preferences dialog box (Options > Preferences) and go to Add-ons.

The following options are available in this preferences page:
Enable automatic updates checking

When this option is selected, Oxygen XML Developer will automatically search for available updates.
Add-on Sites URLs

This is a list of the URLs for the add-on sites. You can add, edit, and delete sites in this list by using the
buttons below the list.

Document Type Association Preferences
Oxygen XML Developer uses document type associations to associate a document type with a set of functionality
provided by a framework. To configure the Document Type Association options, open the Preferences dialog box
(Options > Preferences) and go to Document Type Association.

The following actions are available in this preferences page:
Discover more frameworks by using add-ons update sites

Click on this link to specify URLs for framework add-on update sites.
Document Type Table

This table presents the currently defined frameworks (document type associations), sorted by priority and
alphabetically. Each edited document type has a set of association rules (used by the application to detect
the proper document type association to use for an opened XML document). A rule is described by:

• Namespace - Specifies the namespace of the root element from the association rules set (* (any) by
default). If you want to apply the rule only when the root element has no namespace, leave this field empty
(remove the ANY_VALUE string).

• Root local name - Specifies the local name of the root element (* (any) by default).

Configuring Oxygen XML Developer 47

https://www.oxygenxml.com/demo/Dockable_Views.html
https://www.oxygenxml.com/demo/Dockable_Views.html

• File name - Specifies the name of the file (* (any) by default).
• Public ID - Represents the Public ID of the matched document.
• Java class - Presents the name of the Java class, which is used to determine

if a document matches the rule. This Java class should implement the
ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher interface.

New
Opens a Document type configuration dialog box that allows you to add a new framework.

Edit
Opens a Document type configuration dialog box that allows you to edit an existing framework.

Note: If you try to edit an existing framework when you do not have write permissions to its storage location,
a dialog box will be shown asking if you want to extend it.

Duplicate
Opens a Document type configuration dialog box that allows you to duplicate the configuration of an existing
framework. This will create a snapshot of the framework in its current form. It is merely a copy of the
document type and will not evolve along with the base document type like the Extend action does.

Extend
Opens a Document type configuration dialog box that allows you to extend an existing framework. You can
add or remove functionality starting from a base document type. All of these changes will be saved as a
patch. When the base document type is modified and evolves (for example, from one application version
to another) the extension will evolve along with the base document type, allowing it to use the new actions
added in the base document type.

Delete
Deletes the selected framework (document type).

Enable DTD/XML Schema processing in document type detection
When this option is selected (default value), the matching process also examines the DTD/XML Schema
associated with the document. For example, the fixed attributes declared in the DTD for the root element
are also analyzed, if this is specified in the association rules. This is especially useful if you are writing DITA
customizations. DITA topics and maps are also matched by looking for the DITAArchVersion attribute of
the root element. This attribute is specified as default in the DTD and it is detected in the root element,
helping Oxygen XML Developer to correctly match the DITA customization.

Only for local DTDs/XML Schemas
When this option is selected (default value), only the local DTDs / XML Schemas will be processed.

Enable DTD/XML Schema caching
When this option is selected (default value), the associated DTDs or XML Schema are cached when parsed
for the first time, improving performance when opening new documents with similar schema associations.

Locations Preferences

Oxygen XML Developer allows you to change the location where frameworks (document types) are stored, and
to specify additional framework directories. The Locations preferences page allows you to specify the main
frameworks folder location. You can choose between the Default directory ([OXYGEN_INSTALL_DIR]/
frameworks) or a Custom specified directory. You can also change the current frameworks folder location
value using the com.oxygenxml.editor.frameworks.url system property set in either the .vmoptions
configuration files or in the startup scripts.

A list of additional frameworks directories can also be specified. The application will look in each of those
folders for additional document type configurations to load. Use the Add, Edit and Delete buttons to manage the
list of folders.

A document type configuration (framework) can be loaded from the following locations:

• Internal preferences - The document type configuration is stored in the application Internal preferences.
• Additional framework directories - The document type configuration is loaded from one of the specified

Additional frameworks directories list.

Configuring Oxygen XML Developer 48

• Add-ons - An add-on can contribute a framework. You can manage the add-ons locations in the Add-ons
preferences page.

• The frameworks folder - The main folder containing framework configurations.

All loaded document type configurations are first sorted by priority, then by document type name and then by load
location (in the exact order specified above). When an XML document is opened, the application chooses the first
document type configuration from the sorted list that matches the specific document.

All loaded document type configurations are first sorted by priority, then by document type.

Document Type Configuration Dialog Box

The Document Type Configuration dialog box allows you to create or edit a framework (document type). It
is displayed when you use the New, Edit, Duplicate, or Extend buttons in the Document Type Association
preferences page (open the Preferences dialog box (Options > Preferences) and go to Document Type
Association).

The configuration dialog box includes the following fields and sections:

• Name - The name of the framework. This will be displayed as its name in the Document Type column in the
Document Type Association preferences page.

• Priority - Depending on the priority level, Oxygen XML Developer establishes the order in which the existing
frameworks are evaluated to determine the type of a document you are opening. It can be one of the following:
Lowest, Low, Normal, High, or Highest. You can set a higher priority to frameworks you want to be evaluated
first.

• Description - A detailed description of the framework.
• Storage - Displays the type of location where the framework configuration file is stored. Can be one of:

External (framework configuration is saved in a file) or Internal (framework configuration is stored in the
application's internal options).

Note: If you set the Storage to Internal and the framework configuration is already stored in a framework file,
the file content is saved in the application's internal options and the file is removed.

• Initial edit mode - Sets the default edit mode when you open a document for the first time.
• Configuration Tabs - The bottom section of the dialog box includes various tabs where you can configure

numerous options for the framework.

Association Rules Tab

By combining multiple association rules you can instruct Oxygen XML Developer to identify the type of a
document. An Oxygen XML Developer association rule holds information about Namespace, Root local name, File
name, Public ID, Attribute, and Java class. Oxygen XML Developer identifies the type of a document when the
document matches at least one of the association rules. This tab give you access to a Document type rule dialog
box that you can use to create association rules that activate on any document matching all the criteria defined in
the dialog box.

To create a new association rule, click the New button at the bottom of the Association Rules tab, or to edit an
existing rule, click the Edit button.

Configuring Oxygen XML Developer 49

Figure 13: Document Type Rule Dialog Box

Tip: You can use wildcards (? and *) or editor variables in the Document Type Rule dialog box, and you can enter
multiple values by separating them with a comma.

To open the Association Rules tab of the Document type configuration dialog box, open the Preferences dialog
box (Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Association Rules tab.

In the Association rules tab, you can perform the following actions:

New
Opens the Document type rule dialog box allowing you to create association rules.

Edit
Opens the Document type rule dialog box allowing you to edit the properties of the currently selected
association rule.

Delete
Deletes the currently selected association rules from the list.

Move Up
Moves the selected association rule up one spot in the list.

Move Down
Moves the selected association rule down one spot in the list.

Schema Tab

In the Schema tab, you can specify a schema that Oxygen XML Developer uses if an XML document does not
contain a schema declaration and no default validation scenario is associated with it.

To open the Schema tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Schema tab.

This tab includes the following options for defining a schema to be used if no schema is detected in the XML file:
Schema type

Use this drop-down list to select the type of schema.
Schema URI

You can specify the URI of the schema file. You can specify the path by using the text field, its history drop-
down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down list.

Configuring Oxygen XML Developer 50

Tip: It is a good practice to store all resources in the framework directory and use the ${framework} editor
variable to reference them. This is a recommended approach to designing a self-contained document type
that can be easily maintained and shared between multiple users.

Classpath Tab

The Classpath tab displays a list of folders and JAR libraries that hold implementations for API extensions,
implementations for custom Author mode operations, various resources (such as stylesheets), and framework
translation files. Oxygen XML Developer loads the resources looking in the folders in the order they appear in the
list.

To open the Classpath tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Classpath tab.

The Classpath tab includes the following actions:

New
Opens a dialog box that allows you to add a resource to the table in the Classpath tab. You can specify the
path by using the text field, its history drop-down, the Insert Editor Variables button, or the browsing tools in
the Browse drop-down list.

Tip: The path can also contain wildcards (for example, ${framework}/lib/*.jar).

Edit
Opens a dialog box that allows you to edit a resource in the Classpath tab. You can specify the path by
using the text field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the

Browse drop-down list.

Tip: The path can also contain wildcards (for example, ${framework}/lib/*.jar).

Delete
Deletes the currently selected resource from the list.

Move Up
Moves the selected resource up one spot in the list.

Move Down
Moves the selected resource down one spot in the list.

Use parent classloader from plugin with ID
Use this option to specify the ID of a plugin. The current framework has access to the classes loaded for the
plugin.

Related Information:
Extensions Tab on page 65
Author Tab on page 51

Author Tab

The Author tab is a container that holds information regarding the CSS file used to render a document in the
Author mode, and regarding framework-specific actions, menus, contextual menus, toolbars, and content
completion list of proposals.

To open the Author tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Author tab.

The options that you configure in the Author tab are grouped in subtabs.

CSS Subtab

The CSS subtab contains the CSS files that Oxygen XML Developer uses to render a document in the Author
mode. In this subtab, you can set main and alternate CSS files. When you are editing a document in the Author
mode, you can switch between these CSS files from the Styles drop-down menu on the Author Styles toolbar.

Configuring Oxygen XML Developer 51

To open the CSS subtab, open the Preferences dialog box (Options > Preferences), go to Document Type
Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the CSS subtab.

The following actions are available in the CSS subtab:

New
Opens a dialog box that allows you to add a CSS file. You can specify the path by using the text field, its
history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list.

Edit
Opens a dialog box that allows you to edit the current selection.

Delete
Deletes the currently selected CSS file.

Move Up
Moves the selected CSS file up in the list.

Move Down
Moves the selected CSS file down in the list.

Enable multiple selection of alternate CSSs
Allows users to apply multiple alternate styles, as layers, over the main CSS style. This option is selected by
default for DITA document types.

If there are CSSs specified in the document then
You can choose between the following options for controlling how the CSS files that are set in this subtab will
be handled if a CSS is specified in the document itself:

• Ignore CSSs from the associated document type - The CSS files set in this CSS subtab are overwritten by
the CSS files specified in the document itself.

• Merge them with CSSs from the associated document type - The CSS files set in this CSS subtab are
merged with the CSS files specified in the document itself.

Actions Subtab

The Actions subtab contains a sortable table that includes all the framework-specific actions. Each action has a
unique ID, a name, a description, and a shortcut key.

To open the Actions subtab, open the Preferences dialog box (Options > Preferences), go to Document Type
Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Actions subtab.

The following actions are available in this subtab:

New
Opens the Action dialog box that allows you to add an action.

Duplicate
Duplicates the currently selected action.

Edit
Opens the Action dialog box that allows you to edit the existing action.

Delete
Deletes the currently selected action.

Action Dialog Box

To edit an existing document type action or create a new one, open the Preferences dialog box (Options >
Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, click on the
Author tab, and then the Actions subtab. At the bottom of this subtab, click New to create a new action, or

Edit to modify an existing one.

Configuring Oxygen XML Developer 52

Figure 14: Action Dialog Box

The following options are available in the Action dialog box:
ID

Specifies a unique action identifier.
Name

Specifies the name of the action. This name is displayed as a tooltip or as a menu item.

Tip: You can use the ${i18n('key')} editor variable to allow for multiple translations of the name.

Menu access key
In Windows, you can access menus by holding down Alt and pressing the keyboard key that corresponds
to the Letter that is underlined in the name of the menu. Then, while still holding down Alt, you can select
submenus and menu action the same way by pressing subsequent corresponding keys. You can use this
option to specify the Letter in the name of the action that can be used to access the action.

Description
A description of the action. This description is displayed as a tooltip when hovering over the action.

Tip: You can use the ${i18n('key')} editor variable to allow for multiple translations of the description.

How to translate frameworks link
Use this link to see more information about Localizing Frameworks.

Large icon
Allows you to select an image for the icon that Oxygen XML Developer uses for the toolbar action.

Configuring Oxygen XML Developer 53

Tip: A good practice is to store the image files inside the framework directory and use the ${frameworks}
editor variable to make the image relative to the framework location. If the images are bundled in a jar archive
(for instance, along with some Java operations implementation), it is convenient to reference the images by
their relative path location in the class-path.

Small icon
Allows you to select an image for the icon that Oxygen XML Developer uses for the contextual menu action.

Shortcut key
This field allows you to configure a shortcut key for the action that you are editing. The + character separates
the keys.

Enable platform-independent shortcut keys
If this checkbox is selected, the shortcut that you specify in this field is platform-independent and the
following modifiers are used:

• M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.

Operations section

In this section of the Action dialog box, you configure the functionality of the action that you are editing.
An action has one or more operation modes. The evaluation of an XPath expression activates an operation
mode. The first selected operation mode is activated when you trigger the action. The scope of the XPath
expression must consist only of element nodes and attribute nodes of the edited document. Otherwise, the
XPath expression does not return a match and does not fire the action. For more details see: Activate Multiple
Functions for Actions using XPath Expressions on page 54.

The following options are available in this section:
Activation XPath

An XPath 2.0 expression that applies to elements and attributes. For more details see:Activate Multiple
Functions for Actions using XPath Expressions on page 54.

Operation
Specifies the invoked operation.

Arguments

Specifies the arguments of the invoked operation. The Edit at the bottom of the table allows you to edit
the arguments of the operation.

Operation priority
Increases or decreases the priority of an operation. The operations are invoked in the order of their priority.
If multiple XPath expressions are true, the operation with the highest priority is invoked.

• Add - Adds an operation.
• Remove - Removes an operation.
• Duplicate - Duplicates an operation.

Evaluate activation XPath expressions even in read-only cotnexts
If this checkbox is selected, the action can be invoked even when the cursor is placed in a read-only location.

Activate Multiple Functions for Actions using XPath Expressions

An Author mode action can have multiple functions, each function invoking an Author mode operation with
certain configured parameters. Each function of an action has an XPath 2.0 expression for activating it.

For each function of an action, the application will check if the XPath expression is fulfilled (when it returns a not
empty nodes set or a true result). If it is fulfilled, the operation defined in the function will be executed.

Three special XPath extension functions are provided:

Configuring Oxygen XML Developer 54

• oxy:allows-child-element() - Use this function to check whether or not an element is valid child
element in the current context, according to the associated schema.

• oxy:allows-global-element() - Use this function to check whether or not an element is a valid global
element for the current framework, according to the associated schema.

• oxy:current-selected-element() - Use this function to get the currently selected element.
• oxy:is-required-element() - Use this function to check if the element returned by the given XPath

expression is required (based on the rules declared in the schema).

oxy:allows-child-element() Function

The oxy:allows-child-element() function allows you to check whether or not an element that matches
the arguments of the function is valid as a child of the element at the current cursor position, according to the
associated schema. It is evaluated at the cursor position and has the following signature:

oxy:allows-child-element($childName, ($attributeName, $defaultAttributeValue,
$contains?)?)

The following parameters are supported:
childName

The name of the element that you want to check if it is valid in the current context. Its value is a string that
supports the following forms:

• The child element with the specified local name that belongs to the default namespace.

oxy:allows-child-element("para")

The above example verifies if the para element (of the default namespace) is allowed in the current
context.

• The child element with the local name specified by any namespace.

oxy:allows-child-element("*:para")

The above example verifies if the para element (of any namespace) is allowed in the current context.
• A prefix-qualified name of an element.

oxy:allows-child-element("prefix:para")

The prefix is resolved in the context of the element where the cursor is located. The function matches on
the element with the para local name from the previous resolved namespace. If the prefix is not resolved
to a namespace, the function returns a value of false.

• A specified namespace-URI-qualified name of an element.

oxy:allows-child-element("{namespaceURI}para")

The namespaceURI is the namespace of the element. The above example verifies if the para element (of
the specified namespace) is allowed in the current context.

• Any element.

oxy:allows-child-element("*")

The above function verifies if any element is allowed in the current context.

Note: A common use case of oxy:allows-child-element("*") is in combination with the
attributeName parameter.

attributeName
The attribute of an element that you want to check if it is valid in the current context. Its value is a string that
supports the following forms:

• The attribute with the specified name from no namespace.

oxy:allows-child-element("*", "class", " topic/topic ")

The above example verifies if an element with the class attribute and the default value of this attribute
(that contains the topic/topic string) is allowed in the current context.

Configuring Oxygen XML Developer 55

• The attribute with the local name specified by any namespace.

oxy:allows-child-element("*", "*:localname", " topic/topic ")

• A qualified name of an attribute.

oxy:allows-child-element("*", "prefix:localname", " topic/topic ")

The prefix is resolved in the context of the element where the cursor is located. If the prefix is not resolved
to a namespace, the function returns a value of false.

defaultAttributeValue
A string that represents the default value of the attribute. Depending on the value of the next parameter, the
default value of the attribute must either contain this value or be equal with it.

contains
An optional boolean. The default value is true. For the true value, the default value of the attribute must
contain the defaultAttributeValue parameter. If the value is false, the two values must be the same.

oxy:allows-global-element() Function

The oxy:allows-global-element() function allows you to check whether or not an element that matches
the arguments of the function is valid for the current framework, according to the associated schema. It has the
following signature:

oxy:allows-global-element($elementName, ($attributeName, $defaultAttributeValue,
$contains?)?)

The following parameters are supported:
elementName

The name of the element that you want to check if it is valid in the current framework. Its value is a string that
supports the following forms:

• The element with the specified local name that belongs to the default namespace.

oxy:allows-global-element("para")

The above example verifies if the para element (of the default namespace) is allowed in the current
framework.

• The element with the local name specified by any namespace.

oxy:allows-global-element("*:para")

The above example verifies if the para element (of any namespace) is allowed in the current framework.
• A prefix-qualified name of an element.

oxy:allows-global-element("prefix:para")

The prefix is resolved in the context of the framework. The function matches on the element with the
para local name from the previous resolved namespace. If the prefix is not resolved to a namespace, the
function returns a value of false.

• A specified namespace-URI-qualified name of an element.

oxy:allows-global-element("{namespaceURI}para")

The namespaceURI is the namespace of the element. The above example verifies if the para element (of
the specified namespace) is allowed in the current framework.

• Any element.

oxy:allows-global-element("*")

The above function verifies if any element is allowed in the current framework.

attributeName
The attribute of an element that you want to check if it is valid in the current framework. Its value is a string
that supports the following forms:

Configuring Oxygen XML Developer 56

• The attribute with the specified name from no namespace.

oxy:allows-global-element("*", "class", " topic/topic ")

The above example verifies if an element with the class attribute and the default value of this attribute
(that contains the topic/topic string) is allowed in the current framework.

• The attribute with the local name specified by any namespace.

oxy:allows-global-element("*", "*:localname", " topic/topic ")

• A qualified name of an attribute.

oxy:allows-global-element("*", "prefix:localname", " topic/topic ")

The prefix is resolved in the context of the framework. If the prefix is not resolved to a namespace, the
function returns a value of false.

defaultAttributeValue
A string that represents the default value of the attribute. Depending on the value of the next parameter, the
default value of the attribute must either contain this value or be equal with it.

contains
An optional boolean. The default value is true. For the true value, the default value of the attribute must
contain the defaultAttributeValue parameter. If the value is false, the two values must be the same.

oxy:current-selected-element() Function

This function returns the fully selected element. If no element is selected, the function returns an empty
sequence.

Example: oxy:current-selected-element Function

oxy:current-selected-element()[self::p]/b

This example returns the b elements that are children of the currently selected p element.

oxy:is-required-element() Function

This function checks if the element returned by the given XPath expression is required (based on the rules
declared in the schema). It has only one argument, an XPath expression, and the XPath expression must be
written in such a way that it returns a single element.

Example: oxy:is-required-element Function

oxy:is-required-element(.)

This example would check to see if the current element is required by the schema.

Localizing Frameworks

Oxygen XML Developer supports framework localization (translating framework actions, buttons, and menu
entries to various languages). This lets you develop and distribute a framework to users that speak other
languages without changing the distributed framework. Changing the language used in Oxygen XML Developer in
the Global preferences page is enough to set the right language for each framework.

To localize the content of a framework, create a translation.xml file that contains all the translation (key,
value) mappings. The translation.xml has the following format:

<translation>
 <languageList>
 <language description="English" lang="en_US"/>
 <language description="German" lang="de_DE"/>
 <language description="French" lang="fr_FR"/>
 </languageList>
 <key value="list">
 <comment>List menu item name.</comment>
 <val lang="en_US">List</val>
 <val lang="de_DE">Liste</val>
 <val lang="fr_FR">Liste</val>
 </key>
......................
</translation>

Configuring Oxygen XML Developer 57

Oxygen XML Developer matches the GUI language with the language set in the translation.xml file. If this
language is not found, the first available language declared in the languagelist tag for the corresponding
framework is used.

Add the directory where this file is located to the Classpath list corresponding to the edited document type.

After you create this file, you can use the keys defined in it to customize the name and description of the
following:

• Actions
• Menu entries
• Contextual menus
• Toolbars
• Static CSS content

For example, if you want to localize the bold action, open the Preferences dialog box (Options > Preferences) and
go to Document Type Association. Use the New or Edit button to open the Document type configuration dialog
box, go to Author > Actions, and rename the bold action to ${i18n(translation_key)}. Actions with a name
format other than ${i18n(translation_key)} are not localized. Translation_key corresponds to the key
from the translation.xml file.

Now open the translation.xml file and edit the translation entry if it exists or create one if it does not exist.
This example presents an entry in the translation.xml file:

<key value="translation_key">
 <comment>Bold action name.</comment>
 <val lang="en_US">Bold</val>
 <val lang="de_DE">Bold</val>
 <val lang="fr_FR">Bold</val>
 </key>

To use a description from the translation.xml file in the Java code used by your custom framework, use
the new ro.sync.ecss.extensions.api.AuthorAccess.getAuthorResourceBundle() API method to
request the associated value for a certain key. This allows all the dialog boxes that you present from your custom
operations to have labels translated in multiple languages.

You can also reference a key directly in the CSS content:

title:before{
 content:"${i18n(title.key)} : ";
}

Note: You can enter any language you want in the languagelist tag and any number of keys.

The translation.xml file for the DocBook framework is located here:[OXYGEN_INSTALL_DIR]/
frameworks/docbook/i18n/translation.xml. In the Classpath list corresponding to the DocBook
document type the following entry was added: ${framework}/i18n/.

To see how the DocBook actions are defined to use these keys for their name
and description, open the Preferences dialog box (Options > Preferences) and go
to Document Type Association > Author > Actions. If you look in the Java class
ro.sync.ecss.extensions.docbook.table.SADocbookTableCustomizerDialog available
in the oxygen-sample-framework module of the Oxygen SDK Maven archetype, you can see how the new
ro.sync.ecss.extensions.api.AuthorResourceBundle API is used to retrieve localized descriptions for
various keys.

Menu Subtab

In the Menu subtab, you can configure which actions will appear in the framework-specific menu. The subtab is
divided in two sections: Available actions and Current actions.

To open the Menu subtab, open the Preferences dialog box (Options > Preferences), go to Document Type
Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Menu subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along
with their icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen XML

Developer menu. To add an action in this section as a sibling of the currently selected action, use the Add as

Configuring Oxygen XML Developer 58

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorAccess.html
https://www.oxygenxml.com/oxygen_sdk_maven.html

sibling button. To add an image in this section as a child of the currently selected action use the Add as child
button.

The following actions are available in the Current actions section:

Edit
Edits an item.

Remove
Removes an item.

Move Up
Moves an item up.

Move Down
Moves an item down.

Contextual Menu Subtab

In the Contextual menu subtab you configure what framework-specific action the Content Completion Assistant
proposes. The subtab is divided in two sections: Available actions and Current actions.

To open the Contextual Menu subtab, open the Preferences dialog box (Options > Preferences), go to Document
Type Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Contextual
Menu subtab.

Figure 15: Contextual Menu Subtab

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with
their icon, ID, and name. The Current actions section contains the actions that are displayed in the contextual
menu for documents that belong to the edited framework.

The following actions are available in this subtab:

Add as sibling
Adds the selected action or submenu from the Available actions section to the Current actions section as a
sibling of the selected action.

Add as child
Adds the selected action or submenu from the Available actions section to the Current actions section as a
child of the selected action.

Configuring Oxygen XML Developer 59

Edit
This option is available for container (submenu) items that are listed in the Current actions section. It opens a
configuration dialog box that allows you to edit the selected container (submenu).

Figure 16: Menu Action Configuration Dialog Box

The following options are available in this dialog box:

Name
Specifies the name of the action. This name is displayed as a tooltip or as a menu item.

Tip: You can use the ${i18n('key')} editor variable to allow for multiple translations of the name.

Menu access key
In Windows, you can access menus by holding down Alt and pressing the keyboard key that corresponds
to the Letter that is underlined in the name of the menu. Then, while still holding down Alt, you can select
submenus and menu action the same way by pressing subsequent corresponding keys. You can use this
option to specify the Letter in the name of the action that can be used to access the action.

Menu icon
Allows you to select an image for the icon that Oxygen XML Developer uses for the container (submenu).

Promote items when in a table context
If this option is selected, when invoking the contextual menu from within a table, all the actions in this
container (submenu) will be promoted to the main level in the contextual menu. Actions and submenus
that are not promoted are still available in the Other actions submenu when invoking the contextual menu
within a table.

Remove
Removes the selected action or submenu from the Current actions section.

Move Up
Moves the selected item up in the list.

Move Down
Moves the selected item down in the list.

Toolbar Subtab

In the Toolbar subtab you configure what framework-specific action the Oxygen XML Developer toolbar holds. The
subtab is divided in two sections: Available actions and Current actions.

To open the Toolbar subtab, open the Preferences dialog box (Options > Preferences), go to Document Type
Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the Toolbar subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along
with their icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen XML
Developer toolbar when you work with a document belonging to the edited framework. To add an action in this

section as a sibling of the currently selected action, use the Add as sibling button. To add an action in this
section as a child of the currently selected action use the Add as child button.

The following actions are available in the Current actions section:

Configuring Oxygen XML Developer 60

Edit
Edits an item.

Remove
Removes an item.

Move Up
Moves an item up.

Move Down
Moves an item down.

Content Completion Subtab

In the Content Completion subtab you configure what framework-specific the Content Completion Assistant
proposes. The subtab is divided in two sections: Available actions and Current actions.

To open the Content Completion subtab, open the Preferences dialog box (Options > Preferences), go to
Document Type Association, use the New, Edit, Duplicate, or Extend button, click on the Author tab, and then the
Content Completion subtab.

Available and Current Actions

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with
their icon, ID, and name. The Current actions section holds the actions that the Content Completion Assistant
proposes when you work with a document belonging to the edited framework. To add an action in this section as

a sibling of the currently selected action, use the Add as sibling button. To add an action in this section as a
child of the currently selected action use the Add as child button.

The following actions are available in the Current actions section:

Edit
Edits an item.

Remove
Removes an item.

Move Up
Moves an item up.

Move Down
Moves an item down.

Filter Table

The Filter section presents a table that allows you to add elements to be filtered from the Content Completion
Assistant or from some specific helper views or menus. Use the Add button to add more filters to the table,
the Edit button to modify an existing item in the table, or the Remove button to remove a filtered item. The

Add and Edit buttons open a Remove item dialog box.

Configuring Oxygen XML Developer 61

Figure 17: Remove Item Dialog Box

Use this dialog box to add or configure the elements that will be filtered:
Item name

Use this text field to enter the name of the element to be filtered. The drop-down list also includes a few
special content completion actions that can be filtered (<SPLIT> and <ENTER>).

Remove item from
You can choose to filter the element from any of the following:

• Content Completion Window - The element will not appear in the Content Completion Assistant.
• Elements View - The element will not appear in the Elements view.
• Element Insert Menus - The element will not appear in the Append Child, Insert Before, or Insert After

menus that are available in certain contextual menus (for example, the contextual menu of the Outline
view).

• Entities View - The element will not appear in the Entities view.

Related Information:

Templates Tab

The Templates tab specifies a list of directories where new file templates are located. These file templates are
gathered from all the document types and presented in the various folders inside the Framework templates folder
in the New document wizard.

To open the Templates tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Templates tab.

The Templates tab includes the following actions:

New
Opens a dialog box that allows you to specify the path to the directory of the template. You can specify the
path by using the text field, its history drop-down, the Insert Editor Variables button, or the browsing tools in
the Browse drop-down list.

Tip: The path can also contain wildcards. For example, using ${frameworkDir}/templates/* would add
all the template folders found inside the templates directory.

Edit
Opens a dialog box that allows you to edit the path of the selected template. You can specify the path by
using the text field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the

Browse drop-down list.

Tip: The path can also contain wildcards. For example, using ${frameworkDir}/templates/* would add
all the template folders found inside the templates directory.

Delete
Deletes the currently selected template from the list.

Configuring Oxygen XML Developer 62

Move Up
Moves the selected template up one spot in the list.

Move Down
Moves the selected template down one spot in the list.

Catalogs Tab

The Catalogs tab specifies a list of XML Catalogs, specifically for the edited framework, that are added to list of
catalogs that Oxygen XML Developer uses to resolve resources.

To open the Catalogs tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Catalogs tab.

You can perform the following actions:

Add
Opens a dialog box that allows you to add a catalog to the list. You can specify the path by using the text field,
its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list.

Edit
Opens a dialog box that allows you to edit the path of an existing catalog.

Delete
Deletes the currently selected catalog from the list.

Move Up
Moves the selected catalog up one spot in the list.

Move Down
Moves the selected catalog down one spot in the list.

Transformation Tab

In the Transformation tab, you can configure the transformation scenarios associated with the particular
framework you are editing. These transformation scenarios are presented in the Configure Transformation
Scenarios dialog box when transforming a document and you can specify which scenarios will be used by default
for a particular document type.

To open the Transformation tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Transformation tab.

The Transformation tab offers the following options:
Default checkbox

You can set one or more of the scenarios listed in this tab to be used as the default transformation scenario
when another specific scenario is not specified. The scenarios that are set as default are rendered bold in the
Configure Transformation Scenarios dialog box.

New
Opens the New scenario dialog box allowing you to create a new transformation scenario for the particular
document type.

Duplicate
Allows you to duplicate the configuration of an existing transformation scenario. It opens the Edit scenario
dialog box where you can configure the properties of the duplicated scenario.

Edit
Opens the Edit scenario dialog box allowing you to edit the properties of the currently selected transformation
scenario.

Configuring Oxygen XML Developer 63

Delete
Deletes the currently selected transformation scenario.

Import scenarios
Imports transformation scenarios.

Export selected scenarios
Export transformation scenarios.

Move Up
Moves the selection to the previous scenario.

Move Down
Moves the selection to the next scenario.

Validation Tab

In the Validation tab, you can configure the validation scenarios associated with the particular framework you
are editing. These validation scenarios are presented in the Configure Validation Scenarios dialog box when
validating a document and you can specify which scenarios will be used by default for a particular document
type.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file, along
with any Schematron schema defined in the default scenarios for that particular framework, are used for the
validation. These take precedence over other types of validation units defined in the default scenarios for the
particular framework. For more information on master files, see Master Files Support on page 233 or Working
with Modular XML Files in the Master Files Context on page 311.

To open the Validation tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Validation tab.

The Validation tab offers the following options:
Default checkbox

You can set one or more of the scenarios listed in this tab to be used as the default validation scenario when
another specific scenario is not specified in the validation process. The scenarios that are set as default are
rendered bold in the Configure Validation Scenarios dialog box.

New
Opens the New scenario dialog box allowing you to create a new validation scenario.

Duplicate
Allows you to duplicate the configuration of an existing validation scenario. It opens the Edit scenario dialog
box where you can configure the properties of the duplicated scenario.

Edit
Opens the Edit scenario dialog box allowing you to edit the properties of the currently selected validation
scenario.

Delete
Deletes the currently selected validation scenario.

Import scenarios
Imports validation scenarios.

Export selected scenarios
Export validation scenarios.

Move Up
Moves the selected scenario up one spot in the list.

Configuring Oxygen XML Developer 64

Move Down
Moves the selected scenario down one spot in the list.

Extensions Tab

The Extensions tab specifies implementations of Java interfaces used to provide advanced functionality to the
document type.

To open the Extensions tab of the Document type configuration dialog box, open the Preferences dialog box
(Options > Preferences), go to Document Type Association, use the New, Edit, Duplicate, or Extend button, and
click on the Extensions tab.

Libraries containing the implementations must be present in the classpath of your document type. The Javadoc
available at https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ contains details about how each API
implementation functions.

Encoding Preferences
Oxygen XML Developer lets you configure how character encodings are recognized when opening files and which
encodings are used when saving files. To configure encoding options, open the Preferences dialog box (Options >
Preferences) and go to Encoding.

The following encoding options are available:
Fallback character encoding

Specifies the default character encoding of non-XML documents if their character encoding cannot be
determined from other sources (for example, it is not specified in the document or determined by the file
type).

Note: For certain document types, the following encoding detection rules are used:

• For XML, DTD, and CSS documents, Oxygen XML Developer tries to collect the character encoding from
the document. If no such encoding is found, then UTF-8 is used.

• For JavaScript, JSON, SQL, XQuery, and RNC, the UTF-8 encoding is used.

UTF-8 BOM handling
This setting specifies how to handle the Byte Order Mark (BOM) when Oxygen XML Developer saves a UTF-8
XML document:

• Keep (default) - Do not alter the BOM declaration of the currently open file.
• Write - Save the BOM bytes.
• Don't Write - Do not save the BOM bytes. Loaded BOM bytes are ignored.

Note: The UTF-16 BOM is always preserved. UTF-32 documents have a big-endian byte order.

Encoding errors handling
This setting specifies how to handle characters that cannot be represented in the character encoding that is
used when the document is opened. The available options are:

• REPORT (default) - Displays an error identifying the character that cannot be represented in the specified
encoding. Unrecognized characters are rendered as an empty box.

• REPLACE - The character is replaced with a standard replacement character. For example, if the encoding
is UTF-8, the replacement character has the Unicode code FFFD, and if the encoding is ASCII, the
replacement character code is 63.

• IGNORE - The error is ignored and the character is not included in the document displayed in the editor.

Attention: If you edit and save the document, the characters that cannot be represented in the
specified encoding are dropped.

Encoding for Base64, Base32, Hex conversions
Specifies the encoding to be used when invoking the Encode Selection or Decode Selection actions for
Base64, Base32, or Hex conversions. The default setting is UTF8.

Configuring Oxygen XML Developer 65

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/

Editor Preferences
Oxygen XML Developer lets you configure the appearance of various components and features of the main editor.
To access these options, open the Preferences dialog box (Options > Preferences) and go to Editor.

The following options are available:
Selection background color

Allows you to set the background color of selected text.
Selection foreground color

Allows you to set the color of selected text.
Completion proposal background

Allows you to set the background color of the Content Completion Assistant.
Completion proposal foreground

Allows you to set the color of the text in the Content Completion Assistant.
Documentation window background

Allows you to set the background color of the documentation of elements suggested by the Content
Completion Assistant.

Documentation window foreground
Allows you to set the color of the text for the documentation of elements suggested by the Content
Completion Assistant.

Find highlight color
Allows you to set the color of the highlights generated by the Find and Find all actions.

XPath highlight color
Allows you to set the color of the highlights generated when you run an XPath expression.

Declaration highlight color
Allows you to set the color of the highlights generated by the Find declaration action.

Reference highlight color
Allows you to set the color of the highlights generated by the Find reference action.

Maximum number of highlights
Allows you to set the maximum number of highlights that Oxygen XML Developer displays.

Show TAB/NBSP/EOL/EOF marks
Makes the TAB/NBSP/EOL/EOF characters visible in the editor. You can use the color picker to choose the
color of the marks.

Show SPACE marks
Makes the space character visible in the editor.

Can edit read-only files
If this option is selected, Oxygen XML Developer will let you edit read-only files. When you try to save them,
a Save As dialog box will be displayed to avoid overwriting the initial resource. If the option is not selected, a
warning message is displayed when you try to edit a read-only file.

Display quick-assist and quick-fix side hints

Displays the Quick Assist icon () and Quick Fix icon () in the line number stripe on the left side of the
editor.

Undo history size
Allows you to set the maximum amount of undo operations you can perform in any of the editor modes (Text,
Design, Grid).

Enable mouse-wheel zooming
If selected, you can use Ctrl + MouseWheelForward (Command + MouseWheelForward on OS X) to increase
the editor font (zoom in) or Ctrl + MouseWheelBackwards (Command + MouseWheelBackwards on OS X)
to decrease the editor font (zoom out). It is enabled by default on Windows and Linux, while it is disabled by
default on Mac OS X, due to the way inertia affects the mouse wheel on this operating system.

Configuring Oxygen XML Developer 66

Print Preferences

Oxygen XML Developer lets you configure how files are printed out of the editor. Note that these setting cover
how files are printed directly from Oxygen XML Developer itself, not how they are printed after the XML source
has been transformed by a publishing stylesheet. To configure the Print options, open the Preferences dialog box
(Options > Preferences) and go to Editor > Print.

This page allows you to customize the headers and footers added to a printed page when you print from the Text
mode editor. These settings do not apply to the Grid and schema Design mode.

You can specify what is printed on the Left, Middle, and Right of the header and footer using plain text of any of
the following variables:

• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document
represented as URL.

• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• ${cp} - Current page number. Used to display the current page number on each printed page in the Editor /

Print Preferences page.
• ${tp} - Total number of pages in the document. Used to display the total number of pages on each printed

page in the Editor / Print Preferences page.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed

by the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor
variable.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be
specified in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for
operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat
class. Example: yyyy-MM-dd;

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to http://www.w3.org/TR/
xmlschema-2/#dateTime.

For example, to show the current page number and the total number of pages in the top right corner of the page,
write the following pattern in the Right text area of the Header section: ${cp} of ${tp}.

You can also set the Color and Font used in the header and footer. Default font is SansSerif.

You can place a line below the header or above the footer by selecting Underline/Overline.

Edit Modes Preferences

Oxygen XML Developer lets you configure which edit mode a file is opened in the first time it is opened. This
setting only applies the first time a file is opened. The current editing mode of each file is saved when the file is
closed and restored the next time it is opened. To configure the options for editing modes, open the Preferences
dialog box (Options > Preferences) and go to Editor > Edit Modes .

Allow Document Type specific edit mode setting to override the general mode setting
If selected, the initial edit mode setting set in the Document Type configuration dialog box overrides the
general edit mode setting from the table below.

Select the initial edit mode (page) for each editor
This table specifies the default editing mode that will be opened for each type of document when the Allow
Document Type specific edit mode setting to override the general mode setting option is not selected. Use
the Edit button to change the initial edit mode for each type of document (editor). The initial edit mode can be
one of the following:

• Text
• Grid
• Design (available only for the XSD editor).

Configuring Oxygen XML Developer 67

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

Figure 18: Edit Modes Preferences Page

Text Preferences

Oxygen XML Developer lets you configure how the Text mode editor appears. To configure these options, open
the Preferences dialog box (Options > Preferences) and go to Editor > Edit modes > Text.

The following options are available:
Editor background color

Sets the background color for the Text editing mode, Outline view, and some external tool editors (Large File
Viewer, Compare Files, Compare Directories).

Editor cursor color
Sets the color for the cursor in Text mode.

Highlight current line
If selected, the current line is highlighted with the foreground color specified with the color chooser.

Show line numbers
If selected (default value), line numbers are shown in the editor panels and in the Output view of the debugger
perspectives. You can also specify the color for the line numbers using the color chooser. Printed output will
also include the line numbers.

Show print margin
If selected, it allows you to set a safe print limit in the form of a vertical line displayed in the right side of the
editor pane. You can also customize the print margin line color.

Print margin column
Allows you to specify a limit for the print width, measured in the number of characters.

Line wrap
If selected, long lines are automatically wrapped in edited documents. The line wrap does not alter the
document content since the application does not use new-line characters to break long lines.

Cut / Copy whole line when nothing is selected
If selected, Cut and Copy actions operate on the entire current line when nothing is selected in the editor.

Enable folding
If selected (default value), the vertical stripe that holds the folding markers is displayed in Text mode.

Highlight matching tag
If selected, when you place the cursor on a start or end tag, Oxygen XML Developer highlights the
corresponding member of the pair. You can also customize the highlight color.

Configuring Oxygen XML Developer 68

Lock the XML tags
If selected, XML are locked and cannot be edited in Text mode.

Diagram Preferences

For certain XML languages, Oxygen XML Developer provides a diagram view as part of the text mode editor. To
configure the Diagram preferences, open the Preferences dialog box (Options > Preferences) and go to Editor >
Edit modes > Text > Diagram.

The following options are available in this preference page:
Show Full Model XML Schema diagram

When this option is selected, the Text mode editor for XML Schemas includes a split screen view that shows
a diagram of the schema structure. This is useful for seeing the effects of schema changes you make. For
editing a the schema using a diagram instead of text, use the schema Design view.

Note: When handling very large schemas, displaying the schema diagram might affect the performance of
your system. In such cases, disabling the schema diagram view improves the speed of navigation through the
edited schema.

Enable Relax NG diagram and related views
Enables the Relax NG schema diagram and synchronization with the related views (Attributes, Model,
Elements, Outline).

Show Relax NG diagram
Displays the Relax NG schema diagram in the split screen views (Full Model View and Logical Model
View).

Enable NVDL diagram and related views
Enables the NVDL schema diagram and synchronization with the related views (Attributes, Model, Elements,
Outline).

Show NVDL diagram
Displays the NVDL schema diagram in the split screen views (Full Model View and Logical Model View).

Location relative to editor
Allows you to specify the location of the schema diagram panel relative to the diagram Text editor.

Show/Hide Annotations link
Use this link to navigate to the Schema Design preferences page where you can choose to show or hide
annotations in schema diagrams.

Zoom link
Use this link to navigate to the Schema Design preferences page where you can adjust the default zoom level
of schema diagrams.

Grid Preferences

Oxygen XML Developer provides a Grid view of an XML document. To configure the Grid options, open the
Preferences dialog box (Options > Preferences) and go to Editor > Edit modes > Grid.

The following options are available:
Compact representation

If selected, the compact representation of the grid is used: a child element is displayed beside the parent
element. In the non-compact representation, a child element is nested below the parent.

Format and indent when passing from grid to text or on save
If selected, the content of the document is formatted and indented each time you switch from the Grid view to
the Text view.

Default column width (characters)
Sets the default width (in characters) of a table column of the grid. A column may contain the following:

• Element names
• Element text content

Configuring Oxygen XML Developer 69

• Attribute names
• Attribute values

If the total width of the grid structure is too large you can resize any column by dragging the column margins
with the mouse pointer, but the change is not persistent. To make it persistent, set the new column width with
this option.

Active cell color
Allows you to set the background color for the active cell of the grid. The keyboard input always goes to the
active cell and the selection always contains it.

Selection color
Allows you to set the background color for the selected cells of the grid except the active cell.

Border color
Allows you to set the color used for the lines that separate the grid cells.

Background color
Allows you to set the background color of grid cells that are not selected.

Foreground color
Allows you to set the text color of the information displayed in the grid cells.

Row header colors

Background color
Allows you to set the background color of row headers that are not selected.

Active cell color
Allows you to set the background color of the row header cell that is currently active.

Selection color
Allows you to set the background color of the header cells corresponding to the currently selected rows.

Column header colors
The column headers are painted with two color gradients, one for the upper 1/3 part of the header and the
other for the lower 2/3 part. The start and end colors of the first gradient are set with the first two color
buttons. The start and end colors of the second gradient are set with the last two color buttons.

Background color
Allows you to set the background color of column headers that are not selected.

Active cell color
Allows you to set the background color of the column header cell that is currently active.

Selection color
Allows you to set the background color of the header cells corresponding to the currently selected
columns.

Schema Design Preferences

Oxygen XML Developer provides a graphical schema design editor to make editing XML Schema easier. To
configure the Schema Design options, open the Preferences dialog box (Options > Preferences) and go to Editor >
Edit modes > Schema Design.

The following options are available in the Schema Design preferences page:

Show annotation in the diagram
When selected, Oxygen XML Developer displays the content of xs:documentation elements in schema
diagrams.

When trying to edit components from another schema
The schema diagram editor will combine schemas imported by the current schema file into a single schema
diagram. You can choose what happens if you try to edit a component from an imported schema. The options
are:

• Always go to its definition - Oxygen XML Developer opens the imported schema file so that you can edit it.

Configuring Oxygen XML Developer 70

• Never go to its definition - The imported schema file is not opened and the component cannot be edited in
place.

• Always ask - Oxygen XML Developer asks if you want to open the imported schema file.

Zoom
Allows you to set the default zoom level of the schema diagram.

Properties Preferences

Oxygen XML Developer lets you control which properties to display for XML Schema components in the XML
Schema Design view. To configure the schema design properties displayed, open the Preferences dialog box
(Options > Preferences) and go to Editor > Edit modes > Schema Design > Properties.

This preferences page contains the following:
Show additional properties in the diagram

If this option is selected, the properties selected in the property table are shown in the XML Schema Design
mode. This option is selected by default.

Properties Table

Show
Use this column in the table to select the properties that you want to be displayed in the XML Schema
Design mode.

Only if specified
Use this column to select if you want the property to be displayed only if it is defined in the schema.

Spell Check Preferences

Oxygen XML Developer provides support for spell checking in the Text editing mode. To configure the Spell
Check options, open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check.

The following options are available:
Automatic spell check

This option is not selected by default. When selected, Oxygen XML Developer automatically checks the
spelling as you type and highlights misspelled words in the document.

• Select editors - You can select which editors (and therefore which file types) will be automatically spell
checked. File types (such as CSS and DTD), in which automatic spell checking is not usually helpful, are
excluded by default.

Spell check highlight color
Use this option to set the color used by the spell check engine to highlight spelling errors.

Language options section
This section includes the following language options:

Default language
The default language list allows you to choose the language used by the spell check engine when the
language is not specified in the source file. You can add additional dictionaries to the spell check engines.

Use "lang" and "xml:lang" attributes
When this option is selected, the contents of an element with one of the lang or xml:lang attributes is
checked in that language. Choose between the following two options for instances when these attributes
are missing:

• Use the default language - If the lang and xml:lang attributes are missing, the selection in the
Default language list is used.

• Do not check - If the lang and xml:lang attributes are missing, the element is not checked.

XML spell checking in section
You can choose to check the spelling inside the following XML items:

• Comments
• Attribute values

Configuring Oxygen XML Developer 71

• Text
• CDATA

Options section
This section includes the following other options:

Check capitalization
When selected, the spell checker reports capitalization errors (for example, a word that starts with
lowercase after etc. or i.e.).

Check punctuation
When selected, the spell checker checks punctuation. Misplaced white space and unusual sequences,
such as a period following a comma, are highlighted as errors.

Ignore mixed case words
When selected, the spell checker does not check words containing mixed case characters (for example,
SpellChecker).

Ignore acronyms
Available only for the Hunspell Spell Checker. When selected, acronyms are not reported as errors.

Ignore words with digits
When selected, the spell checker does not check words containing digits (for example, b2b).

Ignore duplicates
When selected, the spell checker does not signal two successive identical words as an error.

Ignore URL
When selected, the spell checker ignores words recognized as URLs or file names (for example,
www.oxygenxml.com or c:\boot.ini).

Allow compounds words
When selected, all words formed by concatenating two legal words with a hyphen (hyphenated
compounds) are accepted. If recognized by the language, two words concatenated without hyphen
(closed compounds) are also accepted.

Allow file extensions
When selected, the spell checker accepts any word ending with recognized file extensions (for example,
myfile.txt or index.html).

Ignore elements section
You can use the Add and Remove buttons to configure a list of element names or XPath expressions to be
ignored by the spell checker. The following restricted set of XPath expressions are supported:

• '/' and '//' separators
• '*' wildcard

An example of an allowed XPath expression is: /a/*/b.

Spell Check Dictionaries Preferences

To set the Dictionaries preferences, open the Preferences dialog box (Options > Preferences) and go to Editor >
Spell Check > Dictionaries. This page allows you to configure the dictionaries (.dic files) and term lists (.tdi
files) that Oxygen XML Developer uses and to choose where to save new learned words.

The following options are valid when Oxygen XML Developer uses the Hunspell spell checking engine:
Dictionaries and term lists default folder

Displays the default location where the dictionaries and term lists that Oxygen XML Developer uses are
stored.

Include dictionaries and term list from
Selecting this option allows you to specify a location where you have stored dictionaries and term lists that
you want to include, along with the default ones.

Important: Consider the following notes in regards to this option:

Configuring Oxygen XML Developer 72

• The spell checker takes into account dictionaries and term lists collected both from the default and
custom locations and multiple dictionaries and term lists from the same language are merged (for
example, en_UK.dic from the default location is merged with en_US.dic from a custom location).

• If you have a generic dictionary file (one that just has a two letter language code for its file name, such as
en.dic) saved in either the default or custom location, the other more specific dictionaries (for example,
en_UK.dic and en_US.dic) will not be merged and the existing generic dictionary will simply be used
instead.

• If the additional location contains a file with the same name as one from the default location, the file in the
additional location takes precedence over the file from the default location.

How to add more dictionaries and term lists link
Use this link to open a topic in the Oxygen XML Developer User Guide that explains how to add more
dictionaries and term lists.

Save learned words in the following location
Specifies the target where the newly learned words are saved. By default, the target is the application
preferences folder, but you can also choose a custom location.

Delete learned words
Opens the list of learned words, allowing you to select the items you want to remove, without deleting the
dictionaries and term lists.

Related Information:
Adding Spell Check Dictionaries on page 555
Adding Spell Check Term Lists on page 556

Document Checking Preferences

To configure the Document Checking (validation) options, open the Preferences dialog box (Options >
Preferences) and go to Editor > Document Checking. This page contains preferences for configuring how a
document is checked for both well-formedness and validation errors.

The following options are available:
Maximum number of validation highlights

If a validation generates more errors than the number specified in this option, only the errors up to this
number are highlighted in the editor panel and on the stripe that is displayed at the right side of the editor
panel. This option applies to both automatic validation and manual validation.

Validation error highlight color
The color used to highlight validation errors in the document.

Validation warning highlight color
The color used to highlight validation warnings in the document.

Validation info highlight color
The color used to highlight validation info messages in the document.

Validation success color
The color used to highlight the success indicator of the validation operation in the vertical ruler bar.

Always show validation status
If this option is selected, the current validation error or warning is always visible in the message line at the
bottom of the editor panel. This is useful when the Enable automatic validation option is selected and the
vertical scroll bar changes position due to an error message being displayed.

Enable automatic validation
This causes the validation to be automatically executed in the background as the document is modified in
Oxygen XML Developer.

Delay after the last key event (s)
The period of keyboard inactivity before starting a new validation (in seconds).

At the bottom of the preferences page you can choose whether or not the saved options will be shared with other
users by selecting Global or Project storage options.

Configuring Oxygen XML Developer 73

Format Preferences

This preferences page contains various formatting options that influence editing and formatting in the Text
mode.

Note: These settings apply to the formatting of source documents. The formatting of output documents is
determined by the transformation scenarios that create them.

To configure the Format options, open the Preferences dialog box (Options > Preferences) and go to Editor >
Format.

The following options are available:
Detect indent on open

If selected, Oxygen XML Developer detects how a document is indented when it is opened. Oxygen XML
Developer uses a heuristic method of detection by computing a weighted average indent value from the initial
document content. You can deselect this setting if the detected value does not work for your particular case
and you want to use a fixed-size indent for all the edited documents. If this option is selected, Oxygen XML
Developer detects the following:

• When TAB characters are used to indent content, the size of the TAB characters is used for the indent size.
• Otherwise, the detected size of SPACE characters is used for the indent size.

Tip: If you want to minimize the formatting differences created by the Format and Indent operation in a
document edited in the Text edited mode, make sure that both the Detect indent on open and Detect line
width on open options are selected.

Use zero-indent, if detected
By default, if no indent was detected in the document, the fixed-size indent is used. Select this option if all
your document have no indentation and you want to keep them that way.

Indent with tabs
If selected, indents are created using TAB characters. If unchecked, lines are indented using space
characters. Selecting this option automatically disables the Detect indent on open option.

Indent size
The meaning of this setting depends on the following:

• If the Detect indent on open option is selected and TAB characters are detected at the beginning of the
line, the indent size is the width of a TAB character. Otherwise, the indent size value is ignored and Oxygen
XML Developer uses the number of detected SPACE characters.

• If the Indent with tabs option is selected, the indent size is the width of a TAB character.
• If neither of these options are selected, the indent size is the number of SPACE characters used for

indenting the text lines.

For additional information about changing the indent size, see Setting an Indent Size to Zero on page 262.

For information about when this setting is used, see Where Indent Size and Line Width Settings are Used in
Oxygen XML Developer on page 75.

Indent on enter
If selected, when you press Enter to insert a line break in the Text editing mode, an indentation will be added
to the new line.

Enable smart enter
If selected, when you press the Enter key between a start and an end XML tag in the Text editing mode,
the cursor is placed in an indented position on the empty line formed between the start and end tag.

Format and indent the document on open
If selected, an XML document is formatted and indented before opening it in Oxygen XML Developer.

Note: Some specialized types of XML documents do not benefit from this feature, including Relax NG, XSD,
XSL, and Ant. However, the feature is available for some non-XML types of documents, such as CSS and
JSON.

Configuring Oxygen XML Developer 74

Detect line width on open
If selected, Oxygen XML Developer automatically detects the line width when the document is opened.

Hard line wrap (Limit to "Line width - Format and Indent")
If selected, when typing content in the Text editing mode and the maximum line width is reached, a line break
is automatically inserted.

Line width - Format and Indent
Defines the number of characters after which the Format and Indent (pretty-print) action performs hard line-
wrapping. For example, if set to 100, after a Format and Indent action, the longest line will have a maximum
of 100 characters.

Note: To avoid having an indent that is longer than the line width setting and without having sufficient space
available for the text content, the indent limit is actually set at half the value of the Line width - Format and
Indent setting. The remaining space is reserved for text.

For information about when this setting is used, see Where Indent Size and Line Width Settings are Used in
Oxygen XML Editor.

Clear undo buffer before Format and Indent
The Format and Indent operation can be undone, but if used intensively, a considerable amount of the
memory allocated for Oxygen XML Developer will be used for storing the undo states. If this option is
selected, Oxygen XML Developer empties the undo buffer before doing a Format and Indent operation. This
means you will not be able to undo any changes you made before the format and indent operation. Select
this option if you encounter out of memory problems (OutOfMemoryError) when performing the Format and
Indent operation.

Where Indent Size and Line Width Settings are Used in Oxygen XML Developer

The values set in the Indent Size and Line Width - Format and Indent options are used in various places in the
application, including the following:

• When the Format and Indent action is used in the Text editing mode.
• When you press ENTER to break a line in the Text editing mode.
• When the Hard line wrap (Limit to "Line width - Format and Indent") option is selected and the maximum line

width is reached while editing in the Text mode.

To watch our video demonstration about the formatting options offered by Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/Autodetect_Formating.html.

XML Preferences

To configure the XML Formatting options, open the Preferences dialog box (Options > Preferences) and go to
Editor > Format > XML.

The following options are available:
Format Section

This section includes the following drop-down boxes:

Preserve empty lines
The Format and Indent operation preserves all empty lines found in the document.

Preserve text as it is
The Format and Indent operation preserves text content as it is, without removing or adding any white
space.

Preserve line breaks in attributes
Line breaks found in attribute values are preserved.

Note: When this option is selected, the Break long attributes option is automatically disabled.

Break long attributes
The Format and Indent operation breaks long attribute values.

Configuring Oxygen XML Developer 75

https://www.oxygenxml.com/demo/Autodetect_Formating.html
https://www.oxygenxml.com/demo/Autodetect_Formating.html

Indent inline elements
The inline elements are indented on separate lines if they are preceded by white spaces and they follow
another element start or end tag. For example:

Original XML:

<root>
 text <parent> <child></child> </parent>
</root>

Indent inline elements selected:

<root> text <parent>
 <child/>
 </parent>
</root>

Indent inline elements not selected:

<root> text <parent> <child/> </parent> </root>

Expand empty elements
The Format and Indent operation outputs empty elements with a separate closing tag (for example, <a
atr1="v1">). When not selected, the same operation represents an empty element in a more
compact form (<a atr1="v1"/>).

Sort attributes
The Format and Indent operation sorts the attributes of an element lexicographically.

Add space before slash in empty elements
Inserts a space character before the trailing / and > of empty elements.

Break line before an attribute name
The Format and Indent operation breaks the line before the attribute name.

Element Spacing Section
This section controls how the application handles whitespaces found in XML content. You can Add or
Remove element names or simplified XPath expressions in the various tabs.

The XPath expressions can accept multiple attribute conditions and inside each condition you can use AND/
OR boolean operators and parentheses to override the priority.

You can use one or more of the following attribute conditions (default attribute values are not taken into
account):

• element[@attr] - Matches all instances of the specified element that include the specified attribute.
• element[not(@attr)] - Matches all instances of the specified element that do not include the specified

attribute.
• element[@attr = "value"] - Matches all instances of the specified element that include the specified

attribute with the given value.
• element[@attr != "value"] - Matches all instances of the specified element that include the specified

attribute and its value is different than the one given.

Example: The following is an example of how you could use multiple boolean operators and parentheses
inside an attribute condition:

*[@a and @b or @c and @d]
*[@a and (@b or @c) and @d]

The following are just examples of how simplified XPath expressions might look like:

• elementName
• //elementName
• /elementName1/elementName2/elementName3
• //xs:localName Note: The namespace prefixes (such as xs) are treated as part of the element name

without taking its binding to a namespace into account.

Configuring Oxygen XML Developer 76

• //xs:documentation[@lang="en"]

The tabs are as follows:
Preserve space

List of elements for which the Format and Indent operation preserves the whitespaces (such as blanks,
tabs, and newlines).

Default space
List of elements for which the content is normalized (multiple contiguous whitespaces are replaced by a
single space), before applying the Format and Indent operation.

Mixed content
The elements from this list are treated as mixed content when applying the Format and Indent operation.
The lines are split only when whitespaces are encountered.

Line break
List of elements for which line breaks will be inserted, regardless of their content. You can choose to break
the line before the element, after, or both.

Schema aware format and indent
The Format and Indent operation takes the schema information into account with regards to the space
preserve, mixed, or element only properties of an element.

Indent Section
Includes the following options:

Indent (when typing) in preserve space elements
Normally, the Preserve space elements (identified by the xml:space attribute set to preserve or by
their presence in the Preserve space tab of the Element Spacing list) are ignored by the Format and Indent
operation. When this option is selected and you edit one of these elements, its content is formatted.

Indent on paste - sections with number of lines less than 300
When you paste a chunk of text that has fewer than 300 lines, the inserted content is indented. To keep the
original indent style of the document you copy content from, deselect this option.

Whitespaces Preferences

When Oxygen XML Developer formats and indents XML documents, a whitespace normalization process is
applied, thus replacing whitespace sequences with single space characters. Oxygen XML Developer allows you to
configure which Unicode characters are treated as spaces during the normalization process.

To configure the Whitespace preferences, open the Preferences dialog box (Options > Preferences) and go to
Editor > Format > XML > Whitespaces.

This table lists the Unicode whitespace characters. Select any that you want to have treated as whitespace when
formatting and indenting an XML document.

The whitespaces are normalized when the Format and Indent action is applied on an XML document.

Note: The whitespace normalization process replaces any sequence of characters declared as whitespaces in
the Whitespaces table with a single space character (U+0020). If you want to be sure that a certain whitespace
character will not be removed in the normalization process, deselect it in the Whitespaces table.

Important: The characters with the codes U+0009 (TAB), U+000A (LF), U+000D (CR) and U+0020 (SPACE) are
always considered to be whitespace characters and cannot be deselected.

XQuery Preferences

To configure the XQuery Formatting options, open the Preferences dialog box (Options > Preferences) and go to
Editor > Format > XQuery.

The following options are available:

• Preserve line breaks - All initial line breaks are preserved.
• Break line before an attribute name - Each attribute of an XML element is written on a new line and properly

indented.

Configuring Oxygen XML Developer 77

XPath Preferences

To configure the XPath Formatting options, open the Preferences dialog box (Options > Preferences) and go to
Editor > Format > XPath.

The following option is available:

• Format XPath code embedded in XSLT, XSD and Schematron files - If selected, the Format and Indent action
applied on an XSD, XSLT, or Schematron document will perform an XPath-specific formatting on the values of
the attributes that accept XPath expressions.

Note: For XSLT documents, the formatting is not applied to attribute value templates.

CSS Preferences

Oxygen XML Developer can format and indent your CSS files. To configure the CSS formatting options, open the
Preferences dialog box (Options > Preferences) and go to Editor > Format > CSS.

The following options control how your CSS files are formatted and indented:
Class body on new line

If selected, the class body (including the curly brackets) is placed on a new line. This option is not selected by
default.

Indent class content
When selected (default state), the class content is indented.

Add space before the value of a CSS property
When selected (default state), whitespaces are added between the : (colon) and the value of a style property.

Add new line between classes
If selected, an empty line is added between two classes. This option is not selected by default.

Preserve empty lines
When selected (default state), the empty lines from the CSS content are preserved.

Allow formatting embedded CSS
When selected (default state), CSS content that is embedded in XML is also formatted when the XML content
is formatted.

JavaScript Preferences

To configure the JavaScript format options, open the Preferences dialog box (Options > Preferences) and go to
Editor > Format > JavaScript.

The following options control the behavior of the Format and Indent action:

• Start curly brace on new line - Opening curly braces start on a new line.
• Preserve empty lines - Empty lines in the JavaScript code are preserved. This option is selected by default.
• Allow formatting embedded JavaScript - Applied only to XHTML documents, this option allows Oxygen XML

Developer to format embedded JavaScript code, taking precedence over the Schema aware format and indent
option. This option is selected by default.

Content Completion Preferences

Oxygen XML Developer provides a Content Completion Assistant that provides a list of available options at
any point in a document and can auto-complete structures, elements, and attributes. To configure the Content
Completion preferences, open the Preferences dialog box (Options > Preferences) and go to Editor > Content
Completion. These options control how the Content Completion Assistant works.

The following options are available:
Auto close the last opened tag

When selected, Oxygen XML Developer automatically closes the last open tag when you type </.
Automatically rename/delete/comment matching tags

If you rename, delete, or comment out a start tag, Oxygen XML Developer automatically renames, deletes, or
comments out the matching end tag.

Configuring Oxygen XML Developer 78

Note: If you select Toggle comment for multiple starting tags and the matching end tags are on the same
line as other start tags, the end tags are not commented.

Enable content completion
Toggles the content completion feature on or off.

Close the inserted element
When you choose an entry from the Content Completion Assistant list of proposals, Oxygen XML Developer
inserts both start and end tags. The following additional options are available in regards to closing the
element:

• If it has no matching tag - The end tag of the inserted element is automatically added only if it is not
already present in the document.

• Add element content - Oxygen XML Developer inserts the required elements specified in the DTD, XML
Schema, or RELAX NG schema that is associated with the edited XML document.

• Add optional content - If selected, Oxygen XML Developer inserts the optional elements specified in the
DTD, XML Schema, or RELAX NG schema.

• Add first Choice particle - If selected, Oxygen XML Developer inserts the first choice particle specified
in the DTD, XML Schema, or RELAX NG schema.

Case sensitive search
When selected, the search in the Content Completion Assistant is case-sensitive when you type a character ('a'
and 'A' are different characters).

Note: This option is ignored when the current language itself is not case sensitive. For example, the case is
ignored in the CSS language.

Position cursor between tags
When selected, Oxygen XML Developer automatically moves the cursor between the start and end tag after
inserting the element. This only applies to:

• Elements with only optional attributes or no attributes at all.
• Elements with required attributes, but only when the Insert the required attributes option is not selected.

Show all entities
Oxygen XML Developer displays a list with all the internal and external entities declared in the current
document when you type the start character of an entity reference (for example, &).

Insert the required attributes
Oxygen XML Developer inserts automatically the required attributes taken from the DTD or XML Schema.

Insert the fixed attributes
If selected, Oxygen XML Developer automatically inserts any FIXED attributes from the DTD or XML Schema
for an element inserted with the help of the Content Completion Assistant.

Show recently used items
When selected, Oxygen XML Developer remembers the last inserted items from the Content Completion
Assistant window. The number of items to be remembered is limited by the Maximum number of recent
items shown list box. These most frequently used items are displayed on the top of the content completion
window and are separated from the rest of the suggestions by a thin gray line .

Maximum number of recent items shown
Specifies the limit for the number of recently used items presented at the top of the Content Completion
Assistant window.

Learn attributes values
When selected, Oxygen XML Developer learns the attribute values used in a document.

Learn on open document
Oxygen XML Developer automatically learns the document structure when the document is opened.

Learn words (Dynamic Abbreviations, available on CTRL-SPACE (COMMAND-SPACE on OS X))
When selected, Oxygen XML Developer learns the typed words and makes them available in a content
completion fashion by pressing Ctrl + Space (Command + Space on OS X) on your keyboard;

Configuring Oxygen XML Developer 79

Note: In order to be learned, the words need to be separated by space characters.

Activation delay of the proposals window (ms)
Delay in milliseconds from last key press until the Content Completion Assistant is displayed.

Annotations Preferences

Certain types of schemas (XML Schema, DTDs, Relax NG) can include annotations that document the various
elements and attributes that they define. Oxygen XML Developer can display these annotations when offering
content completion suggestions. To configure the Annotations preferences, open the Preferences dialog box
(Options > Preferences) and go to Editor > Content Completion > Annotations.

The following options are available:
Show annotations in Content Completion Assistant

Oxygen XML Developer displays the schema annotations of an element, attribute, or attribute value currently
selected in the Content Completion Assistant proposals list.

Show annotations in tooltip
Oxygen XML Developer displays the annotation of elements and attributes as a tooltip when you hover over
them with the cursor in the editing area or in the Elements view.

Show annotation in HTML format, if possible
This option allows you to view the annotations associated with an element or attribute in HTML format. It is
available when editing XML documents that have associated an XML Schema or Relax NG schema. When this
option is not selected, the annotations are converted and displayed as plain text.

Prefer DTD comments that start with "doc:" as annotations
To address the lack of dedicated annotation support in DTD documents, Oxygen XML Developer recommends
prefixing with the doc: particle all comments intended to be shown to the developer who writes an XML
validated against a DTD schema.

When this option is selected, Oxygen XML Developer uses the following mechanism to collect annotations:

• If at least one doc: comment is found in the entire DTD, only comments of this type are displayed as
annotations.

• If no doc: comment is found in the entire DTD, all comments are considered annotations and displayed as
such.

When the option is not selected, all comments, regardless of their type, are considered annotations and
displayed as such.

Use all Relax NG annotations as documentation
When this option is selected, any element outside the Relax NG namespace, that is http://relaxng.org/
ns/structure/1.0, is considered annotation and is displayed in the annotation window next to the
Content Completion Assistant window and in the Model view. When this option is not selected, only elements
from the Relax NG annotations namespace, that is http://relaxng.org/ns/compatibility/
annotations/1.0 are considered annotations.

Related Information:
Schema Annotations in Text Mode on page 249

XSLT Preferences

XSLT stylesheets are often used to create output in XHTML or XSL-FO. In addition to suggesting content
completion options for XSLT stylesheet elements, Oxygen XML Developer can suggest elements from these
vocabularies. To configure the XSLT content completion options, open the Preferences dialog box (Options >
Preferences) and go to Editor > Content Completion > XSLT.

The following options are available:
Include elements declared in the schema section

This section includes options in regards to detecting elements from the declared schema.

Configuring Oxygen XML Developer 80

Automatically detect HTML or Formatting Objects
Detects if the output being generated is HTML or FO and provides content completion for those
vocabularies. Oxygen XML Developer analyzes the namespaces declared in the root element to find an
appropriate schema.

If the detection fails, Oxygen XML Developer uses one of the following options:

• None - The Content Completion Assistant suggests only XSLT elements.
• HTML - The Content Completion Assistant includes HTML elements, including HTML5 elements (such as

video, canvas, etc.).
• Formatting objects - The Content Completion Assistant includes Formatting Objects (XSL-FO) elements as

substitutes for xsl:element.
• Custom schema - If you want content completion hints for another output vocabulary, you can use this

option to specify the path to the schema for that vocabulary. The supported schema types are DTD, XML
Schema, RNG schema, or NVDL schema for inserting elements from the target language of the stylesheet.

Documentation schema section
This section specifies an additional schema that will be used for documenting XSL stylesheets. You can
choose between the following:

• Build-in schema - Uses the built-in schema for documentation.
• Custom schema - Allows you to specify a custom schema for documentation. The supported schema

types are XSD, RNG, RNC, DTD, and NVDL.

XPath Preferences

Oxygen XML Developer provides content-completion support for XPath expressions. To configure the options for
the content completion in XPath expressions, open the Preferences dialog box (Options > Preferences) and go to
Editor > Content Completion > XPath.

The following options are available:

• Enable content completion for XPath expressions - Enables the Content Completion Assistant in XPath
expressions that you enter in the match, select, and test XSL attributes and also in the XPath toolbar.

• Include XPath functions - When this option is selected, XPath functions are included in the content
completion suggestions.

• Include XSLT functions - When this option is selected, XSLT functions are included in the content
completion suggestions.

• Include axes - When this option is selected, XSLT axes are included in the content completion suggestions.
• Show signatures of XSLT / XPath functions - Makes the editor indicate the signature of the XPath function

located at the cursor position in a tooltip. See the XPath Tooltip Helper section for more information.
• Function signature window background - Specifies the background color of the tooltip window.
• Function signature window foreground - Specifies the foreground color of the tooltip window.

XSD Preferences

Oxygen XML Developer provides content completion assistance when you are writing XML Schema (XSD). To
configure XSD preferences, open the Preferences dialog box (Options > Preferences) and go to Editor > Content
Completion > XSD. The option in this preferences page allows you to define additional elements to be suggested
by the Content Completion Assistant in xs:appinfo elements (in addition to the elements defined in the XML
Schema).

The following option is available:

When in "xs:appinfo" context, also include elements declared in the schema
You can choose between the following:

• None - The Content Completion Assistant offers only the XML Schema schema information.
• ISO Schematron - The Content Completion Assistant also includes ISO Schematron elements in

xs:appinfo.
• Schematron 1.5 - The Content Completion Assistantalso includes Schematron 1.5 elements in

xs:appinfo.

Configuring Oxygen XML Developer 81

• Other - The Content Completion Assistant also includes elements from an XML Schema identified by a URL
in xs:appinfo elements.

JavaScript Preferences

Oxygen XML Developer can provide content completion suggestions when you are writing JavaScript files. To
configure content completion support for JavaScript, open the Preferences dialog box (Options > Preferences)
and go to Editor > Content Completion > JavaScript. You can configure the following options:

Enable content completion
Enables the content completion support for JavaScript files.

Use built-in libraries
Allows Oxygen XML Developer to include components (object names, properties, functions, and variables)
collected from the built-in JavaScript library files when making suggestions.

Use defined libraries
Oxygen XML Developer can also use JavaScript libraries to when making suggestions. List the paths (URIs) of
any JavaScript files you want Oxygen XML Developer to use when making suggestions.

Note: The paths can contain editor variables such as ${pdu}, or ${oxygenHome}. You can make these
paths relative to the project directory or installation directory.

Syntax Highlight Preferences

Oxygen XML Developer supports syntax highlighting in the Text mode editors for numerous types of documents,
including XML, XHTML, JavaScript, XQuery, XPath, PHP, CSS, LESS, Markdown, Text, DTD, RNC, Java, JSON, Ant,
and more.

To configure syntax highlighting, open the Preferences dialog box (Options > Preferences) and go to Editor >
Syntax Highlight.

To set syntax colors for a language, expand the listing for that language in the top panel to show the list of syntax
items for that type of document. Use the color and style selectors to change how each syntax item is displayed.
The results of your changes are displayed in the Preview panel. If you do not know the name of the syntax token
that you want to configure, click that token in the Preview area to select it.

Note: All default color sets come with a high-contrast variant that is automatically used when you switch to a
black-background or white-background high-contrast theme in your Windows operating system settings. The
high-contrast theme will not overwrite any default color you set in Editor > Syntax Highlight preferences page.

The settings for XML documents are also used in XSD, XSL, RNG documents and the Preview area has a separate
tab for each of them when XML is selected in the top pane.

The Enable nested syntax highlight option controls whether or not content types that are nested in the same file
(such as PHP, JS, or CSS scripts inside an HTML file) are highlighted according to the color schemes defined for
each content type.

Elements/Attributes by Prefix Preferences

Oxygen XML Developer allows you to specify syntax highlighting colors for XML elements and attributes with
specific namespace prefixes. To configure the Elements/Attributes by Prefix preferences, open the Preferences
dialog box (Options > Preferences) and go to Editor > Syntax Highlight > Elements/Attributes by Prefix.

To change the syntax coloring for a specific namespace prefix, choose the prefix from the list, or add a new
one using the New button, and use the color and style selectors to set the syntax highlighting style for that
namespace prefix.

Note: Syntax highlighting is based on the literal namespace prefix, not the namespace that the prefix is bound to
in the document.

If you only want the prefix (and not the whole element or attribute name) to be styled with a particular color, select
the Draw only the prefix with a separate color option.

Configuring Oxygen XML Developer 82

Open/Save Preferences

Oxygen XML Developer lets you control how files are opened and saved. To configure the options for opening and
saving documents, open the Preferences dialog box (Options > Preferences) and go to Editor > Open/Save.

The following options are available:
Open section

Lock local resources
When this option is selected and you open a file from the local file system or a shared network drive,
Oxygen XML Developer locks the file for the current user and the file becomes read-only for other users
while the lock exists. Locked and read-only files have a lock icon () displayed on their editor tabs. Newly
created files are locked when you first save them. If you select this option with files already opened in
Oxygen XML Developer, it will lock all the currently opened files. If you deselect this option with files
already opened, it will unlock them by deleting the corresponding .lock files. When you try to save locked
(read-only) files, a Save As dialog box will be displayed to avoid overwriting the initial resource.

Restore cursor position
Selected by default, it ensures that the last position of the cursor will be remembered when a document
is re-opened. If this option is not selected, the cursor will always be positioned at the beginning of the
document.

Open each document in a tab next to the current one
When selected (default), each new document is opened in a tab next to the currently opened tab. If not
selected, each new document is opened in a tab at the end of the current tab stack.

Support for Special Characters section

When bidirectional text, Asian languages, or other special characters are detected
You can choose how you want Oxygen XML Developer to handle bidirectional text, Asian languages, or
other special characters when they are detected. You can choose one of the following:

• Enable support for special characters - The support for special characters will always be enabled.
• Disable support for special characters - The support for special characters will always be disabled.
• Prompt for each document - You will be prompted to choose whether or not to enable the support for

special characters whenever they are detected in a newly opened document.

Disable special characters support for documents larger than (characters)
Enabling bidirectional text editing support can affect performance on large files. When this option is
selected, bidirectional editing is disabled for files exceeding the specified size, even if the Enable support
for special characters option is selected.

Save section

Show "Save as" option to save newly created documents in the "New" document wizard
It is selected by default, but if you deselect this option, the Save as option will not be available in the New
Document wizard, so you will not have the ability to change the default name and path of the new file.

Safe save (only for local files)
In the unlikely event of a failure when attempting a Save action, this option provides increased protection
from corruption of the original file. When this option is selected, it saves the content to a temporary file
and if the save is unsuccessful, the editor preserves its unsaved state status.

On Save, make backup copy with extension (only for local files)
If selected, a backup copy is made when saving the edited document. This option is available only for local
files (files that are stored on the local file system). The default backup file extension is .bak, but that can
be changed in the text field.

Automatically save the document every
If selected, your documents are automatically saved after a preset time interval that is specified in the
drop-down list.

Configuring Oxygen XML Developer 83

Save all files before transformation or validation
Saves all opened files before validating or transforming an XML document. This ensures that any
dependencies are resolved when modifying the XML document and its XML Schema.

Check errors on save
If selected, Oxygen XML Developer runs a validation that checks your document for errors before saving it.

Save all files before calling external tools
If selected, all files are saved before executing an external tool.

Performance section

Optimize loading in the Text edit mode for files over (MB)
File loading is optimized for reduced memory usage for any file whose size is larger than the value
specified in this drop-down list. This is useful for editing large files, but there are several restrictions for
memory-intensive operations.

Show warning when loading large documents
Oxygen XML Developer will warn you if you open a file that is bigger than the specified size.

Optimize loading for documents with lines longer than (Characters)
Line wrap is automatically performed for documents that contain lines that exceed the length specified in
this text field. For a list of the restrictions applied to a document with long lines, see Editing Documents
with Long Lines.

Show warning when loading documents with long lines
When selected, Oxygen XML Developerwill warn you when you open a file with lines longer than the
specified length. To reduce the length of lines in a file, format and indent the document after it is
opened in the editor panel. For a list of the restrictions applied to a document with long lines, see
Editing Documents with Long Lines on page 561.

Clear undo buffer on save
If selected, Oxygen XML Developer clears its undo buffer when you save a document. Thus, modifications
made prior to saving the document cannot be undone. Select this option if you frequently encounter out of
memory errors when editing large documents.

Consider application bundles to be directories when browsing (OS X only)
This option is available only on the Mac OS X platform. When selected, the file browser dialog box allows
you to browse inside an application bundle, as in a regular folder. Otherwise, it is not allowed (the same as
the Finder application on Mac OS X).

Note: The same effect can be obtained by setting the apple.awt.use-file-dialog-packages
property to true or false in the Info.plist descriptor file of the Oxygen XML Developer application:

<key>apple.awt.use-file-dialog-packages</key>
<string>false</string>

Save Hooks Preferences

Oxygen XML Developer includes an option for automatically compiling LESS stylesheets. To set this option, open
the Preferences dialog box (Options > Preferences) and go to Editor > Open/Save > Save Hooks.

The following option is available:
Automatically compile LESS to CSS when saving

If selected, when you save a LESS file it will automatically be compiled to CSS (deselected by default).

Important: If this option is selected, when you save a LESS file, the CSS file that has the same name as the
LESS file is overwritten without warning. Make sure all your changes are made in the LESS file. Do not edit the
CSS file directly, as your changes might be lost.

Templates Preferences

This page simply allows you to navigate to the preference pages for code templates or document templates.

Configuring Oxygen XML Developer 84

Code Templates Preferences

Code templates are code fragments that can be inserted at the current editing position. Oxygen XML Developer
includes a set of built-in templates for CSS, LESS, Schematron, XSL, XQuery, and XML Schema document types.
You can also define your own code templates for any type of file and share them with your colleagues using the
template export and import functions.

To configure Code Templates, open the Preferences dialog box (Options > Preferences) and go to Editor >
Templates > Code Templates.

This preferences page contains a list of all the available code templates (both built-in and custom created ones)
and a code preview area. You can disable any code template by deselecting it.

The following actions are available:

New
Opens the Code template dialog box that allows you to define a new code template. You can define the
following fields:

• Name - The name of the code template.
• Description - The description of the code template that will appear in the Code Templates preferences

page and in the tooltip message when selecting it from the Content Completion Assistant. HTML markup
can be used for better rendering.

• Associate with - You can choose to set the code template to be associated with a specific type of editor or
for all editor types.

• Shortcut key - Allows you to configure a shortcut key that can be used to insert the code template. The
+ character separates keys. If the Enable platform-independent shortcut keys checkbox is selected, the
shortcut is platform-independent and the following modifiers are used:

• M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.

• Content - Text box where you define the content that is used when the code template is inserted.

Edit
Opens the Code template dialog box and allows you to edit an existing code template. You can edit the
following fields:

• Description - The description of the code template that will appear in the Code Templates preferences
page and in the tooltip message when selecting it from the Content Completion Assistant. HTML markup
can be used for better rendering.

• Shortcut key - Allows you to configure a shortcut key that can be used to insert the code template. The
+ character separates keys. If the Enable platform-independent shortcut keys checkbox is selected, the
shortcut is platform-independent and the following modifiers are used:

• M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.

• Content - Text box where you define the content that is used when the code template is inserted.

Duplicate
Creates a duplicate of the currently selected code template.

Delete
Deletes the currently selected code template. This action is not available for the built-in code templates.

Export
Exports a file with code templates.

Import
Imports a file with code templates that was created by the Export action.

Configuring Oxygen XML Developer 85

You can use the following editor variables when you define a code template in the Content text box:

• ${caret} - The position where the cursor is located. This variable can be used in a code template, in Author
mode operations, or in a selection plugin.

• ${selection} - The current selected text content in the current edited document. This variable can be used in a
code template, in Author mode operations, or in a selection plugin.

• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default_value')}
- To prompt for values at runtime, use the ask('message', type, ('real_value1':'rendered_value1';
'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can set the following parameters:

• 'message' - The displayed message. Note the quotes that enclose the message.
• type - Optional parameter, with one of the following values:

Note: The title of the dialog box will be determined by the type of parameter and as follows:

• For url and relative_url parameters, the title will be the name of the parameter and the value of the
'message'.

• For the other parameters listed below, the title will be the name of that respective parameter.
• If no parameter is used, the title will be "Input".

Parameter

Format: ${ask('message', url, 'default_value')}

Description: Input is considered a URL. Oxygen XML Developer checks
that the provided URL is valid.

url

Example:

• ${ask('Input URL', url)} - The displayed dialog box has the name Input
URL. The expected input type is URL.

• ${ask('Input URL', url, 'http://www.example.com')} - The displayed dialog
box has the name Input URL. The expected input type is URL. The
input field displays the default value http://www.example.com.

Format: ${ask('message', password, 'default')}

Description: The input is hidden with bullet characters.

password

Example:

• ${ask('Input password', password)} - The displayed dialog box has the
name 'Input password' and the input is hidden with bullet symbols.

• ${ask('Input password', password, 'abcd')} - The displayed dialog
box has the name 'Input password' and the input hidden with bullet
symbols. The input field already contains the default abcd value.

Format: ${ask('message', generic, 'default')}

Description: The input is considered to be generic text that requires no
special handling.

generic

Example:

• ${ask('Hello world!')} - The dialog box has a Hello world! message
displayed.

• ${ask('Hello world!', generic, 'Hello again!')} - The dialog box has a Hello
world! message displayed and the value displayed in the input box is
'Hello again!'.

relative_url Format: ${ask('message', relative_url, 'default')}

Configuring Oxygen XML Developer 86

Parameter

Description: Input is considered a URL. Oxygen XML Developer tries to
make the URL relative to that of the document you are editing.

Note: If the $ask editor variable is expanded in content that is not yet
saved (such as an untitled file, whose path cannot be determined), then
Oxygen XML Developer will transform it into an absolute URL.

Example:

• ${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has
the name 'File location'. The URL inserted in the input box is made
relative to the current edited document location.

Format: ${ask('message', combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

Description: Displays a dialog box that offers a drop-down menu. The
drop-down menu is populated with the given rendered_value values.
Choosing such a value will return its associated value (real_value).

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

combobox

Example:

• ${ask('Operating System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has
the name 'Operating System'. The drop-down menu displays the three
given operating systems. The associated value will be returned based
upon your selection.

Note: In this example, the default value is indicated by the osx key.
However, the same result could be obtained if the default value is
indicated by Mac OS X, as in the following example: ${ask('Operating
System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'Mac OS X')}

• ${ask('Mobile OS', combobox, ('win':'Windows
Mobile';'ios':'iOS';'and':'Android'), 'Android')}

Format: ${ask('message', editable_combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

Description: Displays a dialog box that offers a drop-down menu with
editable elements. The drop-down menu is populated with the given
rendered_value values. Choosing such a value will return its associated
real value (real_value) or the value inserted when you edit a list entry.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

editable_combobox

Example:

• ${ask('Operating System', editable_combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box
has the name 'Operating System'. The drop-down menu displays the
three given operating systems and also allows you to edit the entry.
The associated value will be returned based upon your selection or
the text you input.

Configuring Oxygen XML Developer 87

Parameter

Format: ${ask('message', radio,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

Description: Displays a dialog box that offers a series of radio buttons.
Each radio button displays a 'rendered_value and will return an
associated real_value.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

radio

Example:

• ${ask('Operating System', radio, ('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name 'Operating
System'. The radio button group allows you to choose between the
three operating systems.

Note: In this example Mac OS X is the default selected value and if
selected it would return osx for the output.

• 'default-value' - optional parameter. Provides a default value.
• ${timeStamp} - Time stamp, that is the current time in Unix format. For example, it can be used to save

transformation results in multiple output files on each transformation.
• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID

class.
• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not

guaranteed to be universally unique.
• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently

opened and selected.
• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the

parent folder.
• ${frameworksDir} - The path (as file path) of the [OXYGEN_INSTALL_DIR]/frameworks directory.
• ${pd} - The file path for the parent folder of the current project selected in the Project view.
• ${oxygenInstallDir} - Oxygen XML Developer installation folder as file path.
• ${homeDir} - The path (as file path) of the user home folder.
• ${pn} - Current project name.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed

by the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor
variable.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be
specified in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for
operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat
class. Example: yyyy-MM-dd;

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to http://www.w3.org/TR/
xmlschema-2/#dateTime.

Related Information:
Code Templates on page 255

Document Templates Preferences

Oxygen XML Developer provides a selection of document templates that make it easier to create new documents
in a variety of formats. The list of available templates is presented when you create a new document. You

Configuring Oxygen XML Developer 88

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

can also create your own templates and share them with others. You can store your custom file templates in
the existing templates folder in the Oxygen XML Developer installation directory or store them in a custom
directory. If you store them in a custom direction, you need to add that directory to the list of template directories
that Oxygen XML Developer uses.

To add a template directory, follow these steps:

1. open the Preferences dialog box (Options > Preferences) and go to Editor > Templates > Document Templates.
2. Use the New button to select a location of the new document template folder.

This will add the folder to the list in this preferences page and it will now appear in the New document wizard.

Note: For DITA templates, they will also appear in the dialog box for creating new DITA topics, but if you create a
corresponding properties file, you need to set the type property to dita.

You can also use the Edit or Delete buttons to manage folders in the list, and you can alter the order in which
Oxygen XML Developer looks in these directories by using the Up and Down buttons.

Mark Occurrences Preferences

This preferences page specifies which types of files will have the Highlight IDs Occurrences feature activated.
To configure these options, open the Preferences dialog box (Options > Preferences) and go to Editor > Mark
Occurrences:

The following options are available in this preferences page:

Highlight component occurrences in the current file for:

• XML files - Activates the Highlight IDs Occurrences feature in XML files.
• XSLT files - Activates the Highlight Component Occurrences feature in XSLT files.
• XML Schema files - Activates the Highlight Component Occurrences feature in XSD files.
• WSDL files - Activates the Highlight Component Occurrences feature in WSDL files.
• RNG files - Activates the highlight component occurrences feature in RNG files.
• Schematron files - Activates the Highlight Component Occurrences feature in Schematron files.
• Ant files - Activates the Highlight Component Occurrences feature in Ant files.

Declaration highlight color
Allows you to choose the color to be used for highlighting component declarations.

Reference highlight color
Allows you to choose the color to be used for highlighting component references.

Custom Validation Engines Preferences

As the name implies, the Custom Validation Engines preferences page displays the list of custom validation
engines than can be associated to a particular editor and used for validating documents. To access this page,
open the Preferences dialog box (Options > Preferences) and go to Editor > Custom Validation Engines.

If you want to add a new custom validation tool or edit the properties of an exiting one, you can use the Custom
Validator dialog box displayed by pressing the New or Edit button.

Configuring Oxygen XML Developer 89

Figure 19: Custom Validator Dialog Box

The Custom Validator dialog box allows you to configure the following parameters:
Name

Name of the custom validation engine that will be displayed in the Validation toolbar drop-down menu.
Executable path

Path to the executable file of the custom validation tool. You can specify the path by using the text field, the
Insert Editor Variables button, or the Browse button.

Working directory
The working directory of the custom validation tool. You can specify the path by using the text field, the

Insert Editor Variables button, or the Browse button.
Associated editors

The editors that can perform validation with the external tool (XML editor, XSL editor, XSD editor, etc.)
Command line arguments for detected schemas

Command line arguments used in the commands that validate the currently edited file against various types
of schema (W3C XML Schema, Relax NG full syntax, Relax NG compact syntax, NVDL, Schematron, DTD, etc.)
The arguments can include any custom switch (such as -rng) and the following editor variables:

• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document

represented as URL.
• ${ds} - The path of the detected schema as a local file path for the current validated XML document.
• ${dsu} - The path of the detected schema as a URL for the current validated XML document.

Related Information:
Editor Variables on page 147

Increasing the Stack Size for Validation Engines

To prevent the appearance of a StackOverflowException error, use one of the following methods:

Configuring Oxygen XML Developer 90

• Use the com.oxygenxml.stack.size.validation.threads property to increase the size of the stack for validation
engines. The value of this property is specified in bytes. For example, to set a value of one megabyte specify
1x1024x1024=1048576.

• Increase the value of the -Xss parameter.

Note: Increasing the value of the -Xss parameter affects all the threads of the application.

Related Information:
Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer on page 156

CSS Validator Preferences
To configure the CSS Validator preferences, open the Preferences dialog box (Options > Preferences) and go to
CSS Validator.

You can configure the following options for the built-in CSS Validator of Oxygen XML Developer:

• Profile - Selects one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, CSS 3 with Oxygen
extensions, SVG, SVG Basic, SVG Tiny, Mobile, TV Profile, ATSC TV Profile. The CSS 3 with Oxygen
extensions profile includes all the CSS 3 standard properties and the CSS extensions specific for Oxygen. That
means all Oxygen specific extensions are accepted in a CSS stylesheet by the built-in CSS validator when this
profile is selected.

• Media type - Selects one of the available mediums: all, aural, braille, embossed, handheld, print, projection,
screen, tty, tv, presentation, oxygen.

• Warning level - Sets the minimum severity level for reported validation warnings. Can be one of: All, Normal,
Most Important, No Warnings.

• Ignore properties - You can type comma separated patterns that match the names of CSS properties that will
be ignored at validation. As wildcards you can use:

• * to match any string.
• ? to match any character.

• Recognize browser CSS extensions (also applies to content completion) - If selected, Oxygen XML Developer
recognizes (no validation is performed) browser-specific CSS properties. The Content Completion Assistant
lists these properties at the end of its list, prefixed with the following particles:

• -moz- for Mozilla.
• -ms- for Internet Explorer or Edge.
• -o- for Opera.
• -webkit- for Safari/Webkit.

XML Preferences
This section describes the panels that contain the user preferences related with XML.

XML Catalog Preferences

To configure options that pertain to XML Catalogs, open the Preferences dialog box (Options > Preferences) and
go to XML > XML Catalog.

The following options are available:
Prefer

Determines whether public identifiers specified in the catalog are used in favor of system identifiers supplied
in the document. Suppose you have an entity in your document for which both a public identifier and a system
identifier has been specified, and the catalog only contains a mapping for the public identifier (for example, a
matching public catalog entry). You can choose between the following:

• system - If selected, the system identifier in the document is used.
• public - If selected, the URI supplied in the matching public catalog entry is used. Generally, the purpose of

catalogs is to override the system identifiers in XML documents, so public should usually be used for your
catalogs.

Configuring Oxygen XML Developer 91

Note: If the catalog contains a matching system catalog entry giving a mapping for the system identifier,
that mapping would have been used, the public identifier would never have been considered, and this setting
would be irrelevant.

Verbosity
When using catalogs it is sometimes useful to see what catalog files are parsed, if they are valid or not, and
what identifiers are resolved by the catalogs. This option selects the detail level of such logging messages
of the XML catalog resolver that will be displayed in the Catalogs table at the bottom of the window. You can
choose between the following:

• None - No message is displayed by the catalog resolver when it tries to resolve a URI reference, a SYSTEM
one or a PUBLIC one with the XML catalogs specified in this panel.

• Unresolved entities - Only the logging messages that track the failed attempts to resolve references are
displayed.

• All messages - The messages of both failed attempts and successful ones are displayed.

Resolve schema locations also through system mappings

If selected, Oxygen XML Developer analyzes both uri and system mappings to resolve the location of schema.

Note: This option is not applicable for DTD schemas since the public and system catalog mappings are
always considered.

Process "schemaLocation" namespaces through URI mappings for XML Schema
If selected, the target namespace of the imported XML Schema is resolved through the uri mappings. The
namespace is taken into account only when the schema specified in the schemaLocation attribute was not
resolved successfully. If not selected, the system IDs are used to resolve the schema location.

Use default catalog
If this option is selected and Oxygen XML Developer cannot resolve the catalog mapping with any other
means, the default global catalog (listed below this checkbox) is used. For more information, see How Oxygen
XML Developer Determines which Catalog to Use on page 315.

Catalogs table
You can use this table to add or manage global user-defined catalogs. The following actions are available at
the bottom of the table:

Add
Opens a dialog box that allows you to add a catalog to the list. You can specify the path by using the text
field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse
drop-down list.

Edit
Opens a dialog box that allows you to edit an existing catalog. You can specify the path by using the text
field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse
drop-down list.

Delete
Deletes the currently selected catalog from the list.

Up
Moves the selection to the previous resource.

Down
Moves the selection to the following resource.

Note: When you add, delete, or edit a catalog in this table, you need to reopen the currently edited files that
use the modified catalog or run a manual Validate action so that the changes take full effect.

You can also add or configure catalogs at framework level from the Catalogs tab in the Document Type
configuration dialog box.

Related Information:
Controlling the Catalog Resolver
Working with XML Catalogs on page 314

Configuring Oxygen XML Developer 92

http://xerces.apache.org/xml-commons/components/resolver/resolver-article.html#ctrlresolver

XML Parser Preferences

To configure the XML Parser options, open the Preferences dialog box (Options > Preferences) and go to XML >
XML Parser.

The configurable options of the built-in XML parser are as follows:
Enable parser caching (validation and content completion)

Enables re-use of internal models when validating and provides content completion in opened XML files that
reference the same schemas (grammars) such as DTD, XML Schema, or RelaxNG.

Ignore the DTD for validation if a schema is specified
Forces validation against a referenced schema (W3C XML Schema, Relax NG schema) even if the document
includes also a DTD DOCTYPE declaration. This option is useful when the DTD declaration is used only to
declare DTD entities and the schema reference is used for validation against a W3C XML Schema or a Relax
NG schema.

Note: Schematron schemas are treated as additional schemas. The validation of a document associated
with a DTD and referencing a Schematron schema is executed against both the DTD and the Schematron
schema, regardless of the value of the Ignore the DTD for validation if a schema is specified option.

Enable XInclude processing
Enables XInclude processing. If selected, the XInclude support in Oxygen XML Developer is turned on for
validation and transformation of XML documents.

Base URI fix-up
According to the specification for XInclude, processors must add an xml:base attribute to elements
included from locations with a different base URI. Without these attributes, the resulting infoset information
would be incorrect.

Unfortunately, these attributes make XInclude processing to not be transparent to Schema validation. One
solution to this is to modify your schema to allow xml:base attributes to appear on elements that might be
included from different base URIs.

If the addition of xml:base and / or xml:lang is not desired by your application, you can deselect this
option.

Language fix-up
The processor will preserve language information on a top-level included element by adding an xml:lang
attribute if its include parent has a different [language] property. If the addition of xml:lang is not allowed by
your application, you can deselect this option.

DTD post-validation
Select this option to validate an XML file against the associated DTD, after all the content merged to the
current XML file using XInclude was resolved. If you deselect this option, the current XML file is validated
against the associated DTD before all the content merged to the current XML file using XInclude is
resolved.

XML Schema Preferences

To configure options in regards to XML Schema, open the Preferences dialog box (Options > Preferences) and go
to XML > XML Parser > XML Schema.

This preferences page allows you to configure the following options:
Default XML Schema version

Allows you to select the version of W3C XML Schema to be used as the default. You can choose XML
Schema 1.0 or XML Schema 1.1.

Note: You are also able to set the XML Schema version using the Customize option in the New document
wizard.

Default XML Schema validation engine
Allows you to select the default validation engine to be used for XML Schema. You can choose Xerces or
Saxon EE.

Configuring Oxygen XML Developer 93

Xerces validation features section

Enable full schema constraint checking
Sets the schema-full-checking feature to true. This enables a validation of the parsed XML document
against a schema (W3C XML Schema or DTD) while the document is parsed.

Enable honour all schema location feature
Sets the honour-all-schema-location feature to true. All the files that declare W3C XML Schema
components from the same namespace are used to compose the validation model. If this option is not
selected, only the first W3C XML Schema file that is encountered in the XML Schema import tree is taken
into account.

Enable full XPath 2.0 in assertions and alternative types
When selected (default value), you can use the full XPath support in assertions and alternative types.
Otherwise, only the XPath support offered by the Xerces engine is available.

Assertions can see comments and processing instructions
Controls whether or not comments and processing instructions are visible to the XPath expression used
for defining an assertion in XSD 1.1.

Saxon EE validation features section

Multiple schema imports
Forces xs:import to fetch the referenced schema document. By default, the xs:import fetches the
document only if no schema document for the given namespace has already been loaded. With this option
in effect, the referenced schema document is loaded unless the absolute URI is the same as a schema
document already loaded.

Assertions can see comments and processing instructions
Controls whether or not comments and processing instructions are visible to the XPath expression used to
define an assertion. By default, they are not made visible (unlike Saxon 9.3).

Relax NG Preferences

To configure options in regards to Relax NG, open the Preferences dialog box (Options > Preferences) and go to
XML > XML Parser > Relax NG.

The following options are available in this page:
Check feasibly valid

Checks if Relax NG documents can be transformed into valid documents by inserting any number of
attributes and child elements anywhere in the tree.

Note: Selecting this option disables the Check ID/IDREF option.

Check ID/IDREF
Checks the ID/IDREF matches when a Relax NG document is validated.

Add default attribute values
Default values are given to the attributes of documents validated using Relax NG. These values are defined in
the Relax NG schema.

Schematron Preferences

To configure options in regards to Schematron, open the Preferences dialog box (Options > Preferences) and go
to XML > XML Parser > Schematron.

The following options are available in this preferences page:
ISO Schematron Section

Optimize (visit-no-attributes)
If your ISO Schematron assertion tests do not contain the attributes axis, you should select this option for
faster ISO Schematron validation.

Configuring Oxygen XML Developer 94

Allow foreign elements (allow-foreign)
Enables support for allow-foreign on ISO Schematron. This option is used to pass non-Schematron
elements to the generated stylesheet.

Use Saxon EE (schema aware) for xslt2/xslt3 query language binding
When selected, Saxon EE is used for xslt2/xslt3 query binding. If this option is not selected, Saxon PE
is used.

Enable Schematron Quick Fixes (SQF) support
Allows you to enable or disable the support for Quick Fixes in Schematron files. This option is selected by
default.

Embedded rules query language binding
You can control the query language binding used by the ISO Schematron embedded rules. You can choose
between: xslt1, xslt2, or xslt3.

Note: To control the query language binding for standalone ISO Schematron, you need to set the query
language to be used with a queryBinding attribute on the schema root element.

Message language
This option allows you to specify the language to be used in Schematron validation messages. You can
choose between the following:

• Use the language defined in the application - The language that is specified in the Global Preferences
page will be used and only the validation messages that match that language will be presented. You
can use the Change application language link to navigate to the preferences page where you can
specify the language to be used in the application.

• Use the "xml:lang" attribute set on the Schematron root - The language specified in the xml:lang
attribute from the Schematron root will be used and only the validation message that match that
language will be presented.

• Ignore the language and show all message - All messages are displayed in whatever language they are
defined within the Schematron schema.

• Custom - Use this option to specify a custom language to be used and only the messages that match
the specified language will be presented.

Note: In all cases, if the selected language is not available for a validation error or warning, all messages
will be displayed in whatever language they are defined with in the Schematron schema.

Schematron 1.5 Section

XPath Version
Allows you to select the version of XPath for the expressions that are allowed in Schematron assertion
tests. You can choose between: 1.0, 2.0, or 3.0. This option is applied in both standalone Schematron 1.5
schemas and embedded Schematron 1.5 rules.

Sample XML Files Generator Preferences

The Generate Sample XML Files tool (available on the Tools menu) allows you to generate XML instance
documents based on a W3C XML Schema. There are various options that can be configured within the tool and
these options are also available in the Sample XML Files Generator preferences page. This allows you to set
default values for these options. To configure the options for generating the XML files, open the Preferences
dialog box (Options > Preferences) and go to XML > Sample XML Files Generator.

The following options are available:
Generate optional elements

When selected, all elements are generated, including the optional ones (having the minOccurs attribute set
to 0 in the schema).

Generate optional attributes
When selected, all attributes are generated, including the optional ones (having the use attribute set to
optional in the schema).

Configuring Oxygen XML Developer 95

Values of elements and attributes
Controls the content of generated attribute and element values. The following choices are available:

• None - No content is inserted.
• Default - Inserts a default value depending of data type descriptor of the particular element or attribute.

The default value can be either the data type name or an incremental name of the attribute or element
(according to the global option from the Sample XML Files Generator preferences page). Note that type
restrictions are ignored when this option is selected. For example, if an element is of a type that restricts
an xs:string with the xs:maxLength facet to allow strings with a maximum length of 3, the XML instance
generator tool may generate string element values longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of the particular element or attribute.

Important: If all of the following are true, the Generate Sample XML Files tool outputs invalid values:

• At least one of the restrictions is a regexp.
• The value generated after applying the regexp does not match the restrictions imposed by one of the

facets.

Preferred number of repetitions
Allows you to set the preferred number of repeating elements related to minOccurs and maxOccurs facets
defined in the XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value is used.
• If the value set here is less than minOccurs, then the minOccurs value is used.
• If the value set here is greater than maxOccurs, then maxOccurs is used.

Maximum recursion level
If a recursion is found, this option controls the maximum allowed depth of the same element.

Type alternative strategy
Used for the xs:alternative element from XML Schema 1.1. The possible strategies are:

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Choice strategy
Used for xs:choice or substitutionGroup elements. The possible strategies are:

• First - The first branch of xs:choice or the head element of substitutionGroup is always used.
• Random - A random branch of xs:choice or a substitute element or the head element of a

substitutionGroup is used.

Generate the other options as comments
If selected, generates the other possible choices or substitutions (for xs:choice and
substitutionGroup). These alternatives are generated inside comments groups so you can uncomment
and use them later. Use this option with care (for example, on a restricted namespace and element) as it may
generate large result files.

Use incremental attribute / element names as default
If selected, the value of an element or attribute starts with the name of that element or attribute. For example,
for an a element the generated values are: a1, a2, a3, and so on. If not selected, the value is the name of the
type of that element / attribute (for example: string, decimal, etc.)

Maximum length
The maximum length of string values generated for elements and attributes.

Discard optional elements after nested level
The optional elements that exceed the specified nested level are discarded. This option is useful for limiting
deeply nested element definitions that can quickly result in very large XML documents.

Related Information:
Generating Sample XML Files on page 427

Configuring Oxygen XML Developer 96

XProc Preferences

Oxygen XML Developer includes a built-in XProc engine called Calabash. You can add or configure external XProc
engines by using the XProc preferences page. Open the Preferences dialog box (Options > Preferences) and go to
XML > XProc.

When Show XProc messages is selected all messages emitted by the XProc processor during a transformation
will be presented in the Results view.

To add an external engine click the New button. To configure an existing engine, click the Edit button. This opens
the Custom Engine dialog box that allows you to configure an external engine.

Figure 20: Creating an XProc external engine

The following options can be configure in this dialog box:

• Name - The value of this field will be displayed in the XProc transformation scenario and in the command line
that will start it.

• Description - A textual description that will appear as a tooltip where the XProc engine will be used.
• Working directory - The working directory for resolving relative paths. You can specify the path by using the

text field, the Insert Editor Variables button, or the Browse button.
• Command line - The command line that will run the XProc engine as an external process. You can specify the

path by using the text field, the Insert Editor Variables button, or the Browse button.
• Output encoding - The encoding for the output stream of the XProc engine, used for reading and displaying the

output messages.
• Error encoding - The encoding for the error stream of the XProc engine, used for reading and displaying the

messages from the error stream.

Note: You can configure the built-in Saxon processor using the saxon.config file. For further details about
configuring this file go to http://www.saxonica.com/documentation9.5/index.html#!configuration/configuration-
file. You can configure the built-in Calabash processor by using the calabash.config file. These files are
located in [OXYGEN_INSTALL_DIR]\lib\xproc\calabash\lib. If they do not exist, you have to create them.

XSLT-FO-XQuery Preferences

To configure options in regards to XSLT, XQuery, and FO processors, open the Preferences dialog box (Options >
Preferences) and go to XML > XSLT-FO-XQuery. This panel contains only the most generic options for working
with XSLT/XSL-FO/XQuery processors. The more specific options are grouped in other panels linked as child
nodes of this panel in the tree of this Preferences page.

There is only one generic option available:

Configuring Oxygen XML Developer 97

http://www.saxonica.com/documentation9.5/index.html#!configuration/configuration-file
http://www.saxonica.com/documentation9.5/index.html#!configuration/configuration-file

Create transformation temporary files in system temporary directory
It should be selected only when the temporary files necessary for performing transformations are created in
the same folder as the source of the transformation (the default behavior when this option is not selected)
and this breaks the transformation. An example of breaking the transformation is when the transformation
processes all the files located in the same folder as the source of the transformation (including the temporary
files) and the result is incorrect or the transformation fails because of this.

XSLT Preferences

To configure the XSLT options, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-
FO-XQuery > XSLT.

Oxygen XML Developer offers the possibility of using an XSLT transformer implemented in Java (other than the
XSLT transformers that come bundled with Oxygen XML Developer). To use another XSLT transformer, specify the
name of the transformer factory class. Oxygen XML Developer sets this transformer factory class as the value of
the Java property: javax.xml.transform.TransformerFactory.

The XSLT preferences page allows you to customize the following options:
JAXP XSLT Transformer - Value

Allows you to set the value of the TransformerFactory Java class.
Validation engine - XSLT 1.0

Allows you to select the XSLT engine to be used for validation of XSLT 1.0 documents.
Validation engine - XSLT 2.0

Allows you to select the XSLT engine to be used for validation of XSLT 2.0 documents.
Validation engine - XSLT 3.0

Allows you to select the XSLT engine to be used for validation of XSLT 3.0 documents.

Note: Saxon-HE does not implement any XSLT 3.0 features. Saxon-PE implements a selection of XSLT 3.0
(and XPath 3.0) features, with the exception of schema-awareness and streaming. Saxon-EE implements
additional features relating to streaming (processing of a source document without constructing a tree in
memory. For further details about XSLT 3.0 conformance, go to http://www.saxonica.com/documentation/
index.html#!conformance/xslt30.

XSLT Editor Content Completion Options link
Use this link to switch to the XSLT Content Completion preferences page, where you can configure the XSLT
content completion options.

Saxon6 Preferences

To configure the Saxon 6 options, open the Preferences dialog box (Options > Preferences) and go to XML >
XSLT-FO-XQuery > XSLT > Saxon > Saxon6.

Figure 21: Saxon 6 XSLT Preferences Panel

The built-in Saxon 6 XSLT processor can be configured with the following options:

• Line numbering - Specifies whether or not line numbers are maintained and reported in error messages for the
XML source document.

Configuring Oxygen XML Developer 98

http://www.saxonica.com/documentation/index.html#!conformance/xslt30
http://www.saxonica.com/documentation/index.html#!conformance/xslt30

• Disable calls on extension functions - If selected, external function calls are not allowed. Selecting this option
is recommended in an environment where untrusted stylesheets may be executed. It also disables user-
defined extension elements and the writing of multiple output files, since they carry similar security risks.

• Handling of recoverable stylesheet errors - Allows you to choose how dynamic errors are handled. One of the
following options can be selected:

• recover silently - Continue processing without reporting the error.
• recover with warnings - Issue a warning but continue processing.
• signal the error and do not attempt recovery - Issue an error and stop processing.

Saxon-HE/PE/EE Preferences

To configure global options for XSLT transformation and validation scenarios that use the Saxon HE/PE/EE
engine, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-FO-XQuery > XSLT >
Saxon > Saxon-HE/PE/EE.

Saxon-HE/PE/EE Options

Oxygen XML Developer allows you to configure the following XSLT options for the Saxon 9.7.0.15 Home Edition
(HE), Professional Edition (PE), and Enterprise Edition (EE):
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is executed for XSLT transformation and validation processes.
Version warnings ("-versmsg")

Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
Line numbering ("-l")

Line numbers where errors occur are included in the output messages.
Debugger trace into XPath expressions (applies to debugging sessions)

Instructs the XSLT Debugger to step into XPath expressions.
Expand attributes defaults ("-expand")

Specifies whether or not the attributes defined in the associated DTD or XML Schema are expanded in the
output of the transformation you are executing.

DTD validation of the source ("-dtd")
Specifies whether or not the source document will be validated against their associated DTD. You can choose
from the following:

• On - Requests DTD validation of the source file and of any files read using the document() function.
• Off - (default setting) Suppresses DTD validation.
• Recover - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for validation, since DTDs can contain
definitions of entities.

Recoverable errors ("-warnings")
Allows you to choose how dynamic errors are handled. The following options can be selected:

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

Configuring Oxygen XML Developer 99

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Saxon-PE/EE Options

The following options are available for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition (EE) only:
Allow calls on extension functions ("-ext")

If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on integrated
extension functions, including Saxon and EXSLT extension functions. This option is useful when loading
an untrusted stylesheet (such as from a remote site using http://[URL]). It ensures that the stylesheet
cannot call arbitrary Java methods and thus gain privileged access to resources on your machine.

Register Saxon-CE extension functions and instructions
Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using the Saxon
9.7.0.15 processors.

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will
use Oxygen XML Developer only for developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's website.

Enable assertions ("-ea")
In XSLT 3.0, you can use the xsl:assert element to make assertions in the form of XPath expressions, causing
a dynamic error if the assertion turns out to be false. If this option is selected, XSLT 3.0 xsl:assert
instructions are enabled. If it is not selected (default), the assertions are ignored.

Saxon-EE Options

The options available specifically for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Saxon-HE/PE/EE Advanced Preferences

Configuring Oxygen XML Developer 100

http://www.saxonica.com/ce/index.xml
http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc

To configure the Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box (Options >
Preferences) and go to XML > XSLT-FO-XQuery > XSLT > Saxon > Saxon-HE/PE/EE > Advanced.

Figure 22: Saxon HE/PE/EE XSLT Advanced Preferences Panel

You can configure the following advanced XSLT options for the Saxon 9.7.0.15 transformer (all three editions:
Home Edition, Professional Edition, Enterprise Edition):

• URI Resolver class name ("-r") - Specifies a custom implementation for the URI resolver used by the XSLT
Saxon 9.7.0.15 transformer (the -r option when run from the command line). The class name must be
fully specified and the corresponding jar or class extension must be configured from the dialog box for
configuring the XSLT extension for the particular transformation scenario.

• Collection URI Resolver class name ("-cr") - Specifies a custom implementation for the Collection URI resolver
used by the XSLT Saxon 9.7.0.15 transformer (the -cr option when run from the command line). The class
name must be fully specified and the corresponding jar or class extension must be configured from the
dialog box for configuring the XSLT extension for the particular transformation scenario.

XSLTProc Preferences

To configure XSLTProc options, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-
FO-XQuery > XSLT > XSLTProc.

The following options are available in this preferences page:

• Enable XInclude processing - If selected, XInclude references will be resolved when XSLTProc is used as
transformer in XSLT transformation scenarios.

• Skip loading the document's DTD - If selected, the DTD specified in the DOCTYPE declaration will not be
loaded.

• Do not apply default attributes from document's DTD - If selected, the default attributes declared in the DTD
and not specified in the document are not included in the transformed document.

• Do not use Internet to fetch DTD's, entities or docs - If selected, the remote references to DTD's and entities
are not followed.

• Maximum depth in templates stack - If this limit of maximum templates depth is reached the transformation
ends with an error.

• Verbosity - If selected, the transformation will output detailed status messages about the transformation
process in the Warnings view.

• Show version of libxml and libxslt used - If selected, Oxygen XML Developer will display in the Warnings view
the version of the libxml and libxslt libraries invoked by XSLTProc.

• Show time information - If selected, the Warnings view will display the time necessary for running the
transformation.

• Show debug information - If selected, the Warnings view will display debug information about what templates
are matched, parameter values, and so on.

• Show all documents loaded during processing - If selected, Oxygen XML Developer will display in the
Warnings view the URL of all the files loaded during transformation.

• Show profile information - If selected, Oxygen XML Developer will display in the Warnings view a table with all
the matched templates, and for each template will display: the match XPath expression, the template name,
the number of template modes, the number of calls, the execution time.

• Show the list of registered extensions - If selected, Oxygen XML Developer will display in the Warnings view a
list with all the registered extension functions, extension elements and extension modules.

• Refuses to write to any file or resource - If selected, the XSLTProc processor will not write any part of the
transformation result to an external file on disk. If such an operation is requested by the processed XSLT
stylesheet the transformation ends with a runtime error.

Configuring Oxygen XML Developer 101

• Refuses to create directories - If selected, the XSLTProc processor will not create any directory during
the transformation process. If such an operation is requested by the processed XSLT stylesheet the
transformation ends with a runtime error.

MSXML Preferences

To configure the MSXML options, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-
FO-XQuery > XSLT > MSXML.

The options in this preferences page for the MSXML 3.0 and 4.0 processors are as follows:
Validate documents during parse phase

If selected, and either the source or stylesheet document has a DTD or schema that its content can be
checked against, validation is performed.

Do not resolve external definitions during parse phase
By default, MSXML instructs the parser to resolve external definitions such as document type definition
(DTD), external subsets or external entity references when parsing the source and style sheet documents. If
this option is selected, the resolution is disabled.

Strip non-significant whitespaces
If selected, strips non-significant white space from the input XML document during the load phase. Selecting
this option can lower memory usage and improve transformation performance while, in most cases, creating
equivalent output.

Show time information
If selected, the relative speed of various transformation steps can be measured, including:

• The time to load, parse, and build the input document.
• The time to load, parse, and build the stylesheet document.
• The time to compile the stylesheet in preparation for the transformation.
• The time to execute the stylesheet.

Start transformation in this mode
Although stylesheet execution usually begins in the empty mode, this default behavior may be changed by
specifying another mode. Changing the start mode allows execution to jump directly to an alternate group of
templates.

MSXML.NET Preferences

To configure the MSXML.NET options, open the Preferences dialog box (Options > Preferences) and go to XML >
XSLT-FO-XQuery > XSLT > MSXML.NET.

The options in this preferences page for the MSXML.NET processor are as follows:
Enable XInclude processing

If selected, XInclude references will be resolved when MSXML.NET is used as the transformer in the XSLT
transformation scenario.

Validate documents during parse phase
If selected, and either the source or stylesheet document has a DTD or schema that its content can be
checked against, validation is performed.

Do not resolve external definitions during parse phase
By default, MSXML instructs the parser to resolve external definitions such as document type definition
(DTD), external subsets or external entity references when parsing the source and style sheet documents. If
this option is selected, the resolution is disabled.

Strip non-significant whitespaces
If selected, strips non-significant white space from the input XML document during the load phase. Selecting
this option can lower memory usage and improve transformation performance while, in most cases, creating
equivalent output.

Show time information
If selected, the relative speed of various transformation steps can be measured, including:

• The time to load, parse, and build the input document.

Configuring Oxygen XML Developer 102

• The time to load, parse, and build the stylesheet document.
• The time to compile the stylesheet in preparation for the transformation.
• The time to execute the stylesheet.

Forces ASCII output encoding
There is a known problem with the .NET 1.X XSLT processor (System.Xml.Xsl.XslTransform class). It
does not support escaping of characters as XML character references when they cannot be represented in
the output encoding. This means that it will be outputted as '?'. Usually this happens when output encoding
is set to ASCII. If this option is selected, the output is forced to be ASCII encoded and all non-ASCII characters
get escaped as XML character references (&#nnnn; form).

Allow multiple output documents
This option allows you to create multiple result documents using the exsl:document extension element.

Use named URI resolver class
This option allows you to specify a custom URI resolver class to resolve URI references in xsl:import and
xsl:include instructions (during XSLT stylesheet loading phase) and in document() functions (during
XSL transformation phase).

Assembly file name for URI resolver class
This option specifies a file name of the assembly where the specified resolver class can be found. The Use
named URI resolver class option specifies a partially or fully qualified URI resolver class name (for example,
Acme.Resolvers.CacheResolver). Such a name requires additional assembly specification using this
option or the Assembly GAC name for URI resolver class option, but fully qualified class name (which always
includes an assembly specifier) is all-sufficient. See MSDN for more info about fully qualified class names.

Assembly GAC name for URI resolver class
This option specifies partially or fully qualified name of the assembly in the global assembly cache (GAC)
where the specified resolver class can be found. See MSDN for more info about partial assembly names.

List of extension object class names
This option allows to specify extension object classes, whose public methods then can be used as extension
functions in an XSLT stylesheet. It is a comma-separated list of namespace-qualified extension object class
names. Each class name must be bound to a namespace URI using prefixes, similar to providing XSLT
parameters.

Use specified EXSLT assembly
MSXML.NET supports a rich library of the EXSLT and EXSLT.NET extension functions embedded or in a plugin
EXSLT.NET library. EXSLT support is enabled by default and cannot be disabled in this version. Use this option
if you want to use an external EXSLT.NET implementation instead of a built-in one.

Credential loading source xml
This option allows you to specify user credentials to be used when loading XML source documents. The
credentials should be provided in the username:password@domain format (all parts are optional).

Credential loading stylesheet
This option allows you to specify user credentials to be used when loading XSLT stylesheet documents. The
credentials should be provided in the username:password@domain format (all parts are optional).

XQuery Preferences

To configure the XQuery options, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-
FO-XQuery > XQuery.

The following generic XQuery preferences are available:
Validation engine

Allows you to select the processor that will be used to validate XQuery documents. If you are validating an
XQuery file that has an associated validation scenario, Oxygen XML Developer uses the processor specified
in the scenario. If no validation scenario is associated, but the file has an associated transformation scenario,
the processor specified in the scenario is used. If the processor does not support validation or if no scenario
is associated, then the value from this combo box will be used as validation processor.

Configuring Oxygen XML Developer 103

http://exslt.org/exsl/elements/document/index.html
http://msdn.microsoft.com/en-us/library/dfb3cx8s%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx
http://msdn.microsoft.com/en-us/library/0a7zy9z5%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa382408%28v=vs.85%29.aspx
http://www.exslt.org/
http://www.exslt.org/func/elements/function/

Size limit of Sequence view (MB)
When the result of an XQuery transformation is set as a sequence (Present as a sequence option) in the
transformation scenario, the size of one chunk of the result that is fetched from the database in lazy mode
in one step is set in this option. If this limit is exceeded, go to the Sequence view and click More results
available to extract more data from the database.

Format transformer output
Specifies whether or not the output of the transformer is formatted and indented (pretty-print).

Note: This option is ignored if you choose Present as a sequence (lazy extract data from a database) from
the associated transformation scenario.

Create structure indicating the type nodes
If selected, Oxygen XML Developer takes the results of a query and creates an XML document containing
copies of all items in the sequence, suitably wrapped.

Note: This option is ignored if you choose Present as a sequence (lazy extract data from a database) from
the associated transformation scenario.

Saxon-HE/PE/EE Preferences

To configure global options for XQuery transformation and validation scenarios that use the Saxon HE/PE/EE
engine, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-FO-XQuery > XQuery >
Saxon-HE/PE/EE.

Oxygen XML Developer allows you to configure the following XQuery options for the Saxon 9.7.0.15 Home Edition
(HE), Professional Edition (PE), and Enterprise Edition (EE):
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is used for XQuery transformation and validation scenarios.
Recoverable errors ("-warnings")

Allows you to choose how dynamic errors are handled. The following options can be selected:

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Use linked tree model ("-tree:linked")
This option activates the linked tree model.

Enable XQuery 3.0 support ("-qversion:(1.0|3.0)")
If selected (default value), Saxon runs the XQuery transformation with the XQuery 3.0 support.

The following option is available for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition (EE) only:

Configuring Oxygen XML Developer 104

Allow calls on extension functions ("-ext")
If selected, calls on external functions are allowed. Selecting this option is recommended in an environment
where untrusted stylesheets may be executed. It also disables user-defined extension elements and the
writing of multiple output files, both of which carry similar security risks.

The options available specifically for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Enable XQuery update ("-update:(on|off)")
This option controls whether or not XQuery update syntax is accepted. The default value is off.

Backup files updated by XQuery ("-backup:(on|off)")
If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is
available when the Enable XQuery update option is selected.

Saxon HE/PE/EE Advanced Preferences

To configure Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box (Options > Preferences)
and go to XML > XSLT-FO-XQuery > XQuery > Saxon-HE/PE/EE > Advanced.

Figure 23: Saxon HE/PE/EE XQuery Advanced Preferences Panel

The advanced XQuery options that can be configured for the Saxon 9.7.0.15 XQuery transformer (all editions:
Home Edition, Professional Edition, Enterprise Edition) are as follows:

• URI Resolver class name - Allows you to specify a custom implementation for the URI resolver used by the
XQuery Saxon 9.7.0.15 transformer (the -r option when run from the command line). The class name must
be fully specified and the corresponding JAR or class extension must be configured from the dialog box for
configuring the XQuery extension for the particular transformation scenario.

Configuring Oxygen XML Developer 105

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc

Note: If your URIResolver implementation does not recognize the given resource, the resolve(String
href, String base) method should return a null value. Otherwise, the given resource will not be
resolved through the XML Catalog.

• Collection URI Resolver class name - Allows you to specify a custom implementation for the Collection URI
resolver used by the XQuery Saxon 9.7.0.15 transformer (the -cr option when run from the command line). The
class name must be fully specified and the corresponding JAR or class extension must be configured from the
dialog box for configuring the XQuery extension for the particular transformation scenario.

Debugger Preferences

To configure the Debugger preferences, open the Preferences dialog box (Options > Preferences) and go to XML >
XSLT-FO-XQuery > Debugger.

The following options are available:
Show xsl:result-document output

If selected, the debugger presents the output of xsl:result-document instructions into the debugger
output view.

Infinite loop detection
Select this option to receive notifications when an infinite loop occurs during transformation.

Enable Saxon optimizations
This option is not selected by default and this means that the optimization level for the debugging process
is set to zero. If this option is selected, the debugging process will use the optimization level from one of the
following:

• The value specified in the Optimization level option in an associated XSLT transformation (or the same
option in an associated XQuery transformation), if a transformation scenario is used in the debugging
process.

• Otherwise, the value specified in the Optimization level option in the XSLT Saxon-HE/PE/EE preferences
page (or the same option in the XQuery Saxon HE/PE/EE preferences page).

Maximum depth in templates stack
Allows you to set how many xsl:template instructions can appear on the current stack. This setting is
used by the infinite loop detection.

Debugger layout
If you select the Horizontal layout, the stack of XML editors is presented on the left half of the editing area
while the stack of XSL editors is on the right half. If you select the Vertical layout, the stack of XML editors is
presented on the upper half of the editing area while the stack of XSL editors is on the lower half.

Debugger current instruction pointer
Allows you to set the background color of the current execution node, both in the document (XML) and XSLT/
XQuery views.

XWatch evaluation timeout (seconds)
Allows you to specify the maximum time that Oxygen XML Developer allocates to the evaluation of XPath
expressions while debugging.

Messages
Allows you to specify how to handle the debugging process when the source document involved in a
debugging session is edited. You can choose one of the following:

• Ask me what to do
• Always stop the debugging session
• Never stop the debugging session

Profiler Preferences

This section explains the settings available for the XSLT/XQuery Profiler. To access and modify these settings,
open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-FO-XQuery > Profiler (see
Debugger Preferences on page 106).

The following profiler settings are available:

Configuring Oxygen XML Developer 106

Show time
Shows the total time that was spent in the call.

Show inherent time
Shows the inherent time that was spent in the call. The inherent time is defined as the total time of a call
minus the time of its child calls.

Show invocation count
Shows how many times the call was called in this particular call sequence.

Time scale
Determines the unit of time measurement. You can choose between milliseconds or microseconds.

Hotspot threshold
Hotspots are ignored below this specified amount (in milliseconds). For more information, see Hotspots View
on page 942.

Ignore invocation less than
Invocations are ignored below this specified amount (in microseconds). For more information, see Invocation
Tree View on page 941.

Percentage calculation
The percentage base that determines what time span percentages are calculated against. You can choose
between the following:

• Absolute - Percentage values show the contribution to the total time.
• Relative - Percentage values show the contribution to the calling call.

FO Processors Preferences

Oxygen XML Developer includes a built-in formatting objects processor (Apache FOP), but you can also configure
other external processors and use them in the transformation scenarios for processing XSL-FO documents.

Oxygen XML Developer provides an easy way to add two of the most commonly used commercial FO processors:
RenderX XEP and Antenna House Formatter. You can easily add RenderX XEP as an external FO processor if
you have the XEP installed. Also, if you have the Antenna House Formatter, Oxygen XML Developer uses the
environment variables set by the XSL formatter installation to detect and use it for XSL-FO transformations. If the
environment variables are not set for the XSL formatter installation, you can browse and choose the executable
file just as you would for XEP. You can use these two external FO processors for DITA OT transformations
scenarios and XML with XSLT transformation scenarios.

To configure the options for the FO Processors, open the Preferences dialog box (Options > Preferences) and go
to XML > XSLT-FO-XQuery > FO Processors. The FO Processors preferences page is displayed.

Configuring Oxygen XML Developer 107

Figure 24: FO Processors Preferences Page

Apache FOP Section

In this section you can configure options for the built-in Apache processor. The following options are available:

Use built-in Apache FOP
Instructs Oxygen XML Developer to use the built-in Apache FO processor.

Use other Apache FOP
Instructs Oxygen XML Developer to use another Apache FO processor that is installed on your computer. You
can specify the path by using the text field, the Insert Editor Variables button, or the Browse button.

Enable the output of the built-in FOP
All Apache FOP output is displayed in a results pane at the bottom of the Oxygen XML Developer window,
including warning messages about FO instructions not supported by Apache FOP.

Memory available to the built-in FOP
If your Apache FOP transformations fail with an Out of Memory error (OutOfMemoryError), use this combo
box to select a bigger value for the amount of memory reserved for FOP transformations.

Configuration file for the built-in FOP
Use this option to specify the path to an Apache FOP configuration file (for example, to render to PDF a
document containing Unicode content using a special true type font). You can specify the path by using the
text field, the Insert Editor Variables button, or the Browse button.

Generates PDF/A-1b output
When selected, PDF/A-1b output is generated.

Note: All fonts have to be embedded, even the implicit ones. More information about configuring metrics
files for the embedded fonts can be found in Add a font to the built-in FOP.

Note: You cannot use the <filterList> key in the configuration file since the FOP would generate the
following error: The Filter key is prohibited when PDF/A-1 is active.

Configuring Oxygen XML Developer 108

External FO Processors Section

In this section you can manage the external FO processors you want to use in transformation scenarios. You
can use the two options at the bottom of the section to use the RenderX XEP or Antenna House Formatter
commercial FO processors.
Add 'XEP' FO processor (executable file is needed)

If RenderX XEP is already installed on your computer, you can use this button to choose the XEP executable
script (xep.bat for Windows, xep for Linux).

Add 'Antenna House' FO processor (executable file is needed)
If Antenna House Formatter is already installed on your computer, you can use this button to choose the
Antenna House executable script (AHFCmd.exe or XSLCmd.exe for Windows, and run.sh for Linux/Mac
OS).

Note: The built-in Antenna House Formatter GUI transformation scenario requires that you configure
an external FO processor that runs AHFormatter.exe (Windows only). In the external FO Processor
configuration dialog box, you could use "${env(AHF63_64_HOME)}\AHFormatter.exe" -d ${fo} -s
for the value in the Command line field, although the environment variable name changes for each version of
the AH Formatter and for each system architecture (you can install multiple versions side-by-side). For more
information, see https://github.com/AntennaHouse/focheck/wiki/focheck.

You can also add external processors or configure existing ones. Press the New button to open a configuration
dialog box that allows you to add a new external FO processor. Use the other buttons (Edit, Duplicate, Delete, Up,
Down) to configure existing external processors.

Figure 25: External FO Processor Configuration Dialog Box

The external FO Processor configuration dialog box includes the following options:
Name

The name that will be displayed in the list of available FO processors on the FOP tab of the transformation
scenario dialog box.

Description
A textual description of the FO processor that will be displayed in the FO processors table and in tooltips of UI
components where the processor is selected.

Working directory
The directory where the intermediate and final results of the processing is stored. You can specify the path
by using the text field, the Insert Editor Variables button, or the Browse button. You can use one of the
following editor variables:

• ${homeDir} - The path to the user home directory.

Configuring Oxygen XML Developer 109

https://github.com/AntennaHouse/focheck/wiki/focheck

• ${cfd} - The path of the current file directory. If the current file is not a local file, the target is the user
desktop directory.

• ${pd} - The project directory.
• ${oxygenInstallDir} -The Oxygen XML Developer installation directory.

Command line
The command line that starts the FO processor, specific to each processor. You can specify the path by using
the text field, the Insert Editor Variables button, or the Browse button. You can use one of the following
editor variables:

• ${method} - The FOP transformation method: pdf, ps, or txt.
• ${fo} - The input FO file.
• ${out} - The output file.
• ${pd} - The project directory.
• ${frameworksDir} - The path of the frameworks subdirectory of the Oxygen XML Developer installation

directory.
• ${oxygenInstallDir} - The Oxygen XML Developer installation directory.
• ${ps} - The platform-specific path separator. It is used between the library files specified in the class path

of the command line.

Output Encoding
The encoding of the FO processor output stream that is displayed in a Results panel at the bottom of the
Oxygen XML Developer window.

Error Encoding
The encoding of the FO processor error stream that is displayed in a Results panel at the bottom of the
Oxygen XML Developer window.

XPath Preferences

To configure XPath options, open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-FO-
XQuery > XPath.

Oxygen XML Developer allows you to customize the following options:
Unescape XPath expression

If selected, the entities of an XPath expressions that you type in the XPath/XQuery Builder and the XPath
toolbar are unescaped during their execution. For example, the expression:

//varlistentry[starts-with(@os,'s')]

is equivalent to:

//varlistentry[starts-with(@os,'s')]

Multiple XPath results
Select this option to display the results of an XPath expression in separate tabs in the Results view.

XPath Default Namespace (only for XPath version 2.0)
Specifies the default namespace to be used for unprefixed element names. You can choose between the
following four options:

• No namespace - If selected, Oxygen XML Developer considers unprefixed element names of the evaluated
XPath expressions as belonging to no namespace.

• Use the default namespace from the root element (default selection) - Oxygen XML Developer considers
unprefixed element names of the evaluated XPath expressions as belonging to the default namespace
declared on the root element of the XML document you are querying.

• Use the namespace of the root - If selected, Oxygen XML Developer considers unprefixed element names
of the evaluated XPath expressions as belonging to the same namespace as the root element of the XML
document you are querying.

• This namespace - If selected, you can use the corresponding text field to enter the namespace of the
unprefixed elements.

Configuring Oxygen XML Developer 110

Default prefix-namespace mappings
You can use this table to associate prefixes with namespaces. Use these mappings when you want to define
them globally (not for each document). Use the New button to add mappings to the list and the Delete button
to remove mappings.

Custom Engines Preferences

Oxygen XML Developer allows you to configure custom processors to be used for running XSLT and XQuery
transformations.

Note:

To configure the Custom Engines preferences, open the Preferences dialog box (Options > Preferences) and go to
XML > XSLT-FO-XQuery > Custom Engines.

The table in this preferences page displays the custom engines that have been defined. Use the New or Edit
button at the bottom of the table to open a dialog box that allows you to add or configure a custom engine.

Figure 26: Parameters of a Custom Engine

The following parameters can be configured for a custom engine:
Engine type

Specifies the transformer type. You can choose between XSLT and XQuery engines.
Name

The name of the transformer displayed in the dialog box for editing transformation scenarios.
Description

A textual description of the transformer.
Working directory

The start directory of the executable program for the transformer. The following editor variables are available
for making the path to the working directory independent of the location of the input files:

• ${homeDir} - The user home directory in the operating system.
• ${cfd} - The path to the directory of the current file.
• ${pd} - The path to the directory of the current project.
• ${oxygenInstallDir} - The Oxygen XML Developer install directory.

Command line
The command line that must be executed by Oxygen XML Developer to perform a transformation with the
engine. The following editor variables are available for making the parameters in the command line (the
transformer executable, the input files) independent of the location of the input files:

Configuring Oxygen XML Developer 111

• ${xml} - The XML input document as a file path.
• ${xmlu} - The XML input document as a URL.
• ${xsl} - The XSL / XQuery input document as a file path.
• ${xslu} - The XSL / XQuery input document as a URL.
• ${out} - The output document as a file path.
• ${outu} - The output document as a URL.
• ${ps} - The platform separator that is used between library file names specified in the class path.

Output Encoding
The encoding of the transformer output stream.

Error Encoding
The encoding of the transformer error stream.

Ant Preferences

To set Ant preferences, open the Preferences dialog box (Options > Preferences) and go to XML > Ant. This panel
allows you to choose the directory containing the Apache Ant libraries (the so-called Ant Home) that Oxygen XML
Developer uses to handle Ant build files.

There are two options available:

• Built-in - the path to the Ant distribution that comes bundled with Oxygen XML Developer installation kit.
• Custom - the path to an Ant distribution of your choice.

Import Preferences

To configure importing options, open the Preferences dialog box (Options > Preferences) and go to XML > Import.
This page allows you to configure how empty values and null values are handled when they are encountered in
imported database tables or Excel sheets. Also you can configure the format of date / time values recognized in
the imported database tables or Excel sheets.

The following options are available:
Create empty elements for empty values

If selected, an empty value from a database column or from a text file is imported as an empty element.
Create empty elements for null values

If selected, null values from a database column are imported as empty elements.
Escape XML content

Selected by default, this option instructs Oxygen XML Developer to escape the imported content to an XML-
safe form.

Add annotations for generated XML Schema
If selected, the generated XML Schema contains an annotation for each of the imported table columns. The
documentation inside the annotation tag contains the remarks of the database columns (if available) and
also information about the conversion between the column type and the generated XML Schema type.

Date / Time Format section
Specifies the format used for importing date and time values from Excel spreadsheets or database tables,
and in the generated XML schemas. You can choose from the following format types:

• Unformatted - The date and time formats specific to the database are used for import. When importing
data from Excel a string representation of date or time values are used. The type used in the generated
XML Schema is xs:string.

• XML Schema date format -The XML Schema-specific format ISO8601 is used for imported date / time
data (yyyy-MM-dd'T'HH:mm:ss for datetime, yyyy-MM-dd for date and HH:mm:ss for time). The
types used in the generated XML Schema are xs:datetime, xs:date and xs:time.

• Custom format - If selected, you can define a custom format for timestamp, date, and time values or
choose one of the predefined formats. A preview of the values is presented when a format is used. The
type used in the generated XML Schema is xs:string.

Configuring Oxygen XML Developer 112

Table 3: Pattern Letters

Letter Date or Time
Component

Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am / pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am / pm (0-11) Number 0

h Hour in am / pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time;
PST; GMT-08:00

Z Time zone RFC 822 time zone -0800

Pattern letters are usually repeated, as their number determines the exact presentation:

• Text - If the number of pattern letters is 4 or more, the full form is used. Otherwise, a short or abbreviated
form is used if available.

• Number - The number of pattern letters is the minimum number of digits, and shorter numbers are zero-
padded to this amount.

• Year - If the number of pattern letters is 2, the year is truncated to 2 digits. Otherwise, it is interpreted as a
number.

• Month - If the number of pattern letters is 3 or more, the month is interpreted as text. Otherwise, it is
interpreted as a number.

• General time zone - Time zones are interpreted as text if they have names. For time zones representing a
GMT offset value, the following syntax is used:

• GMTOffsetTimeZone - GMT Sign Hours : Minutes
• Sign - one of + or -
• Hours - one or two digits
• Minutes - two digits
• Digit - one of 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale
independent and digits must be taken from the Basic Latin block of the Unicode standard.

• RFC 822 time zone: The RFC 822 4-digit time zone format is used:

• RFC822TimeZone

Configuring Oxygen XML Developer 113

• TwoDigitHours (must be between 00 and 23)

XML Signing Certificates Preferences

Oxygen XML Developer provides two types of keystores for certificates that are used for digital signatures of
XML documents: Java Keystore (JKS) and Public-Key Cryptography Standards version 12 (PKCS-12). A keystore
file is protected by a password. To configure a certificate keystore, open the Preferences dialog box (Options >
Preferences) and go to XML > XML Signing Certificates. You can customize the following parameters of a
keystore:

Figure 27: Certificates Preferences Panel

• Keystore type - The type of keystore that Oxygen XML Developer uses (JKS or PKCS-12).
• Keystore file - The location of the imported file.
• Keystore password - The password that is used for protecting the privacy of the stored keys.
• Certificate alias - The alias used for storing the key entry (the certificate or the private key) inside the keystore.
• Private key password - The private key password of the certificate (required only for JKS keystores).
• Validate - Press this button to verify the configured keystore and the validity of the certificate.

XML Refactoring Preferences

To specify a folder for loading the custom XML refactoring operations, open the Preferences dialog box (Options >
Preferences) and go to XML > XML Refactoring. The following option is available in this preferences page:
Load additional refactoring operations from

Use this text box to specify a folder for loading custom XML refactoring operations. You can specify the path
by using the text field, the Insert Editor Variables button, or the Browse button.

DITA Preferences
To access the DITA Preferences page, open the Preferences dialog box (Options > Preferences) and go to DITA.
This preferences page includes the following sections and options:

DITA Open Toolkit section
This section allows you to specify the default directory of the DITA Open Toolkit distribution (bundled with
the Oxygen XML Developer installation) to be used for validating and publishing DITA content. You can select
from the following:

Built-in DITA-OT 1.8
If this is set, all defined DITA transformation scenarios will run with DITA-OT 1.8.5. The built-in DITA OT
1.8.5 directory is: [OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT.

Built-in DITA-OT 2.x (with support for DITA 1.3 and Lightweight DITA)
Starting with Oxygen 18.0, this is the default setting. All defined DITA transformation scenarios will run
with DITA-OT 2.4.4. This also gives you access to DITA 1.3 file templates when you create new documents
from templates. The default DITA OT 2.4.4 directory is: [OXYGEN_INSTALL_DIR]/frameworks/dita/
DITA-OT2.x.

Custom
Allows you to specify a custom directory for your DITA OT distribution.

Configuring Oxygen XML Developer 114

Location
You can either provide a new file path for the specific DITA OT that you want to use or select a
previously used one from the drop-down list. You can specify the path by using the text field, the

Insert Editor Variables button, or the Browse button.

Insert topic reference section
Allows you to specify that when inserting a topic reference , the values for certain attributes will always be
automatically populated with a detected value (based on the specifications), even if it is the same as the
default value. You can choose to always populate the values for the following attributes:

• Format - If selected, the attribute will always be automatically populated with a detected value.
• Scope - If selected, the sformatcope attribute will always be automatically populated with a detected

value.
• Type - If selected, the type attribute will always be automatically populated with a detected value.
• Navigation title - If selected, the navtitle attribute will always be automatically populated with a

detected value.

Insert link section

Allows you to specify that when a link reference is inserted (using actions in the Link drop-down menu),
the values for certain attributes will always be automatically populated with a detected value (based on the
specifications), even if it is the same as the default value. You can choose to always populate the values for
the following attributes:

• Format - If selected, the format attribute will always be automatically populated with a detected value.
• Scope - If selected, the scope attribute will always be automatically populated with a detected value.
• Type - If selected, the type attribute will always be automatically populated with a detected value.

Use '.' instead of the ID of the parent topic (DITA 1.3)

When addressing a non-topic element within the topic that contains the URI reference, the URI reference
can use an abbreviated fragment-identifier syntax that replaces the topic ID with "." (#./elementId).
For more information, see https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-
based-addressing.html.

Show console output
Allows you to specify when to display the console output log. The following options are available:

• When build fails - displays the console output log if the build fails.
• Always - displays the console output log, regardless of whether or not the build fails.

Data Sources Preferences
To configure the Data Sources preferences, open the Preferences dialog box (Options > Preferences) and go to
Data Sources. This preferences page allows you to configure data sources and connections to relational and
native XML databases. For a list of drivers that are available for the major database servers, see Download Links
for Database Drivers on page 119.

Connection Wizards Section

Create eXist-db XML connection
Click this link to open the dedicated Create eXist-db XML connection dialog box that provides a quick way to
create an eXist connection.

Data Sources Section

This section allows you to add and configure data sources.

Configuring Oxygen XML Developer 115

https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html

Figure 28: Data Sources Preferences Panel

The following buttons are available at the bottom of the Data Sources panel:

New
Opens the Data Sources Drivers dialog box that allows you to configure a new database driver.

Figure 29: Data Sources Drivers Dialog Box

The following options are available in the Data Source Drivers dialog box:

• Name - The name of the new data source driver that will be used for creating connections to the database.
• Type - Selects the data source type from the supported driver types.

• Help button - Opens the User Manual at the list of the sections where the configuration of supported
data sources is explained and the URLs for downloading the database drivers are specified.

• Driver files (JAR, ZIP) - Lists download links for database drivers that are necessary for accessing
databases in Oxygen XML Developer.

• Add Files - Adds the driver class library.
• Add Recursively - Adds driver files recursively.
• Remove - Removes the selected driver class library from the list.
• Detect - Detects driver file candidates.
• Stop - Stops the detection of the driver candidates.

Configuring Oxygen XML Developer 116

• Driver class - Specifies the driver class for the data source driver.

Edit
Opens the Data Sources Drivers dialog box for editing the selected driver. See above the specifications for the
Data Sources Drivers dialog box. To edit a data source, there must be no connections using that data source
driver.

Duplicate
Creates a copy of the selected data source.

Delete
Deletes the selected driver. To delete a data source, there must be no connections using that data source
driver.

Connections Section

This section allows you to add and configure data source connections.

Figure 30: Connections Preferences Panel

The following buttons and options are available at the bottom of the Connections panel:

New
Opens the Connection dialog box that allows you to configure a new database connection.

Figure 31: Connection Dialog Box

The following options are available in the Connection dialog box:

Configuring Oxygen XML Developer 117

• Name - The name of the new connection that will be used in transformation scenarios and validation
scenarios.

• Data Source - Allows selecting a data source defined in the Data Source Drivers dialog box.

Depending upon the selected data source, you can set some of the following parameters in the Connection
details area:

• URL - The URL for connecting to the database server.
• User - The user name for connecting to the database server.
• Password - The password of the specified user name.
• Host - The host address of the server.
• Port - The port where the server accepts the connection.
• XML DB URI - The database URI.
• Database - The initial database name.
• Collection - One of the available collections for the specified data source.
• Environment home directory - Specifies the home directory (only for a Berkeley database).
• Verbosity - Sets the verbosity level for output messages (only for a Berkeley database).
• Use a secure HTTPS connection (SSL) - Allows you to establish a secure connection to an eXist database

through the SSL protocol.

Edit
Opens the Connection dialog box, allowing you to edit the selected connection. See above the specifications
for the Connection dialog box.

Duplicate
Creates a copy of the selected connection.

Delete
Deletes the selected connection.

Move Up
Moves the selected connection up one row in the list.

Move Down
Moves the selected connection down one row in the list.

Limit the number of cells
For performance issues, you can set the maximum number of cells that will be displayed in the Table Explorer
view for a database table. Leave this field empty if you want the entire content of the table to be displayed. By
default, this field is set to 2000. If a table that has more cells than the value set here is displayed in the Table
Explorer view, a warning dialog box will inform you that the table is only partially shown.

Maximum number of children for container nodes
In Oracle XML, a container can hold millions of resources. If the node corresponding to such a container in
the Data Source Explorer view would display all the contained resources at the same time, the performance of
the view would be very slow. To prevent this, only a limited number of the contained resources is displayed as
child nodes of the container node. You can navigate to other contained resources from the same container by
using the Up and Down buttons in the Data Source Explorer view. This limited number is set in the field. The
default value is 200 nodes.

Table Filters Preferences

The Table Filters preferences page allows you to choose the types of tables to be shown in the Data Source
Explorer view. To open this preferences page, open the Preferences dialog box (Options > Preferences) and go to
Data Sources > Table Filters.

You can choose to display the following types of tables:

• Alias
• Global Temporary
• Local Temporary

Configuring Oxygen XML Developer 118

• Synonym
• System Table
• Table
• View

Download Links for Database Drivers

For a list of major relational databases and the drivers that are available for them, see https://
www.oxygenxml.com/database_drivers.html.

In addition, the following is a list of other popular databases along with instructions for getting the drivers that are
necessary to access the databases in Oxygen XML Developer:

• Berkeley DB XML database - Copy the jar files from the Berkeley database install directory into the Oxygen
XML Developer install directory as described in the procedure for configuring a Berkeley DB data source.

• IBM DB2 Pure XML database - Go to the IBM website and in the DB2 Clients and Development Tools category
select the DB2 Driver for JDBC and SQLJ download link. Fill out the download form and download the zip file.
Unzip the zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Developer
for configuring a DB2 data source.

• eXist database - Copy the jar files from the eXist database install directory to the Oxygen XML Developer
install directory as described in the procedure for configuring an eXist data source.

• MarkLogic database - Download the MarkLogic driver from MarkLogic Community site.
• Microsoft SQL Server 2005 / 2008 database - Download the appropriate MS SQL JDBC driver from the

Microsoft website. For SQL Server 2008 R2 and older go to http://www.microsoft.com/en-us/download/
details.aspx?id=21599. For SQL Server 2012 and 2014 go to http://www.microsoft.com/en-us/download/
details.aspx?id=11774.

• Oracle 11g database - Go to http://www.oracle.com/technetwork/database/enterprise-edition/
jdbc-112010-090769.html and download the Oracle 11g JDBC driver called ojdbc6.jar.

• PostgreSQL 8.3 database - Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3
JDBC3 driver.

• Documentum xDB (X-Hive/DB) 10 XML database - Copy the jar files from the Documentum xDB (X-Hive/DB)
10 database install directory to the Oxygen XML Developer install directory as described in the procedure for
configuring a Documentum xDB (X-Hive/DB) 10 data source.

SVN Preferences
To configure the options for the SVN client tool, open the Preferences dialog box (Options > Preferences) and go
to SVN. Some other preferences for the embedded SVN client tool can be set in the global files called config
and servers. These files contain parameters that act as defaults applied to all the SVN client tools that are used
by the same user on their computer login account. To open these files for editing, launch the embedded SVN
client tool (Tools > SVN Client) and select Global Runtime Configuration > Edit 'config' file or Global Runtime
Configuration > Edit 'servers' file from the SVN client Options menu.

Figure 32: SVN Preferences Panel

Configuring Oxygen XML Developer 119

https://www.oxygenxml.com/database_drivers.html
https://www.oxygenxml.com/database_drivers.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://community.marklogic.com/download
http://www.microsoft.com/en-us/download/details.aspx?id=21599
http://www.microsoft.com/en-us/download/details.aspx?id=21599
http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://jdbc.postgresql.org/download.html

The following SVN options can be configured in this preferences page:
Enable symbolic link support (available only on Mac OS X and Linux)

Apache Subversion™ has the ability to put a symbolic link under version control, via the usual SVN add
command. The Subversion repository has no internal concept of a symbolic link. It stores a versioned
symbolic link as an ordinary file with a svn:special property attached. On Unix/Linux, the SVN client sees
the property and translates the file into a symbolic link in the working copy. If the symbolic link support is
disabled, the versioned symbolic links appear as a text file instead of symbolic link.

Note: Windows file systems have no symbolic links, so a Windows client will not do any such translation and
the object appears as a normal file.

Important: It is recommended to disable symbolic links support if you do not have versioned symbolic links
in your repository, since the SVN operations will work faster. However, you should not disable this option
when you do have versioned symbolic links in repository. In that case a workaround would be to reference the
working copy by its real path, instead of a path that includes a symbolic link.

Allow unversioned obstructions
Controls how to handle a situation where working copy resources are ignored / unversioned when performing
an update operation and incoming files (from the repository) with the same name and location intersect with
those being ignored / unversioned. If the option is selected, the incoming items will become BASE revisions
of the ones already present in the working copy, and those present will be made versioned resources and will
be marked as modified (exactly as if the user first made the update operation and then modified the files).
If the option is not selected, the update operation will fail when encountering files in this situation, possibly
leaving other files not updated. By default, this option is selected.

Use unsafe copy operations
Sometimes when the working copy is accessed through Samba and the SVN client cannot make a safe copy
of the committed file due to a delay in getting a write permission, the result is that the committed file will be
saved with zero length (the content is removed) and an error will be reported. In this case, this option should
be selected so that the SVN client does not try to make the safe copy.

HTTPS encryption protocols (available if you are using Java version 1.6 or older)
Sets a specific encryption protocol to be used when the application accesses a repository through HTTPS
protocol. You can choose one of the following values:

• SSLv3, TLSv1 (default value)
• SSLv3 only
• TLSv1 only

Results Console
Specifies the maximum number of lines displayed in the Console view. The default value is 1000.

Annotations View
Sets the color used in the editor panel for highlighting all the changes contributed to a resource by the
revision selected in the Annotations view.

Revision Graph
Enables caching for the action of computing a revision graph. When a new revision graph is requested, one of
the caches from the previous actions may be used that will avoid running the whole query again on the SVN
server. If a cache is used, it will finish the action much faster.

Working Copy Preferences

To configure the Working Copy preferences, open the Preferences dialog box (Options > Preferences) and go to
SVN > Working Copy. The options in this preferences page are specific to SVN working copies and they include
the following:
Working copies location

Allows you to define a location where you keep your working copies. This location is automatically suggested
when you checkout a new working copy.

Configuring Oxygen XML Developer 120

Working copy administrative directory
Allows you to customize the directory name where the SVN entries are kept for each directory in the working
copy.

When loading an old format working copy
You can instruct the SVN client to do one of the following:

• Always ask - You are notified when such a working copy is used and you are allowed to choose what
action to be taken - to upgrade or not the format of the current working copy.

• Never upgrade - Older format working copies are left untouched. No attempt to upgrade the format is
made.

Note: SVN 1.6 and older working copies still need to be upgraded before loading them.

Enable working copy caching
If selected, the content of the working copies is cached for refresh operations.

Automatically refresh the working copy
If selected, the working copy is refreshed from cache. Only the new changes (modifications with a date/time
that follows the last refresh operation) are refreshed from disk. This option is not selected by default.

Allow moving/renaming mixed revision directories
If selected, Oxygen XML Developer will allow you to move or rename a directory even if its child items have
a different revision. Otherwise, an error message is displayed when there are multiple revisions to avoid
unnecessary conflicts. It is recommended to leave this option deselected and to Update the subtree to a
single revision before moving or renaming it.

When synchronizing with repository
The action that will be executed automatically after the Synchronize action. The possible actions are:

• Always switch to 'Modified' mode - The Synchronize action is followed automatically by a switch to
Modified mode of Working Copy view, if All Files mode is currently selected.

• Never switch to 'Modified' mode - Keeps the currently selected view mode unchanged.
• Always ask - The user is always asked if they want to switch to Modified mode.

Application global ignores
Allows you to set file patterns that may include the * and ? wildcards for unversioned files and folders that
must be ignored when displaying the working copy resources in the Working Copy view. These patterns are
case-sensitive. For example,*.txt matches file.txt, but does not match file.TXT.

Diff Preferences

To configure the SVN Diff options, open the Preferences dialog box (Options > Preferences) and go to Diff.

The following option is available:
Compare With External Application

Specifies an external application to be launched for compare operations in the following cases:

• When two history revisions are compared.
• When the working copy file is compared with a history revision.
• When a conflict is edited.

The parameters ${firstFile} and ${secondFile} specify the positions of the two compared files in the command
line for the external diff application. The parameter ${ancestorFile} specifies the common ancestor (that is,
the BASE revision of a file) in a three-way comparison. The working copy version of a file is compared with
the repository version, with the BASE revision (the latest revision read from the repository by an Update or
Synchronize operation) being the common ancestor of these two compared versions.

Important: If the path to the external compare application includes spaces (or any of the subsequent options
or arguments), then each of these paths or tokens must be double-quoted for the Oxygen XML Developer to
correctly parse and identify them. For example, C:\Program Files\compareDir\app name.exe must
be written as "C:\Program Files\compareDir\app name.exe".

Configuring Oxygen XML Developer 121

Messages Preferences

The Messages preferences page allows you to disable certain warning messages that may appear in the
application. To configure these options, open the Preferences dialog box (Options > Preferences) and go to SVN >
Messages.

This preferences page allows you to disable the following warning messages:
Show confirmation dialog when using the "Update All" action

Allows you to avoid performing accidental update operations by requesting you to confirm them before
execution.

Show confirmation dialog for drag and drop actions in Working Copy
This option avoids doing a drag and drop when you just want to select multiple files in the Working Copy view.

Show warning dialog when editing conflicts
When the Edit Conflicts action is executed, a warning dialog box notifies you that the action overwrites the
conflicted version of the file created by an update operation. The conflicted file is overwritten with the version
of the same file that existed in the working copy before the update operation and then proceeds with the
visual editing of the conflicting file.

Show warning dialog when "svn:externals" definitions are ignored
A warning dialog box is displayed when "svn:externals" definitions are ignored before performing any
operation that updates resources of the working copy (such as Update and Override and Update).

Diff Preferences
The Diff Preferences Page has sub-pages for configuring File Comparisons and Directory Comparisons.

Files Comparison Preferences

To configure the Files Comparison options, open the Preferences dialog box (Options > Preferences) and go to
Diff > Files Comparison.

Configuring Oxygen XML Developer 122

Figure 33: Files Comparison Preferences Page

This preferences page allows you to configure the following options:
Ignore Whitespaces

If selected, before performing the comparison, the application normalizes the content (collapses any
sequence of whitespace characters into a single space) and trims its leading and trailing whitespaces.

Note: If the Ignore Whitespaces checkbox is selected, comparing the a b sequence with a b, Oxygen XML
Developer finds no differences, because after normalization, all whitespaces from the first sequence are
collapsed into a single space character. However, when comparing a b with ab (no whitespace between a
and b), Oxygen XML Developer signals a difference.

Two-Way Diff section

Default algorithm
The default algorithm used for comparing two files. The following options are available:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Characters - Computes the differences at character level, meaning that it compares two files or
fragments looking for identical characters.

• Words - Computes the differences at word level, meaning that it compares two files or fragments
looking for identical words.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking
for identical lines of text.

• Syntax Aware - Computes differences for the file types or fragments known by Oxygen XML Developer,
taking the syntax (the specific types of tokens) into consideration.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

Configuring Oxygen XML Developer 123

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares
two XML files or fragments looking for identical XML nodes.

Algorithm strength
Controls the amount of resources allocated to the application to perform the comparison. The algorithm
stops searching more differences when reaches the maximum allowed resources. A dialog box is
displayed when this limit is reached and partial results are displayed. Four settings are available: Low,
Medium (default), High and Very High.

Three-Way Diff section

Default algorithm
The default algorithm used for performing a three-way comparison. The following options are available:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking
for identical lines of text.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares
two XML files or fragments looking for identical XML nodes.

Algorithm strength
Controls the amount of resources allocated to the application to perform the comparison. The algorithm
stops searching more differences when reaches the maximum allowed resources. A dialog box is
displayed when this limit is reached and partial results are displayed. Four settings are available: Low,
Medium (default), High and Very High.

Show pseudo conflicts
Specifies whether or not the file comparison displays pseudo-conflicts. A pseudo-conflict occurs when
two users make the same change (for example, when they both add or remove the same line of code).

XML Diff section

Ignore
Allows you to specify the types of XML nodes that will be ignored in the file comparison for the XML Fast
and XML Accurate algorithms.

Ignore nodes by XPath
If selected, you can enter an XPath expression to ignore certain nodes from the comparison. It will be
processed as XPath version 2.0. The XPath expression specified in this option is used as the default
ignore instructions only when the application is started. If you enter an XPath expression in the similar
option on the Diff Files toolbar, that expression will be used instead.

Merge adjacent differences
If selected, the application considers two adjacent differences as one when the differences are painted in
the side-by-side editors. If not selected, every difference is represented separately.

Mark end tags as different for modified elements
If selected, end tags of modified elements are also presented as differences. Otherwise, only the start tags
are presented as differences.

Ignore expansion state for empty elements
If selected, empty elements in both expansion states are considered matched (that is <element/> and
<element></element> are considered equal).

Appearance Preferences

To configure the appearance options for the Files Comparison tool, open the Preferences dialog box (Options >
Preferences) and go to Diff > Files Comparison > Appearance. This preferences page offers the following
options:

Configuring Oxygen XML Developer 124

Figure 34: Files Comparison Appearance Preferences Panel

Line wrap
Wraps the lines presented in the two diff panels at the right margin of each panel, so no horizontal scrollbar is
necessary.

Incoming color
Specifies the color used on the vertical bar for incoming changes.

Outgoing color
Specifies the color used on the vertical bar for outgoing changes.

Conflict color
Specifies the color used on the vertical bar for conflicts between the compared files.

Directories Comparison Preferences

To configure the Directories Comparison preferences, open the Preferences dialog box (Options > Preferences)
and go to Diff > Directories Comparison.

Figure 35: Diff Preferences Page

For the directories comparison, you can specify the following options:
Compare files by

Controls the method used for comparing two files:

• Content - The file content is compared using the current diff algorithm. This option is applied for a pair of
files only if that file type is associated with a built-in editor type (either associated by default or associated
by the user when prompted to do so on opening a file of that type for the first time).

You can use the Configure content comparison link to open the Files Comparison preferences page where
you can configure options for comparing files. However, the Ignore nodes by XPath option is ignored when
using the Compare Directories tool.

• Binary Compare - The files are compared at byte level.
• Timestamp (last modified date / time) - The files are compared only by their last modified timestamp.

Configuring Oxygen XML Developer 125

Look in archives
If selected, known archive types are considered directories and their content is compared just like regular
files.

Navigation
This options control the behavior of the differences traversal actions (Go to previous modification, Go to next
modification) when the first or last difference in a file is reached:

• Ask what to do next - A dialog box is displayed asking you to confirm that you want the application to
display modifications from the previous or next file.

• Go to the next/previous file - The application opens the next or previous file without waiting for your
confirmation.

• Do nothing - No further action is taken.

Appearance Preferences

To configure the appearance options for the Directories Comparison tool, open the Preferences dialog box
(Options > Preferences) and go to Diff > Directories Comparison > Appearance.

Figure 36: Diff Appearance Preferences Panel

• Added/Deleted - Color used for marking added or deleted files and folders.
• Modified - Color used for marking modified files.

Archive Preferences
To configure Archive options, open the Preferences dialog box (Options > Preferences) and go to Archive.

The following options are available in the Archive preferences page:
Archive backup options

Controls if the application makes backup copies of the modified archives. The following options are available:

• Always create backup copies of modified archives - When you modify an archive, its content is backed up.
• Never create backup copies of modified archives - No backup copy is created.
• Ask for each archive once per session - Once per application session for each modified archive, user

confirmation is required to create the backup. This is the default setting.

Note: Backup files have the name originalArchiveFileName.bak and are located in the same folder
as the original archive.

Archive types
This table contains all known archive extensions mapped to known archive formats. Each row maps a list of
extensions to an archive type supported in Oxygen XML Developer. You can use the Edit button at the bottom
of the table to edit an existing mapping or the New button to create a new one and associate your own list of
extensions to an archive format.

Configuring Oxygen XML Developer 126

Figure 37: Edit Archive Extension Mappings

Important: You have to restart Oxygen XML Developer after removing an extension from the table for that
extension to not be recognized as an archive extension.

Store Unicode file names in Zip archives
Use this option when you archive files that contain international (non-English) characters in file names or file
comments. If this option is selected and an archive is modified in any way, UTF-8 characters are used in the
names of all files in the archive.

Plugins Preferences
You can add plugins that extend the functionality of Oxygen XML Developer. The plugins are shipped as separate
packages. To check for new plugins, go to http://www.oxygenxml.com/oxygen_sdk.html.

A plugin consists of a separate sub-folder in the Plugins folder of the Oxygen XML Developer installation folder.
This sub-folder must contain a valid plugin.xml file in accordance with the plugin.dtd file located in the
Plugins folder.

Oxygen XML Developer automatically detects and loads plugins installed correctly in the Plugins folder and
displays them in the Plugins preferences page. To configure plugins, open the Preferences dialog box (Options >
Preferences) and go to Plugins.

You can use the checkboxes in front of each plugin to enable or disable them. To display the properties of a plugin
in the second section of the Plugins preferences page, click the name of the plugin.

Configuring Oxygen XML Developer 127

https://www.oxygenxml.com/developer.html

Figure 38: Plugins Preferences Panel

Also, you can install a plugin as an add-on. For further details about this, go to Deploying Add-ons

External Tools Preferences
A command-line tool can be started in the Oxygen XML Developer user interface as if from the command line of
the operating system shell. The External Tools preferences page allows you to add and configure these external
tools that could be used while working with Oxygen XML Developer. To access this preferences page, open the
Preferences dialog box (Options > Preferences) and go to External Tools (or select Configure from the Tools >
External Tools menu).

This preferences page presents a list of the external tools that have been configured. You can use the buttons
at the bottom of the page to configure the items in the list. Once a tool has been configured, you can open it by

selecting it from the Tools > External Tools menu or from the External Tools drop-down menu on the toolbar
(the Tools toolbar needs to be selected in the Configure Toolbars dialog box).

How to Configure an External Tool

To configure an external tool in the External Tools preferences page, use any of the following buttons at the
bottom of the page:

• New - Adds a new external tool to the list.
• Edit - Allows you to configure an existing external tool, selected from the list.
• Duplicate - Duplicates an existing external tool, selected from the list, to use as a template for configuring a

similar tool.

Any of those three buttons opens the External Tools configuration dialog box.

Configuring Oxygen XML Developer 128

Figure 39: External Tools Configuration Dialog Box

This configuration dialog box includes the following options:
Name

The name of tool that will be displayed in the Tools > External Tools menu and in the External Tools drop-
down menu on toolbar.

Description
A description of the tool displayed as a tooltip where the tool name is used.

Working directory
The directory that the external tool will use to store intermediate and final results. You can specify the path
by using the text field, the Insert Editor Variables button, or the Browse button. You can use one of the
following editor variables: ${cfd}, ${pd}, ${oxygenInstallDir}, ${homeDir}, ${system(var.name)}, ${date(pattern)},
${xpath_eval(expression)}. You can also use the browsing tools to select the directory.

Command line
The command line that will start the external tool. You can specify the path by using the text field,
the Insert Editor Variables button, or the Browse button. You can use one of the following editor
variables: ${homeDir}, ${home}, ${cfn}, ${cfne}, ${cf}, ${currentFileURL}, ${cfd}, ${cfdu}, ${tsf}, ${pd}, ${pdu},
${oxygenInstallDir}, ${oxygenHome}, ${frameworksDir}, ${frameworks}, ${ps}, ${timeStamp}, ${uuid}, ${id},
${afn}, ${afne}, ${af}, ${afu}, ${afd}, ${afdu}, ${ask('message', type, 'default_value')}, ${dbgXML}, ${dbgXSL},
${env(VAR_NAME)}, ${system(var.name)}, ${date(pattern)}, and ${xpath_eval(expression)}. You can also use
the browsing tools to select a file path.

Show output messages

When this option is selected, all the messages emitted by the external tool are displayed in the Results view.
When this option is not selected, only the error messages are displayed. You can also choose the output
encoding and content type:

• Output encoding - The encoding of the output stream of the external tool that will be used byOxygen XML
Developer to read the output of the tool.

• Output content type - A list of predefined content type formats that instructOxygen XML Developer how
to display the generated output. For example, setting the Output content type to text/xml enables the
syntax coloring of XML output.

Configuring Oxygen XML Developer 129

Error Encoding
The encoding of the error stream of the external tool that will be used by Oxygen XML Developer to read the
error stream.

Shortcut key
You can choose a keyboard shortcut that can be used to launch the external tool.

Menu Shortcut Keys Preferences
You can use the Menu Shortcut Keys preferences page to configure shortcut keys for the actions available in
Oxygen XML Developer. The shortcuts assigned to actions are displayed in a table in this preference page. To
access the full list of shortcut keys, open the Preferences dialog box (Options > Preferences) and go to Menu
Shortcut Keys (or simply go to Options > Menu Shortcut Keys).

For a list of the most commonly used shortcuts, see Frequently Used Shortcut Keys on page 10.

Figure 40: Menu Shortcut Keys Preferences Page

The Menu Shortcut Keys preferences page also contains the shortcuts that you define at document type level.

Note: A shortcut defined at document type level overwrites a default shortcut.

To find a specific action, you can use the filter text field to search through any of the columns in the table. You
can also press shortcut key combinations on your keyboard to filter the list and click on a column header to sort
that column.

The table includes the following columns or options:

• Description - A short description of the action.
• Category - A classification of the actions in categories for easier management and more flexibility in assigning

multiple keys for the same action.
• Shortcut key - The combination of keyboard keys that can be used to launch the action. To add or change a

shortcut key, you can either double-click a row or select the row and press the Edit button.
• 'Home' and 'End' keys are applied at line level (available on Mac OS X only) - Controls the way the HOME and

END keys are interpreted. If selected, the default behavior of these keys is overridden and the cursor only
moves on the current line.

Configuring Oxygen XML Developer 130

How to Assign a Shortcut Key or Edit an Existing Shortcut

To assign a shortcut key to an action or edit an existing shortcut configuration, follow these steps:

1. Select the action in the table.
2. Click the Edit button.

Step Result: The Shortcut key configuration dialog box is displayed.

Figure 41: Shortcut Key Configuration Dialog Box
3. Press the desired shortcut keys on your keyboard.
4. If you need the shortcut to work on multiple platforms, select the Enable platform-independent shortcut keys

option. In this case, the following modifiers are used:

• M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
• M2 represents the Shift key.
• M3 represents the Option key on MacOS X, and the Alt key on other platforms.
• M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.

5. Click OK to save your configuration.

Related Information:
Frequently Used Shortcut Keys on page 10

File Types Preferences
Oxygen XML Developer offers built-in editing support for a wide variety of file types, but you can also add new
file extensions and associate them with whatever editor type fits your needs. The associations set here between
a file extension and the type of editor will determine which editor will be opened for editing purposes when that
type of file is created or opened.

To configure the File Types options, open the Preferences dialog box (Options > Preferences) and go to File
Types.

Configuring Oxygen XML Developer 131

Figure 42: File Types Preferences Page

The table contains the following columns:

• Extension - The extensions of the files that will be associated with an editor type.
• Editor - The type of editor which the extensions will be associated with. Some editors provide easy access

to frequent operations via toolbars (XML editor, XSL editor, DTD editor) while others provide just a syntax
highlight scheme (Java editor, SQL editor, Shell editor, etc.).

If the editor set here is not one of the XML editors (XML editor, XSL editor, XSD editor, RNG editor, WSDL editor)
then the encoding set in the Encoding for non XML files option is used for opening and saving a file of this
type.

The files that match the Ant build patterns will be associated with the Ant editor.

The files that match the Binary file patterns patterns are handled as binary and opened in the associated system
application. Also, they are excluded from the following actions available in the Project view: File/Replace in Files,
Check Spelling in Files, Validate.

Open/Find Resource Preferences Page
You can configure various options that pertain to the Open/Find Resource dialog box and Open/Find Resource
view. To access these options, open the Preferences dialog box (Options > Preferences) and go to Open/Find
Resource.

The following options are available in this Open/Find Resource preferences page:
Limit search results to

Specifies the maximum number of results that are displayed in the Open/Find Resource dialog box/view.
Enable searching in content

This option is selected by default and it allows you to use the Open/Find Resource dialog box/view to search
in content or reviews, as well as in file paths. If this option is not selected, you can only use the Open/Find
Resource feature to search in file paths.

Content search scope section

Ignore content of these files
Allows you to select specific directories, files, or file types that are ignored when you perform a search. For
example, *.txt ignores all the .txt files, */topics/* ignores all the files from the topics directory,
regardless of their depth, and file:/C:/tmp/* ignores everything from the tmp directory.

Configuring Oxygen XML Developer 132

Note: The specified pattern must begin with the desired protocol (in our case file) and also contain
forward slash (/).

Index the content of remote resources
Controls the indexing of resources that are not local. For example, the resources referenced in a DITA map
opened from a remote server (from a CMS or from a WebDAV location) are not indexed by default. To
index the content of these resources, select this option.

Note: Selecting this option may lead to delays when the indexing is computed.

Content search options section

Content language
Use this option to specify a language for the search engine to use for the current document. This is helpful
if you have multiple languages within the content of a document. The search engine will use a set of
stop words and analyzers tuned specifically for that specific language. By default, it is mapped to the UI
language specified in the Global preferences page. Therefore, you need to change this option only if the
language of the text you want to perform the search in differs from the UI language.

Tip: If you select <Generic language (no stemming)> from the drop-down list, no word stemming is
performed when creating the index. This might be useful if your content has many technical terms that
should be indexed as they are.

Stop words
A list of stop words that will be filtered out of the search processing. The list is automatically populated
based upon the specified Content language, but you can add or remove words from the list.

When searching in content, return
This option specifies how matches are returned when doing searches in content. You can choose between
two options:

• Exact matches - The search results match the exact whole words that you enter in the search field of
the Open/Find Resource dialog box/view.

• Prefix matches (default) - The search results match documents that contain words starting with the
search terms. For instance, searching for "pref page" will also find documents containing "preference
page".

Automatically join search terms using:
Allows you to select the default boolean operator that Oxygen XML Developer applies when you perform a
search. For example, if the AND operator is selected and you search for "car assembly", the matches must
contain both of the words. If you choose OR, the matches must contain one of the selected search terms
and results that contain both words are promoted to the top of the list.

Enable XML-aware searching
When selected, you can perform XML-specific searches for XML elements and attributes.

Note: Selecting this option may slow down the indexing of your documents and increase the index size on
the disk.

Index files with size less than (KB)
Since indexing can be slowed down when the Enable XML-aware searching option is active, you can
use this option to set a maximum file size to be indexed.

Stop Words
A list of comma separated stop words, meaning that the words added in this list are filtered out prior to
processing a search query.

Related Information:
Open/Find Resource View on page 171
Open/Find Resource Dialog Box on page 218

Configuring Oxygen XML Developer 133

Custom Editor Variables Preferences
An editor variable is useful for making a transformation scenario, validation scenario, or other tool independent
of its file path. An editor variable is specified as a parameter in a transformation scenario, validation scenario,
or command line of an external tool. Such a variable is defined by a name, a string value, and a text description.
A custom editor variable is defined by the user and can be used in the same expressions as the built-in editor
variables.

Custom editor variables are created and configured in the Custom Editor Variables preferences page. To access
this page, open the Preferences dialog box (Options > Preferences) and go to Custom Editor Variables.

This preferences page displays a table of all the custom editor variables that have been defined. The table
includes three columns for the editor variable Name, its Value, and its Description. The create a new variable,
click the New button at the bottom of the table and define your custom editor variable in the subsequent dialog
box. To edit an existing custom editor variable, click the Edit button and configure the variable in the subsequent
dialog box. You can also use the Delete button to remove custom editor variables that are no longer needed.

Figure 43: Custom Editor Variables Table

Network Connection Settings Preferences
This section presents the options available in the Network Connection Settings preferences pages.

Proxy Preferences

Some networks use proxy servers to provide internet services to LAN clients. Therefore, clients behind the
proxy may only connect to the Internet via the proxy service. If you are not sure if your computer is required to
use a proxy server to connect to the Internet or you do not know the proxy parameters, consult your network
administrator.

To configure the Proxy options, open the Preferences dialog box (Options > Preferences) and go to Network
Connection Settings > Proxy. The following options are available:
Proxy section

Specifies how HTTP(S) connections go through the proxy server. You can choose between the following three
options:

• Direct connection - HTTP(S) connections will go directly to the target host without going through a proxy
server.

• Use system settings (default setting) - HTTP(S) connections will go through the proxy server set in the
operating system.

Attention: The system settings for the proxy cannot be read correctly from the operating system
on some Linux systems. The system settings option should work properly on Gnome based Linux
systems, but it does not work on KDE based ones as the Java virtual machine does not offer the
necessary support yet.

Configuring Oxygen XML Developer 134

• Manual proxy configuration - HTTP(S) connections will go through the proxy server specified in the Web
Proxy (HTTP/HTTPS) section.

Web Proxy (HTTP/HTTPS) section

Address
The address of the proxy server used for manual configurations.

Port
The port of the proxy server used for manual configurations.

No proxy for
Specifies the hosts that the connections must not go through a proxy server. A host needs to be written as
a fully qualified domain name (for example, myhost.example.com) or as a domain name (for example,
example.com). Use a comma to separate multiple hosts.

User
The user name for authentication with the proxy server.

Password
The password for authentication with the proxy server.

SOCKS Proxy section

Address
The address of a SOCKS proxy that all connections will pass through. If this field is empty, the connections
do not use a SOCKS proxy.

Port
The port of a SOCKS proxy that all connections will pass through.

Using a Proxy Auto-Configuration Script (PAC)

If you have set up the path to a Proxy auto-configuration script in your system, Oxygen XML Developer cannot
detect this setting out of the box.

You can create a new folder ([OXYGEN_INSTALL_DIR]\lib\endorsed) in which you should copy
two additional Java libraries: deploy.jar and plugin.jar. These libraries can be found in the
[OXYGEN_INSTALL_DIR]\jre\lib folder if the application came with a bundled Java VM (otherwise, in the
Java VM installation used to run the application).

HTTP(S)/WebDAV Preferences

To set the HTTP(S)/WebDAV preferences, open the Preferences dialog box (Options > Preferences) and go to
Network Connection Settings > HTTP(S)/WebDAV. The following options are available:
Internal Apache HttpClient Version

Oxygen XML Developer uses the Apache HttpClient to establish connections to HTTP servers. For Oxygen
XML Developer to benefit from particular sets of features provided by different versions, you may choose
between v3 and v4.

Note: For a full list of features, go to http://hc.apache.org/httpclient-3.x/ and http://hc.apache.org/
httpcomponents-client-ga/.

Maximum number of simultaneous connections per host
Defines the maximum number of simultaneous connections established by the application with a distinct
host. Servers might consider multiple connections opened from the same source to be a Denial of Service
attack. You can avoid that by lowering the value of this option.

Note: The minimum value that can be set in this option is 5.

Read Timeout (seconds)
The period (in seconds) after which the application considers that an HTTP server is unreachable if it does
not receive any response from that server.

Configuring Oxygen XML Developer 135

http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpcomponents-client-ga/
http://hc.apache.org/httpcomponents-client-ga/

Enable HTTP 'Expect: 100-continue ' handshake (for HTTP/1.1 protocol)
Activates Expect: 100-Continue handshake. The purpose of the Expect: 100-Continue handshake is to allow
a client that is sending a request message with a request body to determine if the origin server is willing
to accept the request (based on the request headers) before the client sends the request body. The use of
the Expect: 100-continue handshake can result in noticeable performance improvement when working with
databases. The Expect: 100-continue handshake should be used with caution, as it may cause problems with
HTTP servers and proxies that do not support the HTTP/1.1 protocol.

Use the 'Content-Type' header field to determine the content type
When selected, Oxygen XML Developer tries to determine a resource type using the Content-Type header
field. This header indicates the Internet media type of the message content, consisting of a type and subtype.
For example:

Content-Type: text/xml

When unchecked, the resource type is determined by analyzing its extension. For example, a file ending in
.xml is considered to be an XML file.

Automatic retry on recoverable error
When selected, if an HTTP error occurs when Oxygen XML Developer communicates with a server via
HTTP (for example, sending or receiving a SOAP request to or from a Web services server) and the error is
recoverable, Oxygen XML Developer tries to re-send the request to the server.

Automatically accept a security certificate, even if invalid
When selected, the HTTPS connections that Oxygen XML Developer attempts to establish with will accept all
security certificates, even if they are invalid.

Important: By accepting an invalid certificate, you accept (at your own risk) a potential security threat, since
you cannot verify the integrity of the certificate's issuer.

Lock WebDAV files on open
If selected, the files opened through WebDAV are locked on the server so that they cannot be edited by other
users while the lock placed by the current user still exists on the server.

(S)FTP Preferences

To configure the (S)FTP options, open the Preferences dialog box (Options > Preferences) and go to Network
Connection Settings > (S)FTP. You can customize the following options:

Figure 44: (S)FTP Configuration Preferences Panel

• Encoding for FTP control connection - The encoding used to communicate with FTP servers: either
ISO-8859-1 or UTF-8. If the server supports the UTF-8 encoding Oxygen XML Developer will use it for
communication. Otherwise, it will use ISO-8859-1.

• Public known hosts file - File containing the list of all SSH server host keys that you have determined are
accurate. The default value is ${homeDir}/.ssh/known_hosts.

• Private key file - The path to the file containing the private key used for the private key method of
authentication of the secure FTP (SFTP) protocol. The user / password method of authentication has
precedence if it is used in the Open URL dialog box.

Configuring Oxygen XML Developer 136

• Passphrase - The passphrase used for the private key method of authentication of the secure FTP (SFTP)
protocol. The user / password method of authentication has precedence if it is used in the Open URL dialog
box.

Trusted Hosts Preferences

This preferences page contains a list of domains that have been identified as trusted. You can add or remove
domains from the list and Oxygen XML Developer will allow connections to the listed hosts without requesting
user confirmation.

To configure the Trusted Hosts options, open the Preferences dialog box (Options > Preferences) and go to
Network Connection Settings > Trusted Hosts. The following options are available:

• New - Allows you to manually add a new entry to the list of trusted hosts.

Tip: You can specify a specific port at the end of the URL (for instance, www.example.com:8080).
Otherwise, if no port is specified,connections will be allowed on all ports for the particular host.

• Delete - Allows you to remove an entry from the list of trusted hosts.

SSH Preferences

To configure the SSH options, open the Preferences dialog box (Options > Preferences) and go to Connection
settings > SSH. The following options are available:

• SSH - Specifies the command line for an external SSH client that will be used when connecting to a SVN
+SSH repository. Absolute paths are recommended for the SSH client executable and the file paths given as
arguments (if any). Depending on the SSH client used and your SSH server configuration, you may need to
specify the user name and/or private key/passphrase in the command line . You can also choose whether
to use the Default SVN user (the same user name as the SSH client user) or Prompt for a SVN user for SVN
repository operations whenever SVN authentication is required. For example, on Windows the following
command line uses the plink.exe tool as the external SSH client for connecting to the SVN repository with
SVN+SSH:

C:\plink-install-folder\plink.exe -l username -pw password -ssh -batch
host_name_or_IP_address_of_SVN_server

XML Structure Outline Preferences
To configure options in regards to the Outline view, open the Preferences dialog box (Options > Preferences) and
go to XML Structure Outline. It contains the following options:
Preferred attribute names for display

The preferred attribute names when displaying the attributes of an element in the Outline view. If there is no
preferred attribute name specified, the first attribute of an element is displayed.

Enable outline drag and drop
Drag and drop is disabled for the tree displayed in the Outline view only if there is a possibility to accidentally
change the structure of the document by such operations.

Views Preferences
The Views preferences page allows you to configure some options in regards to certain views. To edit these
options, open the Preferences dialog box (Options > Preferences) and go to Views.

The following options are available:

Project view section

Enable drag-and-drop in Project view
Enables drag and drop support in the Project view. It should be disabled only if there is a possibility of
accidentally changing the structure of the project by drag and drop actions.

Configuring Oxygen XML Developer 137

Information view section

Maximum number of lines
Specifies the maximum number of lines that can be written in the Information view.

Messages Preferences
The Messages preference page allows you to specify whether or not certain messages are displayed. To
configure these options, open the Preferences dialog box (Options > Preferences) and go to Messages.

The following warning messages can be enabled or disabled:
Show confirmation dialog when moving resources

Specifies whether or not to display a confirmation dialog box when you move a resource in the Project view,
Data Source Explorer view, and Archive Browser. In the confirmation dialog box, there is an option to choose
to not show this dialog box in the future. To reset that behavior, simply select Restore Defaults at the bottom
of this preferences page.

Show warning when adding resources already included in the project
Specifies whether or not to display a dialog box that warns you if you try to add files that already exist in your
project.

Show warning for document size limit for bidirectional text, Asian languages, and other special characters
Specifies whether or not to display a warning message when an opened file that contains bidirectional
characters is too large and bidirectional support is disabled.

Show warning message when changing the text orientation in the editor
Specifies whether or not to display a warning message when you change the text orientation in the editor.

Show warning when editing long expressions in the XPath toolbar
Specifies whether or not to display an information dialog box that allows you to specify if you want to use the
XPath/XQuery Builder view when editing long XPath expressions.

Show SFTP certificate warning dialog
Specifies whether or not to display a warning dialog box each time the authenticity of the SFTP server host
cannot be established.

Show Enterprise license related message when trying to connect to a Microsoft SharePoint server
Specifies whether or not to display an error message if you try to connect to a Microsoft SharePoint server
without having the proper license.

Convert DB Structure to XML Schema
When tables from a database schema are selected in the Select database table section of the Convert DB
Structure to XML Schema dialog box and another database schema is expanded, a confirmation is needed
since the previous selection will be discarded. This option specifies whether or not you are always asked if
you want the other database schema to always be expanded without asking you, or it is never expanded.

Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions
Specifies whether or not to display a dialog box that allows you to choose a specific encoding whenever you
use the Encode Selection or Decode Selection actions for Base64, Base32, or Hex conversions. In the dialog
box, there is an option to choose to not show this dialog box in the future. To reset that behavior, simply select
Restore Defaults at the bottom of this preferences page.

Configuring Options
A set of options controls the behavior of Oxygen XML Developer, allowing you to configure most of the features.
To offer you the highest degree of flexibility in customizing the application to fit the needs of your organization,
Oxygen XML Developer includes several distinct layers of option values.

Configuring Oxygen XML Developer 138

Figure 45: Option Lookup Priority

The option layers are as follows (sorted from high priority to low):

• Project Options

Allows project managers to establish a set of rules for a specific project. These rules standardize the
information exchanged by the team members (for example, if the project is stored in a repository, a common
set of formatting rules avoid conflicts that may appear when documents modified by various team members
are committed to the repository).

• Global Options

Allows individual users to personalize Oxygen XML Developer according to their specific needs.
• Customized Default Options

Designed to customize the initial option values for a group of users, this layer allows an administrator to
deploy the application preconfigured with a standardized set of option values.

Note: Once this layer is set, it represents the initial state of Oxygen XML Developer when an end-user uses the
Restore defaults or Reset Global Options actions.

• Default Options

The predefined default or built-in values, tuned so that Oxygen XML Developer behaves optimally in most
working environments.

Important: If you set a specific option in one of the layers, but it is not applied in the application, make sure that
one of the higher priority layers does not overwrite it.

Customizing Default Options
Oxygen XML Developer has an extensive set of options that you can configure. When Oxygen XML Developer
in installed, these options are set to default values. You can provide a different set of default values for an
installation using an XML options file.

Creating an XML Options File

To create an options file, follow these steps:

1. It is recommended that you use a fresh install for this procedure, to make sure that you do not copy personal
or local preferences.

2. Open Oxygen XML Developer and open the Preferences dialog box (Options > Preferences).
3. Go through the options and set them to the desired defaults. Make sure that Global Options is selected in each

page.
4. Click OK and close the Preferences dialog box.
5. Go to Options > Export Global Options to create an XML options file.

Using Customized Default Options

There are two methods that you can use to configure an Oxygen XML Developer installation to use the
customized default options from the created XML options file:

Configuring Oxygen XML Developer 139

• Copy the XML Options File to the Installation Directory

In the [OXYGEN_INSTALL_DIR], create a folder called preferences and copy the created XML options file
into it (for example, [OXYGEN_INSTALL_DIR]/preferences/default.xml).

• Specify a Path to the XML Options File in a Startup Parameter

Set the path to the XML options file as the value of the com.oxygenxml.default.options system
property in the startup parameters. The path can be specified with any of the following:

• A URL or file path relative to the application installation folder. For example:

-Dcom.oxygenxml.default.options=options/default.xml

• A system variable that specifies the file path. For example:

com.oxygenxml.default.options=${system(CONFIG)}/default.xml

• An environmental variable that specifies the file path. For example:

com.oxygenxml.default.options=${env(CONFIG)}/default.xml

Note: If you are using the Java Webstart distribution, use the optionsDir property to specify the path of the
options file (in this case, the file must be named default.xml), or you can edit the .jnlp file that launches
the application and set the com.oxygenxml.default.options parameter using a property element, as
in the following example:

 <property name="oxy:com.oxygenxml.default.options"
 value="http://host/path/to/default.xml"/>

Storing Global and Project Level Options
When you configure the Oxygen XML Developer options, you can store them globally or bind them to a specific
project by choosing the appropriate setting in the preferences pages. They can then be shared with others by
exporting the global options or by sharing the stored project-level files. The same is true with transformation and
validation scenarios.

For each preferences page, you can choose between Global Options and Project Options depending upon how
you want to store the options in that particular preferences page.

Notice: Some pages do not have the Project Options button, since the options they host might contain sensitive
data (passwords, for example), unsuitable for sharing with other users.

If changes have been made to the options in a preferences page and you switch between Project Options and
Global Options, a dialog box will be displayed that allows you to select one of the following:

• Overwrite - The existing options from the current preferences page will be overwritten.
• Preserve - The existing options from the current preferences page will be preserved.

Figure 46: Controlling the Storage Options for the Preferences

Global Options

By default, Global Options is selected in the preferences pages, meaning that the options are stored locally on
your computer and are not accessible to other users (unless you export them into an XML options file that can
then be shared).

Global options are stored locally in option files (for example, oxyOptionsSa18.1.xml for a standalone
distribution of Oxygen XML Editor version 18.1) located in the following directories:

• Windows (Vista, 7, 8, 10) - [user_home_directory]\AppData\Roaming\com.oxygenxml
• Windows XP - [user_home_directory]\Application Data\com.oxygenxml
• Mac OS X - [user_home_directory]/Library/Preferences/com.oxygenxml
• Linux/Unix - [user_home_directory]/.com.oxygenxml

Configuring Oxygen XML Developer 140

http://download.oracle.com/javase/1,5.0/docs/guide/javaws/developersguide/syntax.html

Project Options

If you select Project Options, the preferences are stored in the project file (.xpr), which can easily be shared with
other users.

Notice: Some pages do not have the Project Options button, since the options they host might contain sensitive
data (passwords, for example), unsuitable for sharing with other users.

Related Information:
Sharing Application Settings on page 141
Customizing Default Options on page 139
Importing/Exporting/Resetting Global Options on page 142

Sharing Application Settings
There are a variety of ways that you can share the settings in Oxygen XML Developer with other members of your
team so that you all use a common set of options. This topic describes various possibilities.

Share Settings Through a Project File

Most of the preference pages in Oxygen XML Developer include a Project Options button that allows you to pass
changes to the settings to the current project file that is opened in the Project view. That project file can then be
shared with other users. For instance, if your project file is saved on a version control system (such as SVN, CVS,
or Source Safe) or in a shared folder, your team will have access to the same option configuration that you stored
in the project file.

For more information about sharing projects, see Sharing a Project - Team Collaboration on page 231.

Share Settings by Exporting/Importing Global Options

Oxygen XML Developer includes actions in the Options menu that allow you to export and import the global
settings. The Export Global Options action will save the global settings as an XML properties file. You can then
share those settings with others by using the Import Global Options action to import that properties file on their
computer.

For more information about global options, see Importing/Exporting/Resetting Global Options on page 142.

Share Settings with a Custom Options File During Installation

When Oxygen XML Developer in installed, all the settings are set to default values. You can customize the set of
default values by creating an XML options file that you will use when installing Oxygen XML Developer on each
computer. You can then copy the XML options file to the installation directory or specify its path in a startup
parameter.

For more information about creating and referencing a custom options file, see Customizing Default Options on
page 139.

Share Settings by Imposing Fixed Options with an API

The Maven-based Oxygen XML SDK includes a sample plugin called ImposeOptions that
imposes a fixed set of options when the application starts. This can be achieved by using the
PluginWorkspaceProvider.getPluginWorkspace().setGlobalObjectProperty(key, value) API
method.

For more information about this API, see PluginWorkspaceProvider Class.

Related Information:
Sharing a Project - Team Collaboration on page 231
Sharing Transformation Scenarios on page 710
Sharing Validation Scenarios on page 290
Customizing Default Options on page 139
Importing/Exporting/Resetting Global Options on page 142

Configuring Oxygen XML Developer 141

https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/PluginWorkspaceProvider.html#getPluginWorkspace--

Importing/Exporting/Resetting Global Options
Actions for importing, exporting, and resetting global options are available in the Options menu. The export
operation allow you to save global preferences as an XML properties file and the import operation allows you to
load the property file. You can use this file to reload saved options on your computer or to share with others.

The following actions are available in the Options menu:
Reset Global Options

Restores the preference to the factory defaults or to customized defaults. This action also resets the
transformation and validation scenarios to the default scenarios and clears recently used file templates.

Import Global Options
Allows you to import a set of Global Options from an exported XML properties file. You can also select a
project-level options file (.xpr) to import all the Global Options that are set in that project file. After you
select a file, the Import Global Options dialog box is displayed, and it informs you that the operation will only
override the options that are included in the imported file. You can select the Reset all other options to their
default values option to reset all options to the default values before the file is imported.

Export Global Options
Allows you to export Global Options to an XML properties file. Some user-specific options that are private
are not included. For example, passwords and the name of the Review Author is not included in the export
operation.

Oxygen XML Developer automatically stores your global options in an XML properties file. Depending on the
platform you are using, this file is located in the following directories:

• [user-home-folder]\AppData\Roaming\com.oxygenxml.developer for Windows Vista/7/8/10
• [user-home-folder]\Application Data\com.oxygenxml.developer for Windows XP
• [user-home-folder]/Library/Preferences/com.oxygenxml.developer for OS X
• [user-home-folder]/.com.oxygenxml.developer for Linux

The name of the options file of Oxygen XML Developer 19.0 is oxyDeveloperOptionsSa19.0.xml.

Associating a File Extension with Oxygen XML Developer
To associate a file extension with Oxygen XML Developer on Windows:

1. Go to the Windows Start menu and open Control Panel.
2. Go to Default Programs.
3. Click Associate a file type or protocol with a program.
4. Click the file extension you want to associate with Oxygen XML Developer, then click the Change program

button.
5. In the subsequent dialog box, browse for and choose Oxygen XML Developer.
6. Click OK.

To associate a file extension with Oxygen XML Developer on Mac OS:

1. In Finder, select a file and from the contextual menu select Get Info.
2. In the Open With subsection, select Other from the application combo box.
3. Browse to and select Oxygen XML Developer.
4. Select the Always Open With option, then click Add.
5. If you want all files of that type to be opened in Oxygen XML Developer, click the Change All button and then

the Continue button in the subsequent confirmation dialog box.

Configuring Oxygen XML Developer 142

Configuring the Layout of the Views and Editors
All the Oxygen XML Developer views available in the Editor, XSLT Debugger, and XQuery Debugger perspectives
are dockable. To open a view, select it from the Window > Show View menu. You can hide a view by closing it with
the button at the top-right corner of the view, or with the Window > Hide current view action.

Arranging the Layout

You can drag any view to any margin of another view or editor inside the Oxygen XML Developer window. Once
you create a layout that suites your needs, you can save it from Window > Export Layout. Oxygen XML Developer
creates a layout file containing the preferences of the saved layout. To load a layout, go to Window > Load Layout.
To reset it, select Window > Reset Layout.

Note: The Load Layout menu lets you select between the default layout, a predefined layout, or a custom layout.
The changes you make using the Load Layout menu are also reflected in the Application Layout preferences
page.

The changes you make to any layout are preserved between working sessions. The predefined layout files are
saved in the preferences directory of Oxygen XML Developer.

To gain more editing space in the Oxygen XML Developer window, click Toggle auto-hide in any view. This
button sets the view in the auto-hide state, making it visible only as a vertical tab, at the margins of the Oxygen
XML Developer window. To display a view in the auto-hide state, hover its side-tab with your cursor, or click it
to keep the view visible until you click elsewhere. A view can also be set to a floating state by using the Toggle
floating action, making it independent from the rest of the Oxygen XML Developer window.

You can drag the editors and arrange them in any order, both horizontally and vertically.

The following image presents two editors arranged as horizontal tiles. To arrange them vertically, drag one of
them on top of the other. In this example, the personal.xml file was dragged over the personal-schema.xml
file. When doing this, a dark gray rectangle marks the rearranged layout.

Configuring Oxygen XML Developer 143

Figure 47: Drag and Drop Editors

Tile/Stack Editor Actions

You can also tile or stack all open editors, both in the Editor perspective or in the Database perspective, using the
following actions from the Editor toolbar or Window menu:

Tile Editors Horizontally
Splits the editing area into horizontal tiles, one for each open file.

Tile Editors Vertically
Splits the editing area into vertical tiles, one for each open file.

Stack Editors
The reverse of the Tile Editors Horizontally/Vertically actions. Stacks all open editors.

Synchronous Scrolling
Select this action to scroll through the tiled editors at the same time.

Note: When tiled, you can still drag and drop the editors, but note that they are docked in the same way as a
window/view (instead of just tabs). You are actually rearranging the editor windows, so drag the editor tab and
drop it to one of the sides of an editor (left/right/top/bottom). While dragging, you will see the dark gray rectangle
aligned to one of the sides of the editor, or around the entire editor window. If you drop it to one of the sides it will
dock to that side of the editor. If you drop it when the rectangle is around the entire window of the editor it will get
stacked on top of that editor. You can also grab one of the stacked editors and tile it to one of the sides.

Split Editor Actions

You can divide the editing area vertically and horizontally using the following actions available in the Editor
toolbar and Window menu:

Configuring Oxygen XML Developer 144

• Split Editor Horizontally - Splits the editor horizontally. This is useful for comparing and merging content
between two documents.

• Split Editor Vertically - Splits the editor vertically. This is useful for comparing and merging content between
two documents.

• Unsplit Editor - Removes a split action on the editing area.

To maximize or restore the editors, go to Window > Maximize/Restore Editor Area.

Scroll Wheel Actions

When the opened documents titles do not fit in the tab strip, the scroll wheel can be used to scroll the editor title
tabs to the left or right, the same as the two arrows on the top-right. You can also switch between edited files by
using the Next editor and Previous editor actions from the Window menu, or by using their respective keyboard
shortcuts (Ctrl + F6 (Command + F6 on OS X) and Ctrl + Shift + F6 (Command + Shift + F6 on OS X)). These two
actions display a small pop-up window that allows you to cycle through all opened files.

To watch our video demonstration about dockable and floating views and editors in Oxygen XML Developer, go to
https://www.oxygenxml.com/demo/Dockable_Views.html.

Configure Toolbars
You can configure the toolbars in Oxygen XML Developer to personalize the interface for your specific needs. You
can choose which toolbars to show or hide in the current editor mode (Text, Design, or Grid) and in the current
perspective (Editor, XSLT Debugger, XQuery Debugger, or Databse). You can also choose which actions to display
in each toolbar, add actions to toolbars, and customize the layout of the toolbars.

To configure the toolbars, open the Configure Toolbars dialog box by doing one of the following:

• Right-click any toolbar and select Configure Toolbars.
• Select Configure Toolbars from the Window menu.

Figure 48: Configure Toolbars Dialog Box

The Configure Toolbars dialog box provides the following features:
Filter Text Box

You can use the filter text box at the top of the dialog box to search for a specific toolbar or action.

Configuring Oxygen XML Developer 145

https://www.oxygenxml.com/demo/Dockable_Views.html

Show or Hide Toolbars
You can choose whether to show or hide a toolbar by using the checkbox next to the toolbar name. This
checkbox is only available for toolbars that are available for the current perspective and editing mode.

Show or Hide Actions in a Toolbar
To show or hide actions in a toolbar, expand it by clicking the arrow next to the toolbar name, then use the
checkbox to select or deselect the appropriate actions. The toolbar configuration changes in the Preview
column according to your changes.

Add Actions to a Toolbar
Use the Add Actions button to open the Add Actions dialog box that displays all the actions that can be
added to any of the toolbars, with the exception of those that are contributed from frameworks or 3rd party
plugins.

Remove Actions from a Toolbar
You can remove actions that you have previously added to toolbars by using the Remove Action button.

Move Actions in a Toolbar
Use the Move Up and Move Down actions to change the order of the actions in a toolbar.

The Configure Toolbars dialog box also provides a variety of other ways to customize the layout in Oxygen XML
Developer.

Customize My Toolbar
You can customize the My Toolbar to include your most commonly used actions. By default, this toolbar is
listed first. Also, it is hidden until you add actions to it and you can easily hide it with the Hide "My Toolbar"
Toolbar action that is available when you right-click anywhere in the toolbar area.

Drop-down Menu Actions
Composite actions that are usually displayed as a drop-down menu can only be selected in one toolbar at a
time. These actions are displayed in the Configure Toolbars dialog box with the name in brackets.

Configure External Tools Action

There is a Configure external tools composite action that appears in the toolbar called Tools. It is a drop-
down menu that contains any external tools that are configured in the External Tools preferences page.

Note: If no external tools are configured, this drop-down menu is not shown in the toolbar.

Additional actions are available from the Window menu or contextual menu when invoked from a toolbar that
allows you to further customize your layout. These actions include:

Reset Toolbars
To reset the layout of toolbars to the default setting, select the Reset Toolbars action from the contextual
menu or Window menu.

Reset Layout
To reset the entire layout (including toolbars, editing modes, views, etc.) to the default setting, select Reset
Layout from the contextual menu or Window menu.

Export Layout
You can use the Export Layout action that is available in the Window menu to export the entire layout of the
application to share it with other users.

Hide Toolbars
You can use the Hide Toolbar action from the contextual menu to easily hide a displayed toolbar. When you
right-click a toolbar it will be highlighted to show you which actions are included in that toolbar.

Configuring Oxygen XML Developer 146

Import/Export Transformation or Validation Scenarios
You can export global transformation and validation scenarios into specialized scenarios files. You can import
transformation and validation scenarios from various sources (such as project files, framework option files, or
exported scenario files). The import and export scenario actions are available in the Options menu. The following
actions are available:
Import Transformation Scenarios

Loads a set of transformation scenarios from a project file, framework options file, or exported scenarios file.
Export Global Transformation Scenarios

Stores a set of global transformation scenarios in a specialized scenarios file.
Import Validation Scenarios

Loads a set of validation scenarios from a project file, framework options file, or exported scenarios file.
Export Global Validation Scenarios

Stores a set of global validation scenarios in a specialized scenarios file.

The Export Global Transformation Scenarios and Export Global Validation Scenarios options are used to store all
the scenarios in a separate file. Associations between document URLs and scenarios are also saved in this file.
You can load the saved scenarios using the Import Transformation Scenarios and Import Validation Scenarios
actions. To distinguish the existing scenarios and the imported ones, the names of the imported scenarios
contain the word import.

Editor Variables
An editor variable is a shorthand notation for context-dependent information, such as a file or folder path, a time-
stamp, or a date. It is used in the definition of a command (for example, the input URL of a transformation, the
output file path of a transformation, or the command line of an external tool) to make a command or a parameter
generic and re-usable with other input files. When the same command is applied to multiple files, the notation is
expanded at the execution of the command so that the same command has different effects depending on the
actual file.

Oxygen XML Developer includes a variety of built-in editor variables. You can also create your own custom editor
variables by using the Custom Editor Variables preferences page.

You can use the following editor variables in Oxygen XML Developer commands of external engines or other
external tools, in transformation scenarios, and in validation scenarios:

• ${af} - The local file path of the ZIP archive that includes the current edited document.
• ${afd} - The local directory path of the ZIP archive that includes the current edited document.
• ${afdu} - The URL path of the directory of the ZIP archive that includes the current edited document.
• ${afn} - The file name (without parent directory and without file extension) of the zip archive that includes the

current edited file.
• ${afne} - The file name (with file extension, for example .zip or .epub, but without parent directory) of the zip

archive that includes the current edited file.
• ${afu} - The URL path of the ZIP archive that includes the current edited document.
• ${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default_value')}

- To prompt for values at runtime, use the ask('message', type, ('real_value1':'rendered_value1';
'real_value2':'rendered_value2'; ...), 'default-value'') editor variable. You can set the following parameters:

• 'message' - The displayed message. Note the quotes that enclose the message.
• type - Optional parameter, with one of the following values:

Note: The title of the dialog box will be determined by the type of parameter and as follows:

• For url and relative_url parameters, the title will be the name of the parameter and the value of the
'message'.

• For the other parameters listed below, the title will be the name of that respective parameter.
• If no parameter is used, the title will be "Input".

Configuring Oxygen XML Developer 147

Parameter

Format: ${ask('message', url, 'default_value')}

Description: Input is considered a URL. Oxygen XML Developer checks
that the provided URL is valid.

url

Example:

• ${ask('Input URL', url)} - The displayed dialog box has the name Input
URL. The expected input type is URL.

• ${ask('Input URL', url, 'http://www.example.com')} - The displayed dialog
box has the name Input URL. The expected input type is URL. The
input field displays the default value http://www.example.com.

Format: ${ask('message', password, 'default')}

Description: The input is hidden with bullet characters.

password

Example:

• ${ask('Input password', password)} - The displayed dialog box has the
name 'Input password' and the input is hidden with bullet symbols.

• ${ask('Input password', password, 'abcd')} - The displayed dialog
box has the name 'Input password' and the input hidden with bullet
symbols. The input field already contains the default abcd value.

Format: ${ask('message', generic, 'default')}

Description: The input is considered to be generic text that requires no
special handling.

generic

Example:

• ${ask('Hello world!')} - The dialog box has a Hello world! message
displayed.

• ${ask('Hello world!', generic, 'Hello again!')} - The dialog box has a Hello
world! message displayed and the value displayed in the input box is
'Hello again!'.

Format: ${ask('message', relative_url, 'default')}

Description: Input is considered a URL. Oxygen XML Developer tries to
make the URL relative to that of the document you are editing.

Note: If the $ask editor variable is expanded in content that is not yet
saved (such as an untitled file, whose path cannot be determined), then
Oxygen XML Developer will transform it into an absolute URL.

relative_url

Example:

• ${ask('File location', relative_url, 'C:/example.txt')} - The dialog box has
the name 'File location'. The URL inserted in the input box is made
relative to the current edited document location.

combobox Format: ${ask('message', combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

Configuring Oxygen XML Developer 148

Parameter

Description: Displays a dialog box that offers a drop-down menu. The
drop-down menu is populated with the given rendered_value values.
Choosing such a value will return its associated value (real_value).

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Example:

• ${ask('Operating System', combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has
the name 'Operating System'. The drop-down menu displays the three
given operating systems. The associated value will be returned based
upon your selection.

Note: In this example, the default value is indicated by the osx key.
However, the same result could be obtained if the default value is
indicated by Mac OS X, as in the following example: ${ask('Operating
System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'Mac OS X')}

• ${ask('Mobile OS', combobox, ('win':'Windows
Mobile';'ios':'iOS';'and':'Android'), 'Android')}

Format: ${ask('message', editable_combobox,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

Description: Displays a dialog box that offers a drop-down menu with
editable elements. The drop-down menu is populated with the given
rendered_value values. Choosing such a value will return its associated
real value (real_value) or the value inserted when you edit a list entry.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

editable_combobox

Example:

• ${ask('Operating System', editable_combobox, ('win':'Microsoft
Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box
has the name 'Operating System'. The drop-down menu displays the
three given operating systems and also allows you to edit the entry.
The associated value will be returned based upon your selection or
the text you input.

Format: ${ask('message', radio,
('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
'default')}

radio

Description: Displays a dialog box that offers a series of radio buttons.
Each radio button displays a 'rendered_value and will return an
associated real_value.

Note: The 'default' parameter specifies the default selected value and
can match either a key or a value.

Configuring Oxygen XML Developer 149

Parameter

Example:

• ${ask('Operating System', radio, ('win':'Microsoft Windows';'osx':'Mac OS
X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name 'Operating
System'. The radio button group allows you to choose between the
three operating systems.

Note: In this example Mac OS X is the default selected value and if
selected it would return osx for the output.

• 'default-value' - optional parameter. Provides a default value.
• ${caret} - The position where the cursor is located. This variable can be used in a code template, in Author

mode operations, or in a selection plugin.
• ${cf} - Current file as file path, that is the absolute file path of the current edited document.
• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the

parent folder.
• ${cfdu} - Current file folder as URL, that is the path of the current edited document up to the name of the

parent folder, represented as a URL.
• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently

opened and selected.
• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• ${configured.ditaot.dir} - The default directory of the DITA Open Toolkit distribution, as configured in the DITA

preferences page.
• ${cp} - Current page number. Used to display the current page number on each printed page in the Editor /

Print Preferences page.
• ${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document

represented as URL.
• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat

class. Example: yyyy-MM-dd;

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date,
go to http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to http://www.w3.org/TR/
xmlschema-2/#dateTime.

• ${dbgXML} - The local file path to the XML document that is current selected in the Debugger source combo
box (for tools started from the XSLT/XQuery Debugger).

• ${dbgXSL} - The local file path to the XSL/XQuery document that is current selected in the Debugger stylesheet
combo box (for tools started from the XSLT/XQuery Debugger).

• ${dita.dir.url} - A special local contextual editor variable that gets expanded only in the Libraries dialog box
that is accessible from the Advanced tab of DITA transformation scenarios. The Libraries dialog box allows
you to specify additional libraries (JAR files or additional class paths) to be used by the transformer. This
${dita.dir.url} editor variable gets expanded to the value of the dita.dir parameter from the Parameters tab of
the DITA transformation scenario.

• ${ds} - The path of the detected schema as a local file path for the current validated XML document.
• ${dsu} - The path of the detected schema as a URL for the current validated XML document.
• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed

by the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor
variable.

• ${framework(fr_name)} - The path (as URL) of the fr_name framework.
• ${framework} - The path (as URL) of the current framework, as part of the [OXYGEN_INSTALL_DIR]/

frameworks directory.
• ${frameworkDir(fr_name)} - The path (as file path) of the fr_name framework.

Note: Since multiple frameworks might have the same name (although it is not recommended), for both
${framework(fr_name)} and ${frameworkDir(fr_name)} editor variables Oxygen XML Developer employs the
following algorithm when searching for a given framework name:

Configuring Oxygen XML Developer 150

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

• All frameworks are sorted, from high to low, according to their Priority setting from the Document Type
configuration dialog box. Only frameworks that have the Enabled checkbox selected are taken into account.

• Next, if the two or more frameworks have the same name and priority, a further sorting based on the
Storage setting is made, in the exact following order:

• Frameworks stored in the internal Oxygen XML Developer options.
• Additional frameworks added in the Locations preferences page.
• Frameworks installed using the add-ons support.
• Frameworks found in the main framework location (Default or Custom).

• ${frameworkDir} - The path (as file path) of the current framework, as part of the [OXYGEN_INSTALL_DIR]/
frameworks directory.

• ${frameworks} - The path (as URL) of the [OXYGEN_INSTALL_DIR] directory.
• ${frameworksDir} - The path (as file path) of the [OXYGEN_INSTALL_DIR]/frameworks directory.
• ${home} - The path (as URL) of the user home folder.
• ${homeDir} - The path (as file path) of the user home folder.
• ${i18n(key)} - Editor variable used only at framework-level to allow translating names and descriptions of

Author mode actions in multiple actions.
• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not

guaranteed to be universally unique.
• ${makeRelative(base,location)} - Takes two URL-like paths as parameters and tries to return a relative path.

A use-case would be to insert content references to a certain reusable component when defining code
templates.

Example:

${makeRelative(${currentFileURL}, ${dictionaryURL}#gogu)}

• ${oxygenHome} - Oxygen XML Developer installation folder as URL.
• ${oxygenInstallDir} - Oxygen XML Developer installation folder as file path.
• ${pd} - The file path for the parent folder of the current project selected in the Project view.
• ${pdu} - The URL for the parent folder of the current project selected in the Project view.
• ${pn} - Current project name.
• ${ps} - Path separator, which is the separator that can be used on the current platform (Windows, OS X, Linux)

between library files specified in the class path.
• ${selection} - The current selected text content in the current edited document. This variable can be used in a

code template, in Author mode operations, or in a selection plugin.
• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be

specified in the command line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for
operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${timeStamp} - Time stamp, that is the current time in Unix format. For example, it can be used to save
transformation results in multiple output files on each transformation.

• ${tp} - Total number of pages in the document. Used to display the total number of pages on each printed
page in the Editor / Print Preferences page.

• ${tsf} - The transformation result file path. If the current opened file has an associated scenario that specifies
a transformation output file, this variable expands to it.

• ${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID
class.

• ${xpath_eval(expression)} - Evaluates an XPath 3.0 expression. Depending on the context, the expression can
be:

• static - When executed in a non-XML context. For example, you can use such static expressions to perform
string operations on other editor variables for composing the name of the output file in a transformation
scenario's Output tab.

Example:

${xpath_eval(upper-case(substring('${cfn}', 1, 4)))}

Configuring Oxygen XML Developer 151

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

• dynamic - When executed in an XML context. For example, you can use such dynamic expression in a code
template or as a value of a parameter of an Author mode operation.

Example:

${ask('Set new ID attribute', generic, '${xpath_eval(@id)}')}

Custom Editor Variables
An editor variable can be created and included in any user-defined expression where a built-in editor variable
is also allowed. For example, a custom editor variable may be necessary for configuring the command line of
an external tool, the working directory of a custom validator, the command line of a custom XSLT engine, or a
custom FO processor.

You can create or configure custom editor variables in the Custom Editor Variables preferences page. To create a
custom editor variable, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Custom Editor Variables.
2. Click the New button at the bottom of the table.
3. Use the subsequent dialog box to specify the Name, Value, and Description for the new editor variable.
4. Click OK to save your configuration.

Related Information:
Editor Variables on page 147

Custom System Properties
A variety of Java system properties can be set in the application to influence its behavior. For information about
how to do this, see Setting a system property on page 156.

Table 4: Custom System Properties

Property Allowed
values

Default
value

Purpose

com.oxygenxml.disable.http.protocol.handlers true or false false By default, Oxygen XML
Developer uses the open
source Apache HTTP Client
software for HTTP(S)
connections. If set to
True, the default Java
Sun HTTP(S) will be used
instead. You will also lose
WebDAV support and
possibly other related
features.

com.oxygenxml.present.license.reminders true or false true When set to false, Oxygen
XML Developer will not
display the messages that
remind you to renew your
Support and Maintenance
Pack that covers your current
license.

com.oxygenxml.enable.content.reference.caching true or false true Enables content reference
caching.

Configuring Oxygen XML Developer 152

Property Allowed
values

Default
value

Purpose

com.oxygenxml.default.java.accessibility true or false false System property that can
be set to "true" to force
the default detection
of java accessibility. If
com.sun.java.accessibility.AccessBridge
cannot be loaded, Oxygen
XML Developer forces the
Java accessibility to be
disabled.

com.oxygenxml.floating.license.timeout Stores the time interval (in
minutes) before floating
licenses are released in case
of application's inactivity.

com.oxygenxml.language Language
code (for
example,

en-us)

N/A Property that holds the
language code set during
installation.

com.oxygenxml.default.options A URL-type
relative or
absolute

path.

N/A Provides the path to an
XML file containing default
application options. For more
details, see Customizing
Default Options on page
139.

com.oxygenxml.customOptionsDir A file system
absolute

path pointing
to a folder.

N/A Sets a folder to be used by
the application to load and
save preference files. The
default location where the
options are saved varies
according to the operating
system. See Importing/
Exporting/Resetting Global
Options on page 142.

com.oxygenxml.ApplicationDataFolder
(Windows only)

A file system
absolute

path pointing
to a folder.

%APPDATA
%

When the application runs
on Windows, you can set
this property to change
the location where the
application considers that
the APPDATA folder is
located.

com.oxygenxml.editor.frameworks.url A URL-type
absolute

path.

OXYGEN_DIR
\frameworks

Changes the folder where
the application considers
that the main frameworks
are installed. It has the
same effect as changing
the custom frameworks
directory value in the
Location preferences page.

com.oxygenxml.MultipleInstances true or false false If set to true, multiple
instances of the application
are allowed to be started.

Configuring Oxygen XML Developer 153

Property Allowed
values

Default
value

Purpose

com.oxygenxml.xep.location A file system
absolute

path pointing
to a folder.

N/A Points to a folder where
RenderX XEP is installed.
Has the same effect as
configuring XEP in the FO
Processors preferences
page.

com.oxygenxml.additional.classpath A list of
JAR-type
resources

separated by
a classpath
separator.

N/A An additional list of
libraries to be used in the
application's internal class
loader in addition to the
libraries specified in the lib
folder.

com.oxygenxml.user.home (Windows only) A file system
absolute

path pointing
to a folder.

USERPROFILE
Folder

Overwrites the user home
directory that was implicitly
detected for the application.

com.oxygenxml.use.late.delegation.for.author.extensionstrue or false true All Java extensions in a
framework configuration are
instantiated in a separate
class loader. When true,
the JAR libraries used in
a certain document type
will have priority to resolve
classes before delegating
to the parent class loader.
When false, the parent class
loader will take precedence.

com.oxygenxml.stack.size.validation.threads The number
of bytes
used for

validation
threads.

5*1024*1024 Some parts of the
application (validation,
content completion) that
use the Relax NG parser
sometimes require a larger
Thread stack size to parse
complex schemas. The
default value should be more
than enough.

com.oxygenxml.jing.skip.validation.xhtml.data.attrstrue or false true By default, the Relax NG
validation was configured to
skip validation for XHTML
attributes that start with
"data-", which should be
skipped from validation
according to the XHTML 5
specification.

com.oxygenxml.report.problems.url User
defined URL

N/A The URL where a problem
reported through the Report
Problem dialog box is sent.
The report is sent in XML
format using the report
parameter with the POST
HTTP method.

Configuring Oxygen XML Developer 154

Property Allowed
values

Default
value

Purpose

com.oxygenxml.parallel.title.computing.threads Integers 4 The number of parallel
threads that will be used
to compute referenced
topic titles. Increasing this
value reduces the amount
of time it takes to compute
topic titles in the DITA Maps
Manager view.

Related Information:
Setting a system property on page 156

Localizing the User Interface
You can select the language of the Oxygen XML Developer user interface. Oxygen XML Developer ships with
the following languages: English, French, German, Japanese, and Dutch. To change the interface language, go
to Options > Preferences > Global preferences page, then choose the appropriate language from the Language
drop-down menu.

You can also localize the interface in another language by creating an interface localization file.

Creating an Interface Localization File
You can change the language of the Oxygen XML Developer user interface by creating an interface localization
file. The example in this procedure is based on the Spanish language, and a standard Oxygen XML Developer
Windows distribution.

1. Identify the code for the new language you want to translate the interface. It is composed from a language
code (two or three lowercase letters that conform to the ISO 639 standard), followed by an underscore
character, and a region code (two or three uppercase letters that conform to the ISO 3166 standard).

2. Write an email to the Oxygen XML Developer support team and ask them to send you the translation.xml
sample file.

3. Open translation.xml in Oxygen XML Developer. The file contains all the interface messages that can be
translated and is updated at every new release with the latest additions. Here is a sample of its content:

<translation>
 <languageList>
 <language description="English" lang="en_US"/>
 </languageList>
 <key value="New">
 <comment>The File/New action. Creates a new document.</comment>
 <val lang="en_US">New</val>
 </key>
 <key value="New_folder">
 <comment>Creates a folder in the Project View.</comment>
 <val lang="en_US">New Folder</val>
 </key>

</translation>

4. Update the language element to reflect the new language. Set the description attribute to Spanish and
the lang attribute to es_ES.

5. For each key element translate the comment (optional) and val elements. Set the lang attribute to es_ES.

Note: After you are finished, the file should look like this:

<translation>
 <languageList>
 <language description="Español" lang="es_ES"/>
 </languageList>
 <key value="New">
 <comment>El Archivo / Nueva acción. Crea un nuevo documento.</comment>
 <val lang="es_ES">Nuevo</val>
 </key>
 <key value="New_folder">
 <comment>Crea una carpeta en la vista del proyecto.</comment>

Configuring Oxygen XML Developer 155

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

 <val lang="es_ES">Nueva carpeta</val>
 </key>

</translation>

6. Open the Preferences dialog box (Options > Preferences), go to Global, and select the Other language option.
Browse for the translation.xml file.

7. Restart the application.

Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer
You can set Java Virtual Machine parameters (for example, if you want to increase the maximum amount of
memory available) for the Oxygen XML Developer application launchers or command-line scripts. You can also
create a custom startup parameters file.

Setting Parameters for the Application Launchers

Increasing the amount of memory that Oxygen XML Developer uses on Windows

To increase the memory available to Oxygen XML Developer on Windows:

• Browse to the installation directory of Oxygen XML Developer.
• Locate the -Xmx parameter in the oxygenDeveloper19.0.vmoptions file.

Note: For 32-bit Windows modify the parameter to -Xmx1024m or larger, but not over -Xmx1200m. Make sure
you do not exceed your physical RAM. For 64-bit Windows modify the parameter to a larger value (for example,
-Xmx2048m). We recommended you to not use more than half of your existing physical RAM.

Restart Oxygen XML Developer. Go to Help > About and verify the amount of memory that is actually available
(see the JVM Memory Used in the last row in the Copyright tab). If Oxygen XML Developer does not start and you
receive and error message saying that it could not start the JVM, decrease the -Xmx parameter and try again.

For Windows Vista/7/8/10, copy the oxygenDeveloper19.0.vmoptions to your desktop (or to any other
folder with write access), modify it there, then copy it back to the Oxygen XML Developer installation folder.

Note: The parameters from the .vmoptions file are used when you start Oxygen XML Developer
with the oxygen launcher (or with the desktop shortcut). In case you use the command line script
oxygen.bat/oxygen.sh, modify the -Xmx parameter in the script file.

Increasing the amount of memory that Oxygen XML Developer uses on OS X

To increase the memory available to Oxygen XML Developer on OS X:

• Ctrl + Single-Click (Command + Single-Click on OS X) (or right-click) the Oxygen XML Developer icon in
Finder.

• From the contextual menu, select Show Package Contents.
• Go to the contents directory and edit the Info.plist file.

Note: You can open this file either with the Property List Editor, or the TextEdit.
• Look for the VMOptions key and adjust the -Xmx parameter to a larger value (for example, -Xmx1500m)

Note: For a Mac kit bundled with Java 8, look for the VMOptionArray key and add the -Xmx parameter in a
new string element from the array element. For example, for 1500 MB use the following:

<string>-Xmx1500m</string>

Tip: Try not to use more than half of your existing physical RAM if possible.

Setting a system property

To set a system property, edit the application launcher and add a parameter after the %OXYGEN_JAVA% token,
using the following form:

-Dproperty.name=value

Configuring Oxygen XML Developer 156

You can also set a system property through a parameter prefixed with -Doxy in the command line used to start
the application:

oxygenDeveloper19.0.exe "-Doxyproperty.name=value"

All system properties are displayed in the System properties tab of the About dialog box.

To view the list of Oxygen XML Developer system properties, go to Custom System Properties on page 152.

Disabling DPI Scaling

Some users may prefer the look of smaller icons in an HiDPI display. To achieve this, display scaling needs to be
disabled for high DPI settings. To disable the DPI scaling, set the following property in .vmoptions (or in the
.bat script):

sun.java2d.dpiaware=false

Setting Parameters in the Command Line Scripts
If you start Oxygen XML Developer with the oxygenDeveloper.bat command line script, you have to add or
modify the -Xmx parameter to the java command at the end of the script.

For example, to set the maximum amount of Java memory to 600 MB in Windows, modify the -Xmx parameter
like this:

java -Xmx600m -Dsun.java2d.noddraw=true ...

On Mac OS X, the java command should look like this:

java "-Xdock:name=Developer"\
 -Dcom.oxygenxml.editor.plugins.dir="$DEVELOPER_HOME/plugins"\
 -Xmx600m\
 ...

On Linux, the Java command should look like this:

java -Xmx600m\
 "-Dcom.oxygenxml.editor.plugins.dir=$DEVELOPER_HOME/plugins"\

Creating Custom Startup Parameters File
The startup launchers for Oxygen XML Developer and its executable internal tools (Tree Editor, XML Schema
Regular Expressions Builder, Large File Viewer, SVN Client, Compare Directories, and Compare Files) include
a default .vmoptions file that contain some startup parameters (such the -Xmx parameter, which is used for
allocating memory for that particular application). You can edit the parameters in these .vmoptions files so that
the applications will launch with your desired values. However, if you re-install the application, install an update
for the application, or deploy it to other users or machines, those parameters will be reset to their default values.

To avoid resetting user-defined startup parameters, you can create custom .vmoptions files and the application
and the executable tools will automatically include your custom parameters at startup. The following custom files
are recognized by the application and the executable tools:

• custom_commons.vmoptions - The parameters and their values of this file will be included in all the startup
launchers.

• custom_<app name>.vmoptions - The <app name> is the name of the executable application or tool (for
example, custom_diffFiles.vmoptions for the Compare Files tool). The parameters and their values of
this file will be included in the startup launcher for this particular executable.

To be recognized and included, these custom startup parameter files must be saved in the installation directory
of Oxygen XML Developer.

Configuring Oxygen XML Developer 157

Perspectives 5
Topics:

• Editor Perspective
• XSLT Debugger Perspective
• XQuery Debugger Perspective
• Database Perspective

An Oxygen XML Developer perspective is an interface layout geared towards a specific use. The Oxygen XML Developer
interface uses standard interface conventions and components to provide a familiar and intuitive editing environment
across all operating systems. There are several perspectives that you can use to work with documents in Oxygen XML
Developer. You can change the perspective by selecting the respective icon () in the top-right corner of
Oxygen XML Developer or by selecting the perspective from the Window > Open Perspective menu.

Editor Perspective
The Editor perspective is the most commonly used perspective and it is the default perspective when you start
Oxygen XML Developer for the first time. It is the perspective that you will use to edit the content of your XML
documents.

To switch the focus to this perspective, select the Editor button in the top-right corner of Oxygen XML
Developer (or select Editor from the Window > Open perspective menu)

The layout of this perspective is composed of the following components:
Menus

Provides menu driven access to all the features and functions available in Oxygen XML Developer. Most of
the menus are common for all types of documents. However, Oxygen XML Developer also includes some
context-sensitive and framework-specific menus that are only available for a specific context or type of
document.

Toolbars
Provides easy access to common and frequently used functions. Each icon is a button that acts as a shortcut
to a related function.The toolbars can be configured to suit your specific needs.

Editor Pane
The main editing pane where you spend most of your time reading, editing, applying markup, and validating
your documents.

Views
Oxygen XML Developer includes a large variety of dockable views to assist you with editing, viewing,
searching, validating, transforming, and organizing your documents. The most commonly used views are
displayed by default and you can choose to display others by selecting them from the Window > Show View
menu. The layout of the views can also be configured according to your preferences.

When two or more views are displayed, the application provides divider bars. Divider bars can be dragged to a
new position increasing the space occupied by one panel while decreasing it for the other.

As the majority of the work process centers around the Editor area, other views can be hidden using the
toggle controls located on the top corner of the view ([on Mac OS X]).

Some of the most helpful views in the Editor perspective include the following:

• Project view - Enables the definition of projects and logical management of the documents they contain.

158

• Open/Find Resource view - Designed to offer advanced search capabilities in various scopes.
• Outline view - It provides an XML tag overview and offers a variety of functions, such as modifications

follow-up, document structure change, document tag selection, and elements filtering.
• Results view - Displays the messages generated as a result of user actions such as validations,

transformation scenarios, spell checking in multiple files, search operations, and others. Each message is a
link to the location related to the event that triggered the message.

• Attributes view - Presents all possible attributes of the current element and allows you to edit attribute
values. You can also use this view to insert attributes in Text mode.

• Model view - Presents the current edited element structure model and additional documentation as
defined in the schema.

• Elements view - Presents a list of all defined elements that you can insert at the current cursor position
according to the document's schema.

• Entities view - Displays a list with all entities declared in the current document as well as built-in ones.
• Transformation Scenarios view - Displays a list with all currently configured transformation scenarios.
• XPath/XQuery Builder view - Displays the results from running an XPath expression.
• WSDL SOAP Analyzer view - Provides a tool that helps you test if the messages defined in a Web Service

Descriptor (WSDL) are accepted by a Web Services server.

Related Information:
Editing Documents on page 195
Editing Modes on page 163
Configuring the Layout of the Views and Editors on page 143

XSLT Debugger Perspective
The XSLT Debugger perspective allows you to detect problems in an XSLT transformation by executing the
process step by step in a controlled environment. To switch the focus to this perspective, select the XSLT
Debugger button in the top-right corner of the interface or Window > Open perspective > XSLT Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing
area contains editor panels that you can split horizontally or vertically in a stack of XML editor panels and a stack
of XSLT editor panels. The XML files and XSL files can be edited in Text mode only.

The layout of this perspective is composed of the following components:
Menus

Provides menu driven access to all the features and functions available in the XSLT Debugger.
Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be configured
to suit your specific needs.

XML Source Pane
The editing pane where you can display and edit data or document-oriented XML documents.

XSL Source Pane
The editing pane where you can display and edit XSL stylesheets.

Output View
Displays the transformed output that results from the input of a selected document (XML) and selected
stylesheet (XSL) to the transformer. The result of transformation is dynamically written as the transformation
is processed. There are three types of views for the output: a text view (with XML syntax highlight), an XHTML
view, and one text view for each xsl:result-document element used in the stylesheet (if it is an XSLT 2.0 /
3.0 stylesheet).

Debugging Information Views
Presented in two panes, they display various types of information that can be used to understand
the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This allows you to obtain

Perspectives 159

a clear view of the transformation progress. See the Debugging Information Views topic for a list of all the
information views (and links to more details on each view).

Note: You can add XPath expression automatically in the XWatch view using the Watch expression action
from the contextual menu. In case you select an expression or a fragment of it and then click Watch
expression in the contextual menu, the entire selection is presented in the XWatch view. Using Watch
expression without selecting an expression displays the value of the attribute from the cursor position in
the XWatch view. Variables detected at the cursor position are also displayed. Expressions displayed in the
XWatch view are normalized (unnecessary white spaces are removed from the expression).

To watch our video demonstration about the XSLT debugging capabilities in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/XSLT_Debugger.html.

Related Information:
Debugging XSLT Stylesheets and XQuery Documents on page 922
XQuery Debugger Perspective on page 160

XQuery Debugger Perspective
The XQuery Debugger perspective allows you to detect problems in an XQuery transformation process by
executing the process step by step in a controlled environment and inspecting the information provided in the
special views. To switch the focus to this perspective, select the XQuery Debugger button in the top-right
corner of the interface or Window > Open perspective > XQuery Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing
area contains editor panels that you can split horizontally or vertically in a stack of XML editor panels and a stack
of XQuery editor panels. The XML files and XQuery files can be edited in Text mode only.

The layout of this perspective is composed of the following components:
Menus

Provides menu driven access to all the features and functions available in the XQuery Debugger.
Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be configured
to suit your specific needs.

XML Source Pane
The editing pane where you can display and edit data or document-oriented XML documents.

XQuery Source Pane
The editing pane where you can display and edit XQuery files.

Output View
Displays the transformed output that results from the input of a selected document (XML) and selected
XQuery document to the XQuery transformer. The result of transformation is dynamically written as the
transformation is processed. There are two types of views for the output: a text view (with XML syntax
highlight) and an XHTML view.

Debugging Information Views
Presented in two panes, they display various types of information that can be used to understand
the transformation process. For each information type there is a corresponding tab. While running a
transformation, relevant events are displayed in the various information views. This allows you to obtain
a clear view of the transformation progress. See the Debugging Information Views topic for a list of all the
information views (and links to more details on each view).

Note: You can add XPath expression automatically in the XWatch view using the Watch expression action
from the contextual menu. If you select an expression, or a fragment of it, and then click Watch expression
in the contextual menu, the entire selection is presented in the XWatch view. Expressions displayed in the
XWatch view are normalized (unnecessary white spaces are removed from the expression).

To watch our video demonstration about the XQuery debugging capabilities in Oxygen XML Developer, go to
https://www.oxygenxml.com/demo/XQuery_Debugger.html.

Perspectives 160

https://www.oxygenxml.com/demo/XSLT_Debugger.html
https://www.oxygenxml.com/demo/XSLT_Debugger.html
https://www.oxygenxml.com/demo/XQuery_Debugger.html

Related Information:
Debugging XSLT Stylesheets and XQuery Documents on page 922
XSLT Debugger Perspective on page 159

Database Perspective
The Database perspective allows you to manage databases. To switch the focus to this perspective, select the

Database button in the top-right corner of Oxygen XML Developer or Window > Open perspective > Database
from the Window > Open perspective menu.

The Database perspective offers various helpful features, including:

• Support for browsing multiple connections at the same time.
• Support for both Relational and Native XML databases.
• Browsing the structure of databases.
• Viewing tables from databases.
• Inspecting or modifying data.
• Specifying XML Schemas for XML fields.
• SQL execution.
• XQuery execution.
• Data export to XML.

Supported Databases

Oxygen XML Developer supports numerous types of databases, including:

• Oracle Berkeley DB XML Database
• eXist XML Database
• IBM DB2 (Enterprise edition only)
• JDBC-ODBC Bridge
• MarkLogic (Enterprise edition only)
• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only)
• MySQL
• Oracle 11g (Enterprise edition only)
• PostgreSQL 8.3 (Enterprise edition only)
• Documentum xDB (X-Hive/DB) 10 XML Database (Enterprise edition only)
• Documentum (CMS) 6.5 (Enterprise edition only)
• SharePoint (CMS)

Note: For the databases marked with "Enterprise edition only", the XML capabilities are only available in
the Enterprise edition of Oxygen XML Developer. For a detailed feature matrix that compares the Academic,
Professional, and Enterprise editions of Oxygen XML Developer go to the Oxygen XML Developer website.

Supported Capabilities

The supported non-XML capabilities are as follows:

• Browsing the structure of the database instance.
• Opening a database table in the Table Explorer view.
• Handling the values from XML Type columns as String values.

Note: The non-XML capabilities are available in the Enterprise, Academic, and Professional editions of Oxygen
XML Developer by registering the database driver as a Generic JDBC type driver when defining the data source for
accessing the database. For more information, see Database Connection Support on page 853.

The supported XML capabilities are as follows:

Perspectives 161

https://www.oxygenxml.com/feature_matrix.html

• Displaying an XML Schema node in the tree of the database structure (for databases with an XML-specific
structure) with actions for opening, editing, and validating the schemas in an Oxygen XML Developer editor
panel.

• Handling the values from XML Type columns as XML instance documents that can be opened and edited in
an Oxygen XML Developer editor panel.

• Validating an XML instance document added to an XML Type (column of a table, etc.)

Tip: Connections configured on relational data sources can be used to import data to XML or to generate XML
schemas.

Layout of the Database Perspective

The layout of this perspective is composed of the following components:
Menus

Provides menu driven access to all the features and functions available in the XQuery Debugger.
Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be configured
to suit your specific needs.

Editor Pane
The main editing pane where you spend most of your time reading, editing, applying markup, and validating
your documents.

Data Source Explorer View
Provides browsing support for the configured connections.

Table Explorer View
Provides table content editing support for inserting new rows, deleting table rows, editing cell values,
exporting to an XML file, and more.

Related Information:
Working with Databases on page 849
Data Source Explorer View on page 849
Table Explorer View on page 850

Perspectives 162

Editing Modes 6
Topics:

• Text Editing Mode
• Grid Editing Mode
• Design Editing Mode (XML Schema Diagram Editor)

The main editing area in Oxygen XML Developer includes several editing modes to suit the type of editing that you want
to perform. You can easily switch between modes by clicking on the desired mode at the bottom of the main editing
pane. Oxygen XML Developer offers the following editing modes:

• Text - This mode presents the source of an XML document.
• Grid - This mode displays an XML document as a structured grid of nested tables.
• Design - This mode is found in the schema editor and represents the schema as a diagram.

The default editing mode that will be initially opened for each type of document can be set in two ways:

• If the Allow Document Type specific edit mode setting to override the general mode setting option is selected in the
Edit Modes preferences page, then the edit mode specified in the Document Type configuration dialog box is used
when that particular type of document is initially opened.

• If the Allow Document Type specific edit mode setting to override the general mode setting option is not selected,
then the edit mode specified in the table in the Edit Modes preferences page is used when that particular type of
document is initially opened.

Text Editing Mode
The Text mode editor in Oxygen XML Developer is designed to be a simple, yet powerful, XML source editor. It
provides support to help you edit, transform, and debug XML-based documents. It is similar to other common
text editors, but Oxygen XML Developer also includes specialized editing actions, a powerful Content Completion
Assistant, a helpful Outline view, and many other unique features.

To switch to this mode, select Text at the bottom of the editing area.

Related Information:
Editing XML Documents in Text Mode on page 237

Navigating the Document Content in Text Mode
Oxygen XML Developer includes some useful features to help you navigate XML documents in Text mode.

Using the Keyboard

Oxygen XML Developer allows you to quickly navigate through a document using the Ctrl + CloseBracket
(Command + CloseBracket on OS X) key to go to the next XML node and Ctrl + OpenBracket (Command +
OpenBracket on OS X) to go to the previous one.

To navigate one word forward or backwards, use Ctrl + RightArrow (Command + RightArrow on OS X), and Ctrl
+ LeftArrow (Command + LeftArrow on OS X), respectively. To position the cursor at the beginning or end of the
document you can use Ctrl + Home (Command + Home on OS X), and Ctrl + End (Command + End on OS X),
respectively.

163

Navigation Buttons

Oxygen XML Developer includes some actions that help you to quickly navigate to a particular modification.
These navigation buttons are available in the main toolbar and the actions can also be accessed from the Find
menu. The three actions include:

•
Last Modification - Moves the cursor to the last modification in any opened document.

•
Back - Moves the cursor to the previous position.

•
Forward - Moves the cursor to the next position. Available after you use the Back button at least once.

Navigating with the Outline View

Oxygen XML Developer includes a very useful Outline view that displays a hierarchical tag overview of the
currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is
synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are
highlighted in the editor area.

Figure 49: Outline View Navigation in Text Mode

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can
also be used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 50: Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current element is
also highlighted by a thin light blue bar for easy identification. Clicking an element from the breadcrumb selects
the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go to dialog
box. To open this dialog box, go to Find > Go to (Ctrl+L (Command+L on OS X)).

Figure 51: Go to Dialog Box

The dialog box includes the following fields for specifying a specific navigation location:

• Line - Destination line in the current document.
• Column - Destination column in the current document.
• Offset - Destination offset relative to the beginning of document.

Editing Modes 164

Navigating with Bookmarks

By using bookmarks, you can mark positions in an edited document so that you can return to it later. This is
especially helpful for navigating through large documents or while editing multiple documents. You can place up
to nine distinct bookmarks in any document. Shortcut keys are available to place the bookmarks or to return to
any of the marked positions. You can configure these shortcut keys in the Options > Menu Shortcut Keys menu.

Figure 52: Editor Bookmarks

A bookmark can be inserted in Text mode by doing one of the following:

• Click in the vertical stripe on the left side of the editor (to the left of the line number).
• Select the Create Bookmark (F9) action from the Edit > Bookmarks menu.

A bookmark can be removed by right-clicking its icon on the vertical stripe and selecting Remove or Remove all
(Ctrl+F7 (Command+F7 on OS X)).

You can navigate the bookmarks by using one of the actions available on the Edit > Bookmarks > Go to menu or
by using the shortcut keys that are listed in that menu.

Text Mode Views
There is a variety of dockable helper views that are displayed by default in Text mode. There are also a large
selection of additional views available in the Window > Show View menu. This section presents some of the most
helpful views for editing in Text mode.

Project View

The Project view is designed to assist you with organizing and managing related files grouped in the same XML
project. The actions available in the contextual menu and on the toolbar associated to this panel allow you to
create XML projects and provide shortcuts to various operations for the project documents.

Figure 53: Project View

By default, the view is positioned on the left side of the Oxygen XML Developer window, above the Outline view. If
the view has been closed, it can be reopened at any time from the Window > Show View menu (or using the Show
Project View action from the Project menu).

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down menu
that contains all recently used projects and project management actions:

Editing Modes 165

Open Project (Ctrl + F2 (Command + F2 on OS X))
Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Developer XPR
project file from the file explorer into the Project panel.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks
you to confirm that the project came from a trusted source. This is meant to help prevent potential security
issues.

New Project
Creates a new, empty project.

The following actions are grouped in the upper right corner:

Collapse All
Collapses all project tree folders. You can also collapse/expand a project tree folder if you select it and press
the Enter key or Left Arrow to collapse and Right Arrow to expand.

Link with Editor
When selected, the project tree highlights the currently edited file, if it is found in the project files.

Note: This button is disabled automatically when you move to the Debugger perspective.

Settings
A submenu that contains the following actions:

Filters
Allows you to filter the information displayed in the Project view. Click the toolbar button to set filter
patterns for the files you want to show or hide. Also, you can set filter patterns for the linked directories
that are hidden.

Show Full Path
When selected, linked files and folders are presented with a full file path.

Enable Master Files Support
Select this option to enable the Master Files support.

Change Search and Refactor operations scope
Allows you to change the collection of documents that define the context of the search and refactor
operations.

• Use only Master Files, if enabled - Restricts Oxygen XML Developer to perform the search and refactor
operations starting from the master files that are defined for the current resource. This option is
available when you select Project in the Select the scope for Search and Refactor operations dialog
box and the Master Files support is enabled.

• Working sets - Allows you to specify the set of files that will be used for the scope of the search and
refactor operations.

The files are usually organized in an XML project as a collection of folders. There are three types of resources
displayed in the Project view:

• Logical folders - marked with a blue icon on Windows and Unix/Linux () and a magenta icon on Mac OS
X (). They help you group files within the project. This folder type has no correspondent on the physical
disk, since they are used as containers for related items. Creating and deleting them does not affect the file
system on disk. They are created on the project root or inside other logical folders by using the contextual
action New > Logical Folder. The contextual menu action Remove from Project can be used to remove them
from the project.

• Physical folders and files - marked with the operating system-specific icon for folders (usually a yellow icon
on Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that
exist in the local file system. They are created or added to the project by using contextual menu actions (such
as New > File, New > Folder, Add Folder, etc.) Also, the contextual menu action Remove from Disk (Shift
+Delete) can be used to remove them from the project and local file system.

Editing Modes 166

• Shortcut folders and files - the icons for file shortcuts include a shortcut symbol and names of folder
shortcuts are displayed in bold text. All files and folders that appear as direct descendants of a logical folder
are considered shortcuts. They are created and added with the contextual actions Add Files and Add Folder
from the project root. Both contextual menu actions Remove from Project and Remove from Disk (Shift
+Delete) are available for shortcuts. Remove from Project just removes the shortcut from the project, while

Remove from Disk (Shift+Delete) removes the shortcut and the physical resource from the local file system.

Figure 54: Project View with Examples of all Three Types of Resources

Creating New Projects

The following action is available in the Project menu, the New menu in the contextual menu, or from the drop-
down menu in the top-left of the Project view:

New Project
Creates a new, empty project.

Creating New Project Items

The following actions are available by selecting New from the contextual menu, when invoked from the Project
view:

New > File
Opens a New file dialog box that helps you create a new file and adds it to the project structure.

New > Folder
Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure
of the project.

New > Logical Folder
Available when invoked from the project root, this action creates a logical folder in the tree structure (the icon
is a magenta folder on Mac OS X -).

New > Logical Folders from Web
Available when invoked from the project root, this action replicates the structure of a remote folder accessible
over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file
structure of the folder it points to.

Editing Modes 167

Managing Physical Folders and Files

You can create physical folders by selecting New > Folder from the contextual menu.

When adding files to a project, the default target is the project root. To change a target, select a new folder. Files
may have multiple instances within the folder system, but cannot appear twice within the same folder.

Removing Files and Folders

To remove one or more linked files or folders, select them in the project tree and press the Delete key, or select
the contextual menu action Remove from Project. To remove a linked file or folder from both project and local
file system, select the contextual menu action Remove from Disk (Shift+Delete). The Remove from Disk
(Shift+Delete) action is also used to remove physical files or folders.

CAUTION: In most cases this action is irreversible, deleting the file permanently. Under particular
circumstances (if you are running a Windows installation of Oxygen XML Developer and the Recycle Bin is
active) the file is moved to Recycle Bin.

Moving Files and Folders

You can move the resources of the project with drag and drop operations on the files and folders of the tree (the
Enable drag-and-drop in Project view option must be selected in the View preferences page).

You can also use the usual Cut, Copy, and Paste actions to move resources in the Project view.

Renaming Files and Folders

There are three ways you can rename an item in the Project view. Select the item in the Project view and do one of
the following:

• Invoke the Rename action from the contextual menu.
• Press F2 and type the new name.
• Click the selected item and type the new name.

To finish editing the item name, press Enter.

Note: The Rename action is also available on logical files.

Locating and Opening Files

If a project folder contains a lot of documents, a certain document can be located quickly in the project tree by
selecting the folder containing the desired document and typing the first few characters of the document name.
The desired document is automatically selected as soon as the typed characters uniquely identify its name in the
folder.

The selected document can be opened by pressing the Enter key, by double-clicking it, or with one of the Open
actions from the contextual menu. The files with known document types are opened in the associated editor,
while binary files are opened with the associated system application. To open a file with a known document
type in an editor other than the default one, use the Open with action. Also, dragging and dropping files from the
project tree to the editor area results in the files being opened.

Saving the Project

The project file is automatically saved every time the content of the Project view is saved or modified by actions
such as adding or removing files and drag and drop.

Linked Folders

You can create linked folders (shortcuts) by dragging and dropping folders from a system explorer to the project
tree (the Enable drag-and-drop in Project view option must be selected in the Views preferences page), or by
selecting Add Folder in the contextual menu from the project root.

To create a file inside a linked folder, select the New > File action from the contextual menu. This opens the
New Document wizard.

Note: The linked files presented in the Project view are marked with a special icon. Linked folders are displayed
in bold text.

Editing Modes 168

Logical Folders

The project itself is considered a logical folder. You can add content to a logical folder using one of the actions
available in the contextual menu, when invoked from the project root:

Add Folder
Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file
system (the icon of this action is different on Mac OS X).

Add Files
Adds links to files on the local file system.

Add Edited File
Adds a link to the currently edited file in the project.

Validate Files

The currently selected files in the Project view can be checked to be XML well-formed or validated against a
schema (DTD, XML Schema, Relax NG, Schematron or NVDL) with one of the following contextual menu actions
found in the Validate submenu:

Check Well-Formedness
Checks if the selected file or files are well-formed.

Validate
Validates the selected file or files against their associated schema. EPUB files make an exception, because
this action triggers a Validate and Check for Completeness operation.

Validate with Schema
Validates the selected file of files against a specified schema.

Configure Validation Scenario(s)
Allows you to configure and run a validation scenario.

Applying Transformation Scenarios

The currently selected files in the Project view can be transformed in one step with one of the following actions
available from contextual menu in the Transform submenu:

Apply Transformation Scenario(s)
Obtains the output with one of the built-in scenarios.

Configure Transformation Scenario(s)
Opens a dialog box that allows you to configure pre-defined transformation scenarios.

Transform with
Allows you to select a transformation scenario to be applied to the currently selected files.

Along with the logical folder support, this allows you to group your files and transform them very easily.

Refactoring Actions (Available for certain document types (such as XML, XSD, and XSL)

Oxygen XML Developer includes some refactoring operations that help you manage the structure of your
documents. The following actions are available from the contextual menu in the Refactoring submenu:

Rename resource
Allows you to change the name of a resource.

Move resource
Allows you to change the location on disk of a resource.

Editing Modes 169

XML Refactoring
Opens the XML Refactoring tool wizard that presents refactoring operations to assist you with managing the
structure of your XML documents.

Other XML Refactoring Actions
For your convenience, the last 5 XML Refactoring tool operations that were finished or previewed will also
appear in this submenu.

Other Contextual Menu Actions

Other actions that are available in the contextual menu from the project tree include:
Open

Opens the selected files in the corresponding editor.
Open with submenu

This submenu allows you to open the selected file with the internal editor, a system application, or other
internal tools: Archive Browser, Generate/Convert Schema, WSDL/SOAP Analyzer, Large File Viewer, Hex
Viewer, SVG Viewer.

Show in Explorer (or Show in Finder on OS X)
In Windows, the content of the selected folder or file is presented in a specific explorer window. On MAC OS
X, the parent folder is opened and the selected folder is highlighted in a specific finder window.

Copy Location
Copies an application-specific URL for the selected resource to the clipboard.

Refresh
Refreshes the content and the dependencies between the resources in the Master Files directory.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files.

XPath in Files
Opens the XPath/XQuery Builder view that allows you to compose XPath and XQuery expressions and
execute them over the currently edited XML document.

Open/Find Resource
Opens the Open/Find Resource dialog box.

Check Spelling in Files
Allows you to check the spelling of multiple files.

Format and Indent Files
Opens the Format and Indent Files dialog box that allows you to configure the format and indent (pretty-print)
action that will be applied on the selected documents.

Open in SVN Client
Syncro SVN Client tool is opened and it highlights the selected resource in its corresponding working copy.

Compare
Allows you to compare multiple files or directories and the order of your selection determines where they are
opened in the Compare Files or Compare Directories tool. If you select two files or folders, your first selection
will be opened in the left panel and the other one in the right panel.

You can also select 3 files and the tool will automatically be opened in the three-way comparison mode. If you
select three files, your first selection will be opened in the left panel, the second in the right panel, and the
third selection will be the base (ancestor) file.

Generate Documentation > XML Schema Documentation
Opens the XML Schema Documentation Dialog Box.

Editing Modes 170

Generate Documentation > XSLT Stylesheet Documentation
Opens the XSLT Stylesheet Documentation Dialog Box.

Generate Documentation > XQuery Documentation
Opens the XQuery Documentation Dialog Box.

Generate Documentation > WSDL Documentation
Opens the WSDL Documentation Dialog Box.

Properties
Displays the properties of the current file in a Properties dialog box.

Menu Level Actions

The following actions are available in the Project menu:

New Project
Creates a new, empty project.

Open Project (Ctrl + F2 (Command + F2 on OS X))
Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Developer XPR
project file from the file explorer into the Project panel.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks
you to confirm that the project came from a trusted source. This is meant to help prevent potential security
issues.

Save Project As
Allows you to save the current project under a different name.

Validate all project files
Checks if the project files are well-formed and their mark-up conforms with the specified DTD, XML Schema,
or Relax NG schema rules. It returns an error list in the message panel.

Filters
Opens the Project filters dialog box that allows you to decide which files and directories will be shown or
hidden.

Enable Master Files Support
Allows you to enable the Master Files Support for each project you are working on.

Change Search and Refactor operations scope
Opens a dialog box that allows you to define the context of search and refactor operations.

Show Project View
Displays the Project view.

Reopen Project
Contains a list of links of previously used projects. This list can be emptied by invoking the Clear history
action.

Open/Find Resource View

The Open/Find Resource view is designed to offer advanced search capabilities either by using a simple text
search or by using the Apache Lucene - Query Parser Syntax. By default, the view is presented in the left side
of the Oxygen XML Developer layout, next to the Project view . If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Editing Modes 171

http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

Figure 55: Open/Find Resource View

You can use this view to find a file in the current Oxygen XML Developer project by typing only a few letters of the
file name of a document or a fragment of the content you are searching for. The Open/Find Resource view also
supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content)
by selecting the In reviews option.

Note: Full support for searching in document edits (the In reviews option) is available only in the Enterprise
edition of Oxygen XML Developer. The Professional edition offers limited support to search through a maximum
of 10 edits.

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text are
highlighted in the results list displayed in the dialog box. When you open one of the documents from the results
list, the matching fragments of text are highlighted in the editing area. To remove the highlighting from your
document, close the corresponding tab in the Results view at the bottom of the editor. To display the search
history, position the cursor in the search field and press Ctrl + DownArrow (Command + DownArrow on OS X) or
Ctrl + UpArrow (Command + UpArrow on OS X) on your keyboard. Pressing only the DownArrow key moves the
selection to the list of results.

Note: Searches are not case sensitive. For example, if you search for car you get the same results as when you
search for Car.

Tip: Suffix searches are also supported, both for searching in the content of your resources and in their
name. For this, you can use wildcards. If you search for *ing with the in content option selected, you will find
documents that contain the word presenting. If you search for */samples/*.gif with the in file paths option
selected, you will find all the gif images from the samples directory.

Options Available in the View

The Open/Find Resource view offers the following options:

• Settings - Drop-down menu that includes the following settings for the view:

• Clear Index - Clears the index.

Editing Modes 172

• Show description - Presents the search results in a more compact form, displaying only the title and the
location of the resources.

• Options - Opens the Open/Find Resource preferences page where you can configure various search
options. For example, you can specify a Content language that differs from the default UI language in case
your document contains multiple languages.

• In file paths - Select this option to search for resources by their name or by its path (or a fragment of its path).
• In content - Select this option to search through the content of your resources.
• In reviews - Select this option to search through the comments, tracked change insertions/deletions, or

highlights in your resources.
• Reindex - Use this option to reindex your resources.

Contextual Menu Actions

A contextual menu is available on each search result and provides actions applicable to that particular document.
These actions include:

• Open - Opens the document in one of Oxygen XML Developer internal editors.
• Open with - Allows you to choose to open the document in the Internal editor or an external System

application.
• Show in Explorer - Identifies the document in the system file explorer.
• Copy Location - Copies the file path and places it in the clipboard.

Indexing Process

The content of the resources used to search in is parsed from an index. The indexing is performed both
automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the
currently indexed project. If the index was never initialized, the index in not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-called
stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there,
these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing
process will not be able to match any of them. However, you can configure the list of stop words in the Open/Find
Resource preferences page.

Caching Mechanism

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current
project. When the first search is performed, all project files are indexed and added to the cache. The next search
operation uses the information extracted from the cache, thus improving the processing time. The cache is kept
for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also,
the cache is reset when you press the Reindex button.

Important: Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are
searching for was added to the Oxygen XML Developer project after the last caching operation. In this case, re-
indexing the project files with the Reindex button enables the file to be found. The date and time of the last index
operation are displayed below the file list.

Opening the Results

Once you find the files that you want to open, select them in the list and press the Open button (or double-click
them). Each of the selected files is opened in the editor associated with the type of the file.

Note: You can drag a resource from the Open/Find Resource view and drop it in a DocBook, DITA, TEI or XHTML
document to create a link to that resource.

To watch our video demonstration about the Open/Find Resource feature and its search capabilities, go to
https://www.oxygenxml.com/demo/Open_Find_Resource.html.

Related Information:
Open/Find Resource Dialog Box on page 218

Editing Modes 173

https://www.oxygenxml.com/demo/Open_Find_Resource.html

Outline View in Text Mode

The Outline view in Text mode displays a general tag overview of the currently edited XML Document. When you
edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you
modify. This functionality gives you great insight on the location of your modifications in the current document.
It also shows the correct hierarchical dependencies between elements. This makes it easy for you to be aware of
the document structure and the way element tags are nested.

Outline View Features

The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.
• Insert or delete nodes using contextual menu actions.
• Move elements by dragging them to a new position in the tree structure.
• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in

the editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.
• View document errors, as they are highlighted in the Outline view. A tooltip also provides more information

about the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents a variety of options to help you filter the
view even further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view
with drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be
moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target
element will be expanded first and the dragged element will be moved inside the drop target element after its
opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper
or lower part of the targeted element. A marker will indicate whether the drop will be performed before or after
the target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead
of a move.

Editing Modes 174

Figure 56: Outline View in Text Mode

Outline View Filters in Text Mode

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view when editing in Text mode:
Filter returns exact matches

The text filter of the Outline view returns only exact matches.

Selection update on cursor move
Controls the synchronization between Outline view and source document. The selection in the Outline view
can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components
from the Outline view also selects the corresponding item in the source document.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Configure displayed attributes
Displays the XML Structured Outline preferences page.

Outline View Contextual Menu Actions in Text Mode

The following actions are available from the contextual menu in the Outline view in Text mode:

Editing Modes 175

Append Child
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it as a child of the current element.

Insert Before
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it immediately before the current element, as a sibling.

Insert After
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it immediately after the current element, as a sibling.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Toggle Comment
Encloses the currently selected element in an XML comment, if the element is not already commented. If it is
already commented, this action will remove the comment.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

Attributes View in Text Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document.
By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the
Window > Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

• The names of the attributes are rendered with a bold font, and their values with a plain font.
• Default values are rendered with a plain font, painted gray.
• Empty values display the text "[empty]", painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column . If the possible values of
the attribute are specified as list in the schema of the edited document, the Value column acts as a combo box
that allows you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as
follows:

• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order,

followed by the rest of the allowed elements sorted in ascending order.

Editing Modes 176

Figure 57: Attributes View

Expand/Collapse Button

There is an Expand/ Collapse button at the top-right of the view. When expanded, this presents the following
additional combo boxes:

Name Combo Box
Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed
by the schema of the document, as in the Attributes view. You can use the Remove button to delete an
attribute and its value from the selected element.

Value Combo Box
Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined
values in the schema, the drop-down list displays those possible values. You can use the Browse button to
select a URL for the value of an attribute. After you have entered or selected a value, use the Update button
(or press Enter) to add the value to the attribute.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Text mode:

Add
Allows you to insert a new attribute.

Set empty value
Specifies the current attribute value as empty.

Remove
Removes the attribute (action available only if the attribute is specified). You can invoke this action by
pressing the (Delete) or (Backspace) keys.

Copy
Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

• The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Paste
Depending on the content of the clipboard, the following cases are possible:

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The
attribute is selected and its value is changed if they exist in the Attributes view.

Editing Modes 177

• If the clipboard contains an attribute name with an empty value, the attribute is introduced in the
Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists
in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation
in the schema of the current document. By default, it is located on the right side of the editor. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 58: Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The
information includes the name, model, and attributes of the current tag. The allowed attributes are shown along
with imposed restrictions, if any.

Figure 59: Element Structure Panel

Editing Modes 178

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is
collected from the XML schema.

Figure 60: Annotation panel

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to
the schema associated to the document. By default, it is located on the right side of the editor. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor
position.

Figure 61: Elements View in Text Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting
certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the
DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Built-in or Predefined - Entities that are part of the predefined XML markup (<, >, &, ',
").

• Internal - Defined in the DOCTYPE declaration header of the current XML.
• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

Note: If you want to add internal entities, you would need to switch to the Text editing mode and manually modify
the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it
directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By
default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also
sort entities by name and value by clicking the column headers.

Editing Modes 179

Figure 62: Entities View

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can
choose to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating
them with a comma.

Results View

The Results view displays the messages generated as a result of user actions such as validations,
transformations, search operations, and others. Each message is a link to the location related to the event that
triggered the message. Double-clicking a message opens the file containing the location and positions the cursor
at the location offset. The Results view is automatically opened when certain actions generate result messages.
Those actions include the following:

• Validation actions
• Transformation actions
• Check Spelling in Files action
• Find All action from the Find/Replace dialog box
• Find/Replace in Files dialog box
• Search References action
• XPath expression results
• SQL results

Figure 63: Results View

Editing Modes 180

Results View Toolbar Actions

The view includes a toolbar with the following actions:

Grouping options drop-down menu
A set of Group by toggle actions that allow you to group the messages according to a selected criteria so that
they can be presented in a hierarchical layout. The criteria used for grouping can be the severity of the errors
(error, warning, info message, etc.), the resource name, the description of the message, and so on.

This drop-down menu also includes the following additional grouping actions:

Ungroup all
Removes the grouping rules so that the messages are presented in a continuous list.

Show group columns
If any of the Group by options are selected, you can use this option to show or hide grouping columns.

Restore Defaults
Restores the column size for each column and the grouping rules that were saved in the user preferences
the last time when this view was used. If it is the first time this view is used, the action sets an initial
default column size for each column and a grouping rule that is appropriate for the type of messages. For
example:

• Group the messages by the path of the validated file if there are error messages from a validation
action or spelling errors reported by the Check Spelling in Files action.

• No grouping rule for the results of applying an XPath expression.

Highlight all results in editor
Oxygen XML Developer highlights all matches obtained after executing an XPath expression, or performing
one of the following operations: Find All, Find in Files, Search References, and Search Declarations. Click
Highlight all results in editor again to turn off highlighting.

Note: To customize highlighting behavior, open the Preferences dialog box (Options > Preferences) and go to
Editor > Highlights category. You can do the following customizations:

• Set a specific color of the highlights depending on the type of action you make.
• Set a maximum number of highlights that the application displays at any given time.

Remove selected
Removes the current selection from the view. This can be helpful if you want to reduce the number of
messages or remove those that have already been addressed or not relevant to your task.

Remove all
Removes all messages from the view.

Results View Contextual Menu Actions

The following actions are available when the contextual menu is invoked in this view:

Show message
Displays a dialog box with the full error message, which is useful for a long message that does not have
enough room to be displayed completely in the view.

Previous message
Navigates to the message above the current selection.

Next message
Navigates to the message below the current selection.

Remove selected
Removes selected messages from the view.

Editing Modes 181

Remove all
Removes all messages from the view.

Copy
Copies information associated with the selected messages. For example:

• The file path of the document that triggered the output message.
• The path of the master file (in the case of a validation scenario, it is the path of the file from which the

validation starts and can be different from the validated file).
• Error severity (error, warning, info message, etc.)
• Name of validating processor.
• Name of validation scenario.
• The line and column in the file that triggered the message.

Select All
Extends the selection to all the messages from the view.

Print Results
Sends the complete list of messages to a printer. For each message, the included details are the same as the
ones for the Copy action.

Save Results
Saves the complete list of messages in a file in text format. For each message, the included details are the
same as the ones for the Copy action.

Save Results as XML
Saves the complete list of messages in a file in XML format. For each message, the included details are the
same as the ones for the Copy action.

Save Results as HTML
Saves the complete list of messages in a file in HTML format. For each message, the included details are the
same as the ones for the Copy action.

Group by
A set of Group by toggle actions that allow you to group the messages according to a selected criteria so that
they can be presented in a hierarchical layout. The criteria used for grouping can be the severity of the errors
(error, warning, info message, etc.), the resource name, the description of the message, and so on.

Ungroup all
Removes the grouping rules so that the messages are presented in a continuous list.

Show group columns
If any of the Group by options are selected, you can use this option to show or hide grouping columns.

Restore Defaults
Restores the column size for each column and the grouping rules that were saved in the user preferences
the last time when this view was used. If it is the first time this view is used, the action sets an initial default
column size for each column and a grouping rule that is appropriate for the type of messages. For example:

• Group the messages by the path of the validated file if there are error messages from a validation action
or spelling errors reported by the Check Spelling in Files action.

• No grouping rule for the results of applying an XPath expression.

Expand All
Expands all the nodes of the tree, which is useful when the messages are presented in a hierarchical mode.

Collapse All
Collapses all the nodes of the tree, which is useful when the messages are presented in a hierarchical mode.

Editing Modes 182

Syntax Highlight Depending on Namespace Prefix
The syntax highlight scheme of an XML file type allows the configuration of a color per each type of token that
can appear in an XML file. Distinguishing between the XML tag tokens based on the namespace prefix brings
additional visual help in editing some XML file types. For example, in XSLT stylesheets, elements from various
namespaces (such as XSLT, XHTML, XSL:FO, or XForms) are inserted in the same document and the editor
panel can become cluttered. Marking tags with different colors based on the namespace prefix allows easier
identification of the tags.

Figure 64: Example of Coloring XML Tags by Prefix

Related Information:
Changing the colors displayed in the Text Mode Editor on page 82

Presenting Validation Errors in Text Mode
Oxygen XML Developer can be configured to automatically validate documents while editing in the Text mode, and
actions are also available to manually validate documents on-request.

In Text mode, validation issues are marked in the following locations:

• In the main editing pane, with the issue underlined in a color according to the type of issue.
• In the right-side vertical stripe, with a marker that is colored according to the type of issue.
• For attributes with detected issues, in the Attributes view, with the attribute and its value colored according to

the type of issue.

The colors for each type of issue are as follows:

• Validation Errors [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and
the foreground color of the attribute in the Attributes view are colored in red.

• Validation Warnings [Yellow] - By default, the underline in the editing pane, the marker in the right vertical
stripe, and the foreground color of the attribute in the Attributes view are colored in yellow.

• Validation Info [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and
the foreground color of the attribute in the Attributes view are colored in blue.

You can configure the color for each type in the Document Checking preferences page.

Hovering over a validation issue presents a tooltip message with more details about the problem and possible
quick fixes (if available for that issue).

Editing Modes 183

Figure 65: Presenting Validation Errors in Text Mode

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation
process and to help you locate them in the document. The stripe contains the following:
Upper Part of the Stripe

A success indicator square will turn green if the validation is successful or only info messages are found, red
if validation errors are found, or yellow if only validation warnings are found. More details about the issues
are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first
three are presented in the tool tip.

Middle Part of the Stripe
Errors are depicted with red markers, warnings with yellow markers, and info message with blue markers.
If you want to limit the number of markers that are displayed, open the Preferences dialog box (Options >
Preferences), go to Editor > Document checking, and specify the desired limit in the Maximum number of
validation highlights option.

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also
displayed both in a tool tip (when hovering over the marker) and in the message area on the bottom of the
editor panel (clicking the Document checking options button opens the Document Checking preferences
page.

Bottom Part of the Stripe

Two navigation arrows () allow you to jump to the next or previous issue. The same actions can be
triggered from Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X))
and Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X)). Also,
the button can be used to clear all the validation markers.

Status messages from every validation action are also logged in the Information view.

If you want to see all the validation messages grouped in the Results panel, you should use the Validate action
from the toolbar or Document > Validate menu..

Related Information:
Validating XML Documents Against a Schema on page 277
Presenting Schematron Validation Issues

Bidirectional Text Support in Text Mode
Bidirectional documents contain text in both directions, usually involving characters from unique types of
alphabets.

If bidirectional text (such as Arabic or Hebrew languages), certain Asian languages (such as Devanagari, Bengali,
Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Khmer), or other special characters
(such as combining characters) are detected in a document, Oxygen XML Developer displays a Special
Characters Detected dialog box that prompts you to Enable or Disable support for these special characters.

Editing Modes 184

You can also configure the support for bidirectional text in the Open/Save preferences page. To enable or disable
this support, open the Preferences dialog box (Options > Preferences), go to Editor > Open/Save, and choose the
appropriate setting in the Support for Special Characters section.

Note: Disabling this support may affect text rendering, cursor positioning and navigation, as well as text selection
and management operations. If you need to open very large documents, the bidirectional editing support can also
be disabled to enhance performance while editing.

Restriction: Bidirectional content in the Text mode cannot be rendered using Bold or Italic.

Related Information:
Bidirectional Text Support in Grid Mode on page 187
Inserting Symbols on page 196

Grid Editing Mode
The Oxygen XML Developer Grid editing mode displays the XML document as a structured grid of nested tables
where the text content can be modified without directly interacting with the XML markup. This is helpful for non-
technical users who want to edit text content without modifying the XML markup. You can easily expand or
collapse elements within the table and the document structure can be changed with simple drag/drop or copy/
paste operations.

To switch to this mode, select Grid at the bottom of the editing area.

Figure 66: Grid Editing Mode

To watch our video demonstration about some of the features available in the Grid editor, go to https://
www.oxygenxml.com/demo/Grid_Editor.html.

Related Information:
Editing XML Documents in Grid Mode on page 272

Layouts: Grid and Tree
The Grid editor offers two layout modes. The default one is the grid layout. This smart layout detects the
recurring elements in the XML document and creates tables having the children (including the attributes) of these
elements as columns. This way, it is possible to have tables nested in other tables, reflecting the structure of your
document.

Editing Modes 185

https://www.oxygenxml.com/demo/Grid_Editor.html
https://www.oxygenxml.com/demo/Grid_Editor.html

Figure 67: Grid Layout

The other layout mode is tree-like. It does not create any tables and it only presents the structure of the
document.

Figure 68: Tree Layout

To switch between the two modes, go to Document > Grid Layout > Grid mode/Tree mode.

Grid Mode Navigation
At first, the content of a document opened in the Grid mode is collapsed. Only the root element and its attributes
are displayed. The grid disposition of the node names and values is similar to a web form or dialog box. The
same set of key shortcuts used to select dialog box components is also available in the Grid mode:

Table 5: Shortcuts in the Grid Mode

Key Action

Tab Moves the cursor to the next editable value in a table row.

Shift + Tab Moves the cursor to the previous editable value in a table row.

Enter Begins editing and lets you insert a new value. Also commits the
changes after you finish editing.

UpArrow/PageUp Navigates toward the beginning of the document.

DownArrow/PageDown Navigates toward the end of the document.

Shift Used in conjunction with the navigation keys to create a continuous
selection area.

Ctrl (Command on OS X) key Used in conjunction with the mouse cursor to create discontinuous
selection areas.

The following key combinations can be used to scroll the grid:

• Ctrl + UpArrow (Command + UpArrow on OS X) - scrolls the grid upwards.
• Ctrl + DownArrow (Command + DownArrow on OS X) - scrolls the grid downwards.
• Ctrl + LeftArrow (Command + LeftArrow on OS X) scrolls the grid to the left.
• Ctrl + RightArrow (Command + RightArrow on OS X) scrolls the grid to the right.

Editing Modes 186

An arrow sign displayed at the left of the node name indicates that this node has child nodes. To display the
children, click this sign. The expand/collapse actions can be invoked either with the NumPad+ and NumPad-
keys, or from the Expand/Collapse submenu of the contextual menu or from Document > Grid Expand/Collapse.

The following actions are available on the Expand/Collapse menu:

Expand All
Expands the selection and all its children.

Collapse All
Collapses the selection and all its children.

Expand Children
Expands all the children of the selection but not the selection.

Collapse Children
Collapses all the children of the selection but not the selection.

Collapse Others
Collapses all the siblings of the current selection but not the selection.

Bidirectional Text Support in Grid Mode
If you are editing documents with a bidirectional text orientation, you can change the way the text is rendered
and edited in the grid cells by using the Change Text Orientation(Ctrl + Shift + O (Command + Shift + O on OS X))
action that is available from the Edit menu in the Grid editing mode. Use this action to switch from the default left
to right text orientation to the right to left orientation, and vice versa.

Note: This change applies only to the text from the cells, and not to the layout of the grid editor.

Figure 69: Default left to right text orientation

Figure 70: Right to left text orientation

Related Information:
Bidirectional Text Support in Text Mode on page 184

Editing Modes 187

Inserting Symbols

Design Editing Mode (XML Schema Diagram Editor)
XML Schemas allow document designers to specify the allowed structure and content of an XML document and
to check if an XML document is valid.

Oxygen XML Developer provides a simple and expressive XML Schema diagram editor (Design mode) for editing
XML Schemas. The schema diagram helps both the content authors who want to understand a schema and
schema designers who develop complex schemas.

The diagram font can be increased using the usual Oxygen XML Developer shortcuts: (Ctrl (Meta on Mac OS) +
"+") , (Ctrl (Meta on Mac OS)+"-") , (Ctrl (Meta on Mac OS) + 0) or (Ctrl (Meta on Mac OS) - mouse wheel). The
whole diagram can also be zoomed with one of the predefined factors available in the Schema preferences panel.
The same zoom factor is applied for the print and save actions.

To switch to this mode, select Design at the bottom of the editing area.

Figure 71: XML Schema Diagram

Editing Modes 188

To watch our video demonstration about the basic aspects of designing an XML Schema using the new Schema
Editor, go to https://www.oxygenxml.com/demo/XML_Schema_Editing.html.

Navigation in the XML Schema Design Mode
The following editing and navigation features work for all types of schema components in the XML Schema
Design mode:

• Move/reference components in the diagram using drag-and-drop actions.
• Select consecutive components on the diagram (components from the same level) using the Shift key. You

can also make discontinuous selections in the schema diagram using the Ctrl (Meta on Mac OS) key. To
deselect one of the components, use Ctrl + Single-Click (Command + Single-Click on OS X).

• Use the arrow keys to navigate the diagram vertically and horizontally.
• Use Home/End keys to jump to the first/last component from the same level. Use Ctrl + Home (Command +

Home on OS X) key combination to go to the diagram root and Ctrl + End (Command + End on OS X) to go to
the last child of the selected component.

• You can easily go back to a previously visited component while moving from left to right. The path will be
preserved only if you use the left arrow key or right arrow key. For example, if the current selection is on the
second attribute from an attribute group and you press the left arrow key to jump to the attribute group, when
you press the right arrow key, then the selection will be moved to the second attribute.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline
view:

•
Back (go to previous schema component).

•
Forward (go to next schema component).

•
Go to Last Modification (go to last modified schema component).

• Copy, reference, or move global components, attributes, and identity constraints to another position and from
one schema to another using the Cut/Copy and Paste/Paste as Reference actions.

• Go to the definition of an element or attribute with the Show Definition action.
• Search in the diagram using the Find/Replace dialog box or the Quick find toolbar. You can find/replace

components only in the current file scope.
• You can expand and see the contents of the imports/includes/redefines in the diagram. In order to edit

components from other schemas the schema for each component will be opened as a separate file in Oxygen
XML Developer.

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will be
detected and you will be asked to refresh the current schema contents.

•
Recursive references are marked with a recurse symbol (). Click this symbol to navigate between the
element declaration and its reference.

Figure 72: Recursive Reference

XML Schema Outline View
The Outline view for XML Schemas presents all the global components grouped by their location, namespace,
or type. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Editing Modes 189

https://www.oxygenxml.com/demo/XML_Schema_Editing.html

Figure 73: Outline View for XML Schema

The Outline view provides the following options in the Settings menu on the Outline view toolbar:

Filter returns exact matches
The text filter of the Outline view returns only exact matches;

Selection update on cursor move
Allows a synchronization between Outline view and schema diagram. The selected view from the diagram is
also selected in the Outline view.

Sort
Allows you to sort alphabetically the schema components.

Show all components
Displays all components that were collected starting from the master files. Components that are not referable
from the current file are marked with an orange underline. To reference them, add an import directive with the
componentNS namespace.

Show referable components
Displays all components (collected starting from the master files) that can be referenced from the current file.
This option is set by default.

Show only local components
Displays the components defined in the current file only.

Group by location/namespace/type
These three operations allow you to group the components by location, namespace, or type. When grouping
by namespace, the main schema target namespace is the first presented in the Outline view.

The following contextual menu actions are available in the Outline view:

Remove (Delete)
Removes the selected item from the diagram.

Editing Modes 190

Search References (Ctrl (Meta on Mac OS)+Shift+R)
Searches all references of the item found at current cursor position in the defined scope, if any.

Search References in
Searches all references of the item found at current cursor position in the specified scope.

Component Dependencies (Ctrl (Meta on Mac OS)+Shift+F4)
Opens the Component Dependencies view that allows you to see the dependencies for the current selected
component.

Resource Hierarchy (F4)
Opens the Resource Hierarchy / Dependencies view that allows you to see the hierarchy for the current
selected resource.

Resource Dependencies (Shift + F4)
Opens the Resource Hierarchy / Dependencies view that allows you to see the dependencies for the current
selected resource.

Rename Component in
Renames the selected component.

Generate Sample XML Files
Generate XML files using the current opened schema. The selected component is the XML document root.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the
Outline view, its definition is highlighted in the editing area.

Related Information:
Searching and Refactoring Actions in XML Schemas on page 425
Component Dependencies View for XML Schema on page 423
XML Schema Resource Hierarchy / Dependencies View on page 421
Generating Sample XML Files on page 427
Editing Relax NG Schema in the Master Files Context on page 484

XML Schema Attributes View
The Attributes view for XML Schemas presents the properties for the selected component in the schema
diagram. By default, it is displayed on the right side of the editor. If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Editing Modes 191

Figure 74: Attributes View

The default value of a property is presented in the Attributes view with blue foreground. The properties that
can not be edited are rendered with gray foreground. A non-editable category that contains at least one child is
rendered with bold. Bold properties are properties with values set explicitly to them.

Properties for components that do not belong to the current edited schema are read-only but if you double-click
them you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking by pressing Enter. For most properties you can choose valid values
from a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted
in the table with the corresponding foreground color. By default, properties with errors are highlighted with red
and the properties with warnings are highlighted with yellow. You can customize these colors from the Document
checking user preferences.

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog box will
open that allows you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit
Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces
section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

Add
Allows you to add a new member type to an union's member types category.

Remove
Allows you to remove the value of a property.

Move Up
Allows you to move up the current member to an union's member types category.

Move Down
Allows you to move down the current member to an union's member types category.

Copy
Copy the attribute value.

Show DefinitionCtrl (Meta on MAC OS) + Click
Shows the definition for the selected type.

Show Facets
Allows you to edit the facets for a simple type.

Editing Modes 192

XML Schema Facets View
The Facets view for XML Schemas presents the facets for the selected component, if available. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 75: Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can not be edited are
rendered with a gray color. The grouping categories (for example: Enumerations and Patterns) are not editable.
If these categories contain at least one child they are rendered with bold. Bold facets are facets with values set
explicitly to them.

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited from a
base type and also specified in the current simple type only the current specified patterns will be presented. You
can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip on
the Patterns category.

Facets for components that do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking it or by pressing Enter, when that facet is selected. For some facets
you can choose valid values from a list or you can specify another value. If a facet has an invalid value or a
warning, it will be highlighted in the table with the corresponding foreground color. By default, facets with errors
are presented with red and the facets with warnings with yellow. You can customize the error colors from the
Document Checking user preferences.

The Facets view provides the following actions in its toolbar and contextual menu:

Add
Allows you to add a new enumeration or a new pattern.

Remove
Allows you to remove the value of a facet.

Edit Annotations
Allows you to edit an annotation for the selected facet.

Move Up
Allows you to move up the current enumeration/pattern in Enumerations/Patterns category.

Move Down
Allows you to move down the current enumeration/pattern in Enumerations/Patterns category.

Copy
Copy the attribute value.

Editing Modes 193

Open in Regular Expressions Builder
Rather than editing regular expressions manually, this action allows you to open the pattern in the XML
Schema Regular Expressions Builder that guides you through the process of testing and constructing the
pattern..

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the Pin
button.

XML Schema Palette View
The Palette view is designed to offer quick access to XML Schema components and to improve the usability of
the XML Schema diagram builder. You can use the Palette to drag and drop components in the Design mode. The
components offered in the Palette view depend on the XML schema version set in the XML Schema preferences
page. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 76: Palette View

Components are organized functionally into 4 collapsible categories:

• Basic components: elements, group, attribute, attribute group, complex type, simple type, type alternative.
• Compositors and Wildcards: sequence, choice, all, any, any attribute, open content.
• Directives: import, include, redefine, override.
• Identity constraints: key, keyref, unique, selector, field, assert.

Note: The type alternative, open content, override, and assert components are available for XML Schema 1.1.

To add a component to the edited schema:

• Click and hold a graphic symbol from the Palette view, then drag the component into the Design view.
• A line dynamically connects the component with the XML schema structure.
• Release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid

position, the mouse cursor changes its shape into . Also, the connector line changes its color from the
usual dark gray to the color defined in the Validation error highlight color option (default color is red).

To watch our video demonstration about the Schema palette and developing XML Schemas, go to
https://www.oxygenxml.com/demo/Schema_Palette.html and https://www.oxygenxml.com/demo/
Developing_XML_Schemas.html respectively.

Editing Modes 194

https://www.oxygenxml.com/demo/Schema_Palette.html
https://www.oxygenxml.com/demo/Developing_XML_Schemas.html
https://www.oxygenxml.com/demo/Developing_XML_Schemas.html

Editing Documents 7
Topics:

• Working with Unicode
• Creating and Working with Documents
• Searching Documents
• Using Projects to Group Documents
• Editing XML Documents
• Editing XSLT Stylesheets
• Editing Ant Build Files
• Editing XML Schemas
• Editing XQuery Documents
• Editing WSDL Documents
• Editing CSS Stylesheets
• Editing LESS CSS Stylesheets
• Editing Relax NG Schemas
• Editing NVDL Schemas
• Editing JSON Documents
• Editing StratML Documents
• Editing XLIFF Documents
• Editing JavaScript Documents
• Editing XProc Scripts
• Editing Schematron Schemas
• Editing Schematron Quick Fixes
• Editing SVG Files
• Editing XHTML Documents
• Editing Markdown Documents
• Editing Non-XML Files
• Spell Checking
• Loading Large Documents
• Scratch Buffer
• Handling Read-Only Files
• Editing Documents with Long Lines
• XML Digital Signatures
• Compare Files or Directories

This chapter includes a large amount of information about editing numerous types of documents, how to create and
work with documents, working with projects, and various editing features that are provided in Oxygen XML Developer.
Each type of document has unique features and options when editing them in Oxygen XML Developer, while some
editing features are available for all document types. This chapter also includes information about some of the special
tools that are included in Oxygen XML Developer, such as the file and directory comparison tools.

195

Working with Unicode
Unicode provides a unique number for every character, independent of the platform and language. Unicode is an
internationally recognized standard, adopted by industry leaders. The Unicode is required by modern standards
(such as XML, Java, JavaScript, LDAP, CORBA 3.0, WML, etc.) and is the official way to implement ISO/IEC 10646.

It is supported in many operating systems, all modern browsers, and many other products. The emergence of
the Unicode Standard, and the availability of tools supporting it, are among the most significant recent global
software technology trends. Incorporating Unicode into client-server or multiple tiered applications and websites
offers significant cost savings over the use of legacy character sets.

As a modern XML Editor, Oxygen XML Developer provides support for the Unicode standard enabling your XML
application to be targeted across multiple platforms, languages, and countries without re-engineering. Internally,
the Oxygen XML Developer uses 16 bit characters covering the Unicode Character set.

Note: Oxygen XML Developer may not be able to display characters that are not supported by the operating
system (either not installed or unavailable).

Tip: On windows, you can enable the support for CJK (Chinese, Japanese, Korean) languages from Control
Panel / Regional and Language Options / Languages / Install files for East Asian languages.

Opening and Saving Documents with Unsupported Characters
When loading documents, Oxygen XML Developer reads the document prolog to determine the specified
encoding type. This encoding is then used to instruct the Java Encoder to load support for and to save the
document using the specified code chart. When the encoding type cannot be determined, Oxygen XML Developer
prompts and display the Available Java Encodings dialog box that provides a list of all encodings supported by
the Java platform.

If the opened document contains an unsupported character, Oxygen XML Developer applies the policy specified
for handling such errors. If the policy is set to REPORT, Oxygen XML Developer displays an error dialog box with a
message about the character not allowed by the encoding. If the policy is set to IGNORE, the character is removed
from the document displayed in the editor panel. If the policy is set to REPLACE, the character is replaced with a
standard replacement character for that encoding.

While in most cases you are using UTF-8, simply changing the encoding name causes the application to save the
file using the new encoding.

When saving a document edited in the Text, Grid, or Design modes, if it contains characters not included in the
encoding declared in the document prolog, Oxygen XML Developer detects the problem and signals it to the user.
The user is responsible to resolve the conflict before saving the document.

To edit documents written in Japanese or Chinese, change the font to one that supports the specific characters
(a Unicode font). For the Windows platform, Arial Unicode MS or MS Gothic is recommended. Do not expect
WordPad or Notepad to handle these encodings. Use applications such as Internet Explorer or Word to examine
XML documents.

When a document with a UTF-16 encoding is edited and saved in Oxygen XML Developer, the saved document
has a byte order mark (BOM) that specifies the byte order of the document content. The default byte order is
platform-dependent. That means that a UTF-16 document created on a Windows platform (where the default byte
order mark is UnicodeLittle) has a different BOM than a UTF-16 document created on a Mac OS platform (where
the byte order mark is UnicodeBig). The byte order and the BOM of an existing document are preserved when the
document is edited and saved.

Inserting Symbols

You can insert symbols by using the Character Map dialog box that can be opened with the Edit > Insert from
Character Map action. If you have chosen to display the Symbols toolbar (in the Configure Toolbars dialog box),
you can also use the Symbols drop-down menu to insert some of the most commonly used symbols and
selecting More symbols from that menu will also open the Character Map dialog box.

Editing Documents 196

Figure 77: Character Map Dialog Box

The Character Map dialog box allows you to visualize all characters that are available in a particular font, pick the
character you need, and insert it in the document you are editing. It includes the following fields and sections:
Font

Use this drop-down list to choose the font for which you want to display characters.
Unicode Block

Use this drop-down list to only see a certain range of characters. This will filter the number of characters
displayed, showing only a contiguous range of characters corresponding to the selected block. Unassigned
characters are displayed as empty squares.

Search
Use this filter to search for a character by one of the following attributes:

• hexadecimal
• decimal
• description

Note: Selecting description opens the Details tab. If you enter a character description in the Search field,
tdescription is selected automatically.

Character Table Section
The characters that are available to be inserted are listed in two tabs:

• Compact - Matrix-like table that displays a visual representation of the characters.
• Details - Displays the available characters in a tabular format, presenting their decimal and hexadecimal

value along with their description.

Recently Used Characters Section
Displays the symbols that you have used recently and you can also select one from there to insert it in the
current document.

Character Mode Section
The next section of the dialog box allows you to select how you want the character to appear in your
document. You can choose between the following:

Editing Documents 197

• Character
• Character entity - decimal
• Character entity - hexadecimal

You can see the character or code that will be inserted in your document next to the selections in this section.
You can also see the name and range name of a character either at the bottom of the dialog box, or in a
tooltip when hovering the cursor over the character.

Press the Insert button to insert the selected character in the current editor at cursor position. You will see the
character in the editor if the editor font is able to render it. The Copy button copies it to the clipboard without
inserting it in the editor.

Note: The Character Map dialog box cannot be used to insert Unicode characters in the Grid editor. Accordingly,
the Insert button of the dialog box will be disabled if the current document is edited in Grid mode.

Unicode Fallback Font Support
Oxygen XML Developer provides fonts for most common Unicode ranges. However, if you use special symbols
or characters that are not included in the default fonts, they will be rendered as small rectangles. A fallback font
is a reserve typeface that contains symbols for as many Unicode characters as possible. When a display system
encounters a character that is not part of the range of any of the available fonts, Oxygen XML Developer will try to
find that symbol in a fallback font.

Example of a Scenario Where a Fallback Font is Needed

Suppose that you need to insert the wheelchair symbol (- U+267F) into your content in a Windows operating
system. By default, Oxygen XML Developer does not render this symbol correctly since it is not included in any
of the default fonts. It is included in Segoe UI Symbol, but this font is not part of the default fonts that come with
Oxygen XML Developer. To allow Oxygen XML Developer to recognize and render the symbol correctly, you can
add Segoe UI Symbol as a fallback font.

Add a Fallback Font in Windows (7 or Later)

To add a fallback font to the Oxygen XML Developer installation, use the following procedure:

1. Start Windows Explorer and browse to the [OXYGEN_INSTALL_DIR]/jre/lib/fonts directory.
2. Create a directory called fallback (if it is not already there).
3. Copy a font file (True Type Font - TTF) that includes the special characters into this directory.

Tip: You could, for example, copy the Segoe UI Symbol Regular font from C:\Windows\Fonts.
4. Restart Oxygen XML Developer for the changes to take full effect.

Result: Whenever Oxygen XML Developer finds a character that cannot be rendered using its standard fonts, it
will look for the glyph in the fonts stored in the fallback folder.

Alternate Solution for Other Platforms

For Mac OS X or other platforms, you could use the following approach:

1. Use a font editor (such as FontForge) to combine multiple true type fonts into a single custom font.
2. Install the font file into the dedicated font folder of your operating system.
3. In Oxygen XML Developer, open the Preferences dialog box (Options > Preferences) and go to Appearance >

Fonts.
4. Click the Choose button in the Editor option and select your custom font from the drop-down list in the

subsequent dialog box.
5. Restart Oxygen XML Developer for the font changes to take full effect.

Editing Documents 198

http://fontforge.github.io/en-US/

Creating and Working with Documents
Oxygen XML Developer includes various features, actions, and wizards to assist you with creating new files and
working with existing files. This section explains many of these features, including information on creating new
documents, opening, saving, and closing existing files, searching documents, viewing file properties, and more.

Creating New Documents and Templates
Oxygen XML Developer includes a handy New Document wizard that allows you to customize and create new
files from a large list of document types and predefined new file templates. You can also create your own
templates and share them with others.

New Document Wizard

Oxygen XML Developer supports a wide range of document types. The New Document wizard presents the
default associations between a file extension and the type of editor that opens the file. To customize these
default associations, open the Preferences dialog box (Options > Preferences) and go to File Types.

The New Document wizard only creates a skeleton document. It may contain a root element, the document
prolog, and possibly other child elements depending on options that are specific for each schema type.

New Document Wizard

The New Document wizard allows you to create various types of documents and provides some options that
help you to configure the new document. To use this wizard to create a new document in Oxygen XML Developer,
follow these steps:

1. Click the New button on the toolbar or select File > New.

Result: The New Document wizard is displayed:

Figure 78: New Document Wizard

The first page of the wizard displays the supported document types and groups them in the following
categories:

• Recently Used - Contains the list of the most recently used file types.
• New Document - Contains the list of all supported document types. This list includes XML, XSL, XML

Schema, Document Type Definition, Relax NG Schema, XQuery, web Services Definition Language,

Editing Documents 199

Schematron Schema, CSS, Text, PHP, JavaScript, Java, C, C++, Batch, Shell, Properties, SQL, XML Catalog,
PERL, and more.

• Global Templates - Contains the list of predefined templates as well as user-defined custom templates.
You can create your own custom file templates and add them to the templates folder of the Oxygen XML
Developer installation directory. You can also specify an additional directory to use for the templates in the
Document Templates preferences page.

• Framework Templates - Contains the list of templates defined in the Document Type configuration dialog
box (Templates tab) for each framework.

2. Select the type of document that you want to create.

Tip: You can use the text filter field at the top of the dialog box to search for a specific template.
3. If you want to change the default name and path of the file, select the Save as option and specify the file path

(the Show "Save as" option to save newly created documents in the "New" document wizard option must be
selected in the Open/Save preferences page). Otherwise, the file will be opened in a new tab with a default
untitled name and the document path will not yet exist until you save it.

Note: For DITA documents, the dialog box includes some additional options for generating a title, file name,
and root ID attribute.

4. If you want to use the default settings in the creation process, select Create at the bottom of the dialog box.

Result: The document is created using the default settings and the new file is opened in the appropriate editor.
5. If you want to configure properties before creating the file, select Customize. This action is available for XML,

XML Schema, Schematron, and XSL documents.

Result: A new file configuration dialog box is opened that allows you to customize various options, depending
on the document type you selected. After configuring the options in this wizard, click Create to create the file
and open it in the appropriate editor.

XML Document File Type

Figure 79: New XML Document Configuration Wizard Page

If you selected XML Document for the type of file you want to create and selected the Customize option, the
configuration dialog box will include the following options:

Editing Documents 200

• Schema URL - Specifies the path to the schema file. When you select a file, Oxygen XML Developer analyzes
its content and tries to fill in the rest of the dialog box.

• Schema Type - Allows you to select the schema type. The following options are available: XML Schema, DTD,
RelaxNG XML syntax, RelaxNG compact syntax, and NVDL.

• Public ID - Specifies the PUBLIC identifier declared in the document prolog.
• Namespace - Specifies the document namespace.
• Prefix - Specifies the prefix for the namespace of the document root.
• Root Element - Populated with elements defined in the specified schema, enables selection of the element

used as document root.
• Description - A small description of the selected document root.
• Add Optional Content - If you select this option, the elements and attributes defined in the XML Schema as

optional are generated in the skeleton XML document.
• Add First Choice Particle - If you select this option, Oxygen XML Developer generates the first element of an

xs:choice schema element in the skeleton XML document. Oxygen XML Developer creates this document in
a new editor panel when you click OK.

XSLT Stylesheet File Type

Figure 80: New XSLT Stylesheet Configuration Wizard Page

If you selected XSLT Stylesheet for the type of file you want to create and selected the Customize option, the
configuration dialog box will include the following options:

• Stylesheet version - Allows you to select the Stylesheet version number. You can select from: 1.0, 2.0, and
3.0.

• Add documentation annotations - Select this option to generate the stylesheet annotation documentation.

Editing Documents 201

XML Schema File Type

Figure 81: New XML Schema Configuration Wizard Page

If you selected XML Schema for the type of file you want to create and selected the Customize option, the
configuration dialog box will include the following options:

• Default XML Schema version - Uses the XML Schema version defined in the XML Schema preferences page.
• XML Schema 1.0 - Sets the minVersion attribute to 1.0 and the maxVersion attribute to 1.1.
• XML Schema 1.1 - Sets the minVersion attribute to 1.1.
• Target namespace - Allows you to specify the schema target namespace.
• Namespace prefix declaration table - This table contains namespace prefix declarations. Table information

can be managed using the New and Delete buttons.

Tip: For further details on how you can set the version of an XML Schema, go to Setting the XML Schema
Version.

Editing Documents 202

Schematron File Type

Figure 82: New Schematron Configuration Wizard Page

If you selected Schematron for the type of file you want to create and selected the Customize option, the
configuration dialog box will include the following option:

• Schematron version - Specifies the Schematron version. Possible options: 1.5 (deprecated) and ISO.

Note: Starting with version 16.0 of Oxygen XML Developer, the support for Schematron 1.5 is deprecated. It is
recommended to use ISO Schematron instead.

Creating New Document Templates

Oxygen XML Developer allows you to create your own custom document templates and they will appear in the
Global templates folder (or another specified folder) within the New document wizard.

Creating a New Document Template

To create your own custom document template and have it appear in the new file wizard, follow these steps:

1. Create a new file (whatever type of document you need) and customize it to become a starting point for
creating new files of this type.

Tip: You can use editor variables in the template file content and they will be expanded when the files are
opened.

2. Save the new file template in one of the following locations:

• The templates directory of the Oxygen XML Developer installation directory ([OXYGEN_INSTALL_DIR]/
templates). File templates saved in this directory will appear in the Global templates category in the New
document wizard.

• You can also use any other directory of your choice, but you must add that directory to the list of templates
in the Document Templates preferences page. This user-defined directory will appear in the New document
wizard with the new file templates that you save in it.

Attention: The name that you use to save the template will be the name that appears in the new file
wizard, including capitalization, space, and characters (for example, My Custom Template1.xml
will appear in the new file wizard as My Custom Template1).

3. Open the new file wizard (New toolbar button or File > New) and you should see your custom template in
the appropriate folder. For DITA templates, they will also appear in the dialog box for creating new DITA topics,
but if you create a corresponding properties file (see the procedure below), you need to set the type property
to dita.

Related Information:
Customizing Document Templates on page 204

Editing Documents 203

Customizing Document Templates

Oxygen XML Developer allows you to customize certain aspects of predefined or custom document templates.
For example, you can customize the icons or specify a prefix/suffix that will be used for the proposed file name in
the New document wizard.

Customizing the Icons for a Document Template

If you want to customize the icons to be used for document templates, use a properties file to specify the icons
using the following procedure:

1. Create a new properties file or edit an existing one.

• If you create a new properties file, use the same name as the template file except with a .properties
extension (for example, MyTemplate.properties). This properties file will specify the paths to the icons
that will be used in the new file wizard. You can find some examples in the templates directory of the
Oxygen XML Developer installation directory to help you get started.

When defining the icons, the properties file should look like this:

type=general
smallIcon=../icons/Article_16.png
bigIcon=../icons/Article_48.png

Important: For DITA files, the type property needs to be set to dita. Otherwise, the template will not
appear in the dialog box for creating new DITA topics. For all other types of files, set it to general. The
icons specified in this properties file will only be used for the new file wizards and not in any other part of
the interface.

Note: If you created a new template and chose to use a custom directory for the new template (in step 2 of
the new template procedure), make sure the path to the icons is relative to that directory.

• If you edit an existing template, simply define the icon paths as specified above.
2. Save the properties file in the same directory as the document template.
3. Open the new file wizard (File > New) and you should see your custom icons next to the document template in

the appropriate folder.

Add a Prefix or Suffix to File Names for a Document Template

You can use a properties file for each document template to add a prefix or suffix to the file name that is
proposed in certain dialog boxes when you create a new file from that template. This applies to the following new
document dialog boxes:

• The new document dialog box that appears when you select New > File from the contextual menu in the
Project view. The prefix or suffix is added to the name of the file in the File name field.

To add a prefix or suffix to the file names for a document template, follow these steps:

1. Create a new properties file or edit an existing one.

• If you create a new properties file, use the same name as the template file except with a .properties
extension (for example, MyTemplate.properties). This properties file will specify the prefix/suffix that
will be used to propose the file name in the new file wizards.

When defining the prefix/suffix, the properties file should look something like this:

type=general
filenamePrefix=prod_
filenameSuffix=_test

Important: For DITA files, the type property needs to be set to dita. For all other types of files, set it to
general.

• If you edit an existing template, simply define the prefix/suffix as specified above.
2. Save the properties file in the same directory as the document template.
3. Open the new document wizard (using the methods described above) and when you select the appropriate

template, you should see your prefix or suffix in the file name that is proposed in that dialog box.

Editing Documents 204

Configure the Displayed Names for Document Templates

To change the name that is displayed for a document template, use the following procedure:

1. Create a new properties file or edit an existing one. If you create a new properties file, use the same name as
the template file except with a .properties extension (for example, MyTemplate.properties).

2. Add a displayName property in the properties file:

displayName=myTemplateName

Tip: The names for framework-specific document templates (such as DITA Topic or DocBook Article
as you would see in the Framework templates section in the New file wizard) can be translated via the
internationalization support. In this case, the properties file should contain something like:

displayName=${i18n(tag)}

where tag refers to an entry in the translation.xml file for that specific framework (for example,
OXYGEN_INSTALL_DIR/frameworks/dita/i18n/translation.xml for DITA).

3. Save the properties file in the same directory as the document template.
4. Open the new file wizard (File > New) and you should see the new name for the template.

Adding Placeholders or Hints in a Document Template

Document templates sometimes contain empty elements and it may not be clear to the Author what should
be inserted. You can define placeholders in document templates that provide hints for Authors to help them
understand what type of content should be added in any particular empty element within the document. The
placeholder text is specified using a processing instruction and the placeholders are removed when the Author
inserts content in the corresponding element.

To define placeholders in a document template to provide authors with hints, follow this procedure:

1. Edit the document template.
2. Add placeholders in the form of processing instructions within the elements where you want hints to be

displayed when an Author creates a document from the template. For example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="pi">
 <title><?oxy-placeholder content="Please give a title"?></title>
 <shortdesc><?oxy-placeholder content="Writing short descriptions
 induces the writer to clarify the main thesis of the topic.
 We recommended a 50 word limit."?></shortdesc>
 <body>
 <p><?oxy-placeholder content="A paragraph element should be a self-contained
 unit dealing with one idea or point."?></p>
 </body>
</topic>

3. Save the template file.
4. Use the New document wizard to create a new document using your customized template and you should see

the hints in the opened document.

Related Information:
Creating New Document Templates on page 203

Opening Documents
To open a document in Oxygen XML Developer, do one of the following:

• Go to File > Open (Ctrl + O (Command + O on OS X)) or click the Open toolbar button to display the Open
File dialog box. The start folder of the Open dialog box can be either the last folder visited by this dialog box or
the folder of the currently edited file. This can be configured in the user preferences.

• Go to File > Open URL or click the Open URL toolbar button to display a dialog box that allows you to
access any resource identified through a URL (defined by a protocol, host, resource path, and an optional
port). The following actions are available in the drop-down action list:

• Browse for local file - Opens a local file browser dialog box, allowing you to select a local file.

Editing Documents 205

• Browse for remote file - Displays the that allows you to open a remotely stored file.
• Browse for archived file - Displays the Archive Browser that allows you to browse the content of an

archive and choose a file.
• Browse Data Source Explorer - Opens the Data Source Explorer that allows you to browse the data

sources defined in the Data Sources preferences page.

Tip: You can open the Data Sources preferences page by using the Configure Database Sources shortcut
from the Open URL dialog box.

• Search for file - Displays the that allows you to search for a file.
• Click the Open/Find Resource toolbar button to search for a file to open.
• Go to File > Reload to load the last saved file content. All unsaved modifications are lost.
• Go to File > Reopen to reopen one of the recently opened document files. The list containing recently opened

files can be emptied by invoking the Clear history action.
• Select the Open or Open with action from the contextual menu of the Project view.

Related Information:
Opening Local Files at Start-up on page 206

Opening the Current Document in System Application

To open the currently edited document in the associated system application, use the View in Browser/System
Application action that is available in the File menu and on the File toolbar. If you want to open XML files in a
specific internet browser, instead of the associated system application, you can specify the internet browser to
be used. To do so, open the Preferences dialog box (Options > Preferences), go to Global, and set it in the Default
Internet browser field. This will take precedence over the default system application settings.

Opening Local Files at Start-up

To open a local file at start-up when you open Oxygen XML Developer from the command line, add the paths for
one or more local files as parameters in the command line:

• scriptName [pathToXMLFile1] [pathToXMLFile2]

• scriptName is the name of the startup script for your platform (oxygenDeveloper.bat on Windows,
oxygenDeveloper.sh on Unix/Linux, oxygenDeveloperMac.sh on Mac OS).

• pathToXMLFileN is the name of a local XML file.
• An XML file and a schema file to be associated automatically to the file and used for validation and content

completion:

scriptName -instance pathToXMLFile -schema pathToSchemaFile -schemaType
XML_SCHEMA|DTD_SCHEMA|RNG_SCHEMA|RNC_SCHEMA -dtName documentTypeName

• scriptName is the name of the startup script for your platform (oxygen.bat on Windows, oxygen.sh on
Unix/Linux, oxygenMac.sh on Mac OS).

• pathToXMLFile is the name of a local XML file.
• pathToSchemaFile is the name of the schema that you want to associate to the XML file, the four

constants (XML_SCHEMA, DTD_SCHEMA, RNG_SCHEMA, RNC_SCHEMA) are the possible schema types
(W3C XML Schema, DTD, Relax NG schema in full syntax, Relax NG schema in compact syntax).

• documentTypeName specifies the name of the document type for which the schema is defined. If the
document type is already set in preferences, its schema and type are updated.

The two possibilities of opening files at startup by specifying them in the command line are explained also if the
startup script receives one of the -h or --help parameters.

Related Information:
Opening a File at a Specific Location Using the Command Line Interface on page 207

Editing Documents 206

Opening a File at a Specific Location Using the Command Line Interface

Oxygen XML Developer offers support for opening a file at a specific position using the command line interface,
by transmitting parameters to the Oxygen XML Developer batch script file. The following methods are available,
depending on how you identify the position that is needed:

1. Specific position values (line and column number, or character offset)

Oxygen XML Developer supports the following position parameters:

• line - The line number.
• column - The column number (has meaning if the line parameter is also defined).
• char - The character offset.

Examples for Windows:

The following examples show how you can open an XML document in Oxygen XML Developer:

developer.bat file:samples/personal.xml#line=4
developer.bat file:samples/personal.xml#line=4column=5
developer.bat file:samples/personal.xml#line=4;column=5
developer.bat file:samples/personal.xml#char=334

2. Simplified XPath index path

Oxygen XML Developer will open an XML file and select one of its elements identified by a simplified XPath
index path. For example, an index path of the form 1/5/7 identifies the seventh child of the fifth child of the
root element.

Restriction: Oxygen XML Developer will display a selection that starts with the first character of the content of
the identified element and spans until the end of the line.

Examples for Windows:

The following example shows how you can open an XML document in Oxygen XML Developer and select the
third child of the root element:

developer.bat file:samples/personal.xml#element(1/3)

3. Anchors identified by ID attribute values

Oxygen XML Developer will open an XML file and select the element whose id attribute value is an exact
match of the anchor attached to a command line instruction.

Examples for Windows:

The following example shows how you can open an XML document in Oxygen XML Developer and select the
element that has the id element set to titleID:

developer.bat file:samples/personal.xml#titleID

Related Information:
Opening Local Files at Start-up on page 206

Saving Documents
You can save the document you are editing with one of the following actions:

• File > Save.
• Save toolbar button - If the document was not yet saved, it displays the Save As dialog box.
• File > Save As - Displays the Save As dialog box, used either to name and save an open document to a file or

to save an existing file with a new name.
• File > Save To URL - Displays a Save to URL dialog box that can be used to save a file identified by its URL

(defined by a protocol, host, resource path, and an optional port). Use the drop-down action list to choose one
of the available save actions:

• Browse for local file - Opens a local file browser dialog box allowing you to save the document locally.

Editing Documents 207

• Browse for remote file - Displays a Save to URL dialog box that allows you to save the document to a
remote location (accessible through FTP, SFTP or WebDAV).

• Browse for archived file - Displays the Archive Browser that allows you to save the document inside an
archive.

• Browse Data Source Explorer - Opens a Data Source Explorer that allows you to browse the data sources
defined in the Data Sources preferences page.

Tip: You can get to the Data Sources preferences page, using the Configure Database Sources shortcut
from the Save to URL dialog box.

• Search for file - Displays the Open/Find Resource dialog box.
• File > Save All - Saves all open documents. If any document does not have a file, displays the Save As dialog

box.

Opening and Saving Remote Documents
Oxygen XML Developer supports editing remote files, using the FTP, SFTP, WebDAV , SharePoint, and SharePoint
Online for Office 365 protocols. You can edit remote files in the same way you edit local files. For example, you
can add remote files to a project, or use them in XSL and FO transformations.

You can open one or more remote files in the Open URL dialog box.

A WebDAV resource can be locked when it is opened in Oxygen XML Developer by selecting the Lock WebDAV
files on open option to prevent other users to modify it concurrently on the server. If a user tries to edit a locked
file, Oxygen XML Developer displays an error message that contains the lock owner's name. The lock is released
automatically when the editor for that resource is closed in Oxygen XML Developer.

To avoid conflicts with other users when you edit a resource stored on a SharePoint server, you can Check Out the
resource.

To improve the transfer speed, the content exchanged between Oxygen XML Developer and the HTTP / WebDAV
server is compressed using the GZIP algorithm.

The current WebDAV Connection details can be saved by switching to the Database perspective and then you can
browse and manage the connection in the Data Source Explorer view.

Open URL

To open this dialog box, go to File > Open URL (or click the Open URL toolbar button), then choose the
Browse for remote file option from the drop-down action list.

Editing Documents 208

Figure 83: Open URL Dialog Box

The displayed dialog box is composed of the following:
Server URL

Specifies the protocol (HTTP, HTTPS or FTP) and the host name or IP of the server.

Tip: When specifying a URL, follow these rules:

• To access an FTP server, write the protocol, host, and port (if using a non-standard one). For example,
ftp://server.com or ftp://server.com:7800/.

• To access a WebDAV server, write the path to the directory of the WebDAV repository along with the
protocol and the host name. For example, https://www.some-webdav-server.com:443/webdav-
repository/.

Important: Make sure that the repository directory ends in a slash "/". For example, https://www.some-
webdav-server.com:443/webdav-repository/

Autoconnect
If selected, the browse action is performed every time when you open the dialog box.

User and Password
To browse for a file on a server, you have to specify the user and password for the server. This information is
bound to the selected URL displayed in the File URL combo box, and used further in opening/saving the file. If
the Save option is selected, then the user and password are saved between editing sessions. The password is
kept encrypted in the options file.

Note: Your password is well protected. If the options file is used on another machine by a user with
a different username, the password will become unreadable since the encryption is dependent on the
username. This is also true if you add URLs that contain a username and password to your project.

Editing Documents 209

Connect
When you press this button, the directory listing will be shown in the main section of the dialog box. If the
selected URL points to a SharePoint server, a dedicated SharePoint browsing component is presented.

Browser view

• If you are browsing a WebDAV or FTP repository, the items are presented in a tree-like fashion. You can
browse the directories, and make multiple selections. Additionally, you may use the Rename, Delete, and
New Folder actions to manage the file repository.

Note: The file names are sorted in a case-insensitive way.
• When you browse a SharePoint repository, a specialized component renders the SharePoint site content.

Figure 84: Browsing a SharePoint Repository

The left side navigation area presents the SharePoint site structure in a tree-like fashion with various node
types (such as sites, libraries, and folders).

Depending on the type of node, a contextual menu offers customized actions that can be performed
on that node. The contextual menu of a folder allows you to create new folders and documents, import
folders and files, and to rename and delete the folder.

Note: The rename and delete actions are not available for library root folders (folders located at first level
in a SharePoint library).

Each library node displays a drop-down menu next to its name where you can select what you want to
display for the current library node. This functionality is also available on the contextual menu of the node.

Figure 85: Drop-Down Menu to Select Which Items to Display

Editing Documents 210

The content of a folder is displayed in a tabular form, where each row represents the properties of a folder
or document. The list of columns and the way the documents and folders are organized depends on the
currently selected view of the parent library.

You can filter and sort the displayed items. To display the available filters of a column, click the filter
widget located on the column header. You can apply multiple filters at the same time.

Note: A column can be filtered or sorted only if it was configured this way on the server side.

Figure 86: Column Filter

File URL
You can use this combo box to directly specify the URL to be opened or saved. You can type a URL such
as http://some.site/test.xml (if the file is accessible through normal HTTP protocol), or ftp://
anonymous@some.site/home/test.xml (if the file is accessible through anonymous FTP).

This combo box also displays the current selection when the user changes selection by browsing the tree of
folders and files on the server.

Changing File Permissions on a Remote FTP Server

Some FTP servers allow the modification of permissions of the files served over the FTP protocol. This protocol
feature is accessible directly in the FTP/WebDAV file browser dialog box by right-clicking a tree node and
selecting the Change permissions menu item.

In this dialog box, the usual Unix file permissions Read, Write, and Execute are granted or denied for the file owner,
owner group, and the rest of the users. The aggregate number of permissions is updated in the Permissions text
field when it is modified with one of the checkboxes.

WebDAV over HTTPS

If you want to access a WebDAV repository across a non-secure network, Oxygen XML Developer allows you to
load and save the documents over the HTTPS protocol (if the server understands this protocol) so that any data
exchange with the WebDAV server is encrypted.

When a WebDAV repository is first accessed over HTTPS, the server hosting the repository will present a security
certificate as part of the HTTPS protocol, without any user intervention. Oxygen XML Developer will use this
certificate to decrypt any data stream received from the server. For the authentication to succeed you should
make sure the security certificate of the server hosting the repository can be read by Oxygen XML Developer. This
means that Oxygen XML Developer can find the certificate in the key store of the Java Runtime Environment in
which it runs. You know the server certificate is not in the JRE key store if you get the error No trusted certificate
found when trying to access the WebDAV repository.

Troubleshooting HTTPS

When Oxygen XML Developer cannot connect to an HTTPS-capable server, most likely there is no certificate set
in the Java Runtime Environment (JRE) that Oxygen XML Developer runs into. The following procedure describes
how to:

• Export a certificate to a local file using any HTTPS-capable Web browser (for example, Internet Explorer).
• Import the certificate file into the JRE using the keytool tool that comes bundled with Oxygen XML Developer.

Tip: To make Oxygen XML Developer accept a certificate even if it is invalid, open the Preferences dialog box
(Options > Preferences), go to Connection settings > HTTP(S)/WebDAV, and select the Automatically accept a
security certificate, even if invalid option.

1. Export the certificate into a local file

Editing Documents 211

a) Point your HTTPS-aware Web browser to the repository URL.

If this is your first visit to the repository it will be displayed a security alert stating that the security
certificate presented by the server is not trusted.

Figure 87: Security alert - untrusted certificate
b) Go to menu Tools > Internet Options.

Internet Options dialog box is opened.
c) Select Security tab.
d) Select Trusted sites icon.
e) Press Sites button.

This will open Trusted sites dialog box.
f) Add repository URL to Websites list.
g) Close the Trusted sites and Internet Options dialog boxes.
h) Try again to connect to the same repository URL in Internet Explorer.

The same error page as above will be displayed.
i) Select Continue to this website option.

A clickable area with a red icon and text Certificate Error is added to Internet Explorer address bar.
j) Click the Certificate Error area.

A dialog box containing a View certificates link is displayed.
k) Click the View certificates link.

Certificate dialog box is displayed.
l) Select Details tab of Certificate dialog box.
m) Press Copy to File button.

Certificate Export Wizard is started.
n) Follow indications of wizard for DER encoded binary X.509 certificate. Save certificate to local file

server.cer.
2. Import the local file into the JRE running Oxygen XML Developer.

a) Open a text-mode console with administrative rights.
If Oxygen XML Developer has been installed in a user's home directory and includes a bundled JRE,
administrative rights are not required. In all other cases administrative rights will be required.

b) Go to the lib/security directory of the JRE running Oxygen XML Developer. You find the home directory
of the JRE in the java.home property that is displayed in the About dialog box (System properties tab).
On Mac OS X systems, the lib/security directory is usually located in /System/Library/Java/
JavaVirtualMachines/1.6.0.jdk/Contents/Home directory.

Editing Documents 212

On OS X, if you have installed a distribution of Oxygen XML Developer that is not bundled with a JRE, a JRE
from Apple is required. The Apple Java version 1.6 stores the certificates in /System/Library/Java/
Support/CoreDeploy.bundle/Contents/Home/lib/security/cacerts with a symbolic link
pointing to it from /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home/
lib/security/cacerts.
On OS X, if you have installed a distribution of Oxygen XML Developer that bundles the JRE from Oracle, the
JRE uses the .install4j/jre.bundle/Contents/Home/jre/lib/security/cacerts path within
its installation directory.

c) Run the following command:

..\..\bin\keytool -import -trustcacerts -file server.cer -keystore cacerts

The server.cer file contains the server certificate, created during the previous step. keytool requires
a password before adding the certificate to the JRE keystore. The default password is changeit. If
someone changed the default password, then that person is the only one who can perform the import.

Tip: If you need to import multiple certificates, you need to specify a different alias for each additional
imported certificate with the -alias command line argument, as in the following example:

..\..\bin\keytool -import -alias myalias1 -trustcacerts -file
server1.cer -keystore cacerts

..\..\bin\keytool -import -alias myalias2 -trustcacerts -file
server2.cer -keystore cacerts

3. Restart Oxygen XML Developer.

Related Information:
HTTP(S)/WebDAV Preferences on page 135

HTTP Authentication Schemes

Oxygen XML Developer supports the following HTTP authentication schemes:

• Basic - The basic authentication scheme defined in the RFC2617 specifications.
• Digest - The digest authentication scheme defined in the RFC2617 specifications.
• NTLM - The NTLM scheme is a proprietary Microsoft Windows Authentication protocol (considered to be the

most secure among currently supported authentication schemes).

Note: For NTLM authentication, the user name must be preceded by the name of the domain it belongs to, as
in the following example:

domain\username

• Kerberos - An authentication protocol that works on the basis of tickets to allow nodes communicating over a
non-secure network to prove their identity to one another in a secure manner.

Single Sign-on

Oxygen XML Developer implements the Single sign-on property (meaning that you can log on once and gain
access to multiple services without being prompted to log on for each of them), based on the Kerberos protocol
and relies on a ticket-granting ticket (TGT) that Oxygen XML Developer obtains from the operating system.

To turn on the Kerberos-based authentication, you need to add the following system property in the .vmoptions
configuration file or start-up script:

-Djavax.security.auth.useSubjectCredsOnly=false

Related Information:
Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer on page 156

Switching and Moving File Tabs
There are two keyboard shortcuts that can be used for cycling through the opened file tabs:

Editing Documents 213

https://www.ietf.org/rfc/rfc2617.txt
https://www.ietf.org/rfc/rfc2617.txt

Ctrl + Tab (Command + Tab on OS X)
Switches between the tabs with opened files in the order most recent ones first.

Ctrl + Shift + Tab (Command + Shift + Tab on OS X)
Switches between the tabs with opened files in the reverse order.

There are also two shortcuts for moving the current tab:
Ctrl + Alt + Comma

Moves the current file tab one position to the left.
Ctrl + Alt + Period

Moves the current file tab one position to the right.

Closing Documents
To close open documents, use one of the following actions that are available in the contextual menu of the
current editor tab (or from the File menu):

Close (Ctrl + W (Command + W on OS X))
Closes the currently selected editor.

Close Other Files
If multiple files are opened, this action is available to close all opened editors in the current group/stack of
tabs except for the one you are currently viewing. If this action is selected from the File menu, it closes all
opened editors in all groups/stacks of tabs except for the current one.

Close Files to the Right
Available only from the contextual menu of the current editor tab and it closes all opened editors to the right
of the currently selected editor.

Close All
If multiple files are opened, this action is available to close all opened editors in the current group/stack of
tabs. If this action is selected from the File menu, it closes all opened editors in all groups/stacks of tabs.

Contextual Menu of the Current Editor Tab
A contextual menu is available when you right-click the current editor tab label.

The actions that are available depend on the context and the number of files that are opened. The menu includes
the following actions:
Close (Ctrl + W (Command + W on OS X))

Closes the currently selected editor.
Close Other Files

If multiple files are opened, this action is available to close all opened editors in the current group/stack of
tabs except for the one you are currently viewing.

Close Files to the Right
Closes all opened editors to the right of the currently selected editor.

Close All
If multiple files are opened, this action is available to close all opened editors.

Move editor tab to the left (Ctrl + Alt + Comma)
Moves the current editor tab one position to the left.

Move editor tab to the right (Ctrl + Alt + Period
Moves the current editor tab one position to the right.

Reopen last closed editor Ctrl + Alt + T (Command + Alt + T on OS X))
Reopens the last closed editor.

Editing Documents 214

Maximize/Restore Editor Area
Collapses all the side views and spans the editing are to cover the entire width of the main window.

Add to project
Adds the file you are editing to the current project.

Add all to project
If multiple files are opened, this action is available to add all the opened files in the current group/stack of
tabs to the current project.

Copy Location
Copies the disk location of the file.

Show in Explorer (Show in Finder on OS X)
Opens the Explorer to the file path of the file.

Viewing File Properties
The Properties view displays information about the currently edited document. The information includes:

• Character encoding.
• Full path on the file system.
• Schema used for content completion and document validation.
• Document type name and path.
• Associated transformation scenario.
• Read-only state of a file.
• Bidirectional text (left to right and right to left) state.
• Total number of characters in the document.
• Line width.
• Indent with tabs state.
• Indent size.

The view can be accessed from Window > Show View > Properties.

To copy a value from the Properties view in the clipboard (for example, the full file path), use the Copy action
available on the contextual menu of the view.

Searching Documents
Oxygen XML Developer includes advanced search capabilities to help you locate documents and resources.

Open/Find Resource View
The Open/Find Resource view is designed to offer advanced search capabilities either by using a simple text
search or by using the Apache Lucene - Query Parser Syntax. By default, the view is presented in the left side
of the Oxygen XML Developer layout, next to the Project view . If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Editing Documents 215

http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

Figure 88: Open/Find Resource View

You can use this view to find a file in the current Oxygen XML Developer project by typing only a few letters of the
file name of a document or a fragment of the content you are searching for. The Open/Find Resource view also
supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content)
by selecting the In reviews option.

Note: Full support for searching in document edits (the In reviews option) is available only in the Enterprise
edition of Oxygen XML Developer. The Professional edition offers limited support to search through a maximum
of 10 edits.

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text are
highlighted in the results list displayed in the dialog box. When you open one of the documents from the results
list, the matching fragments of text are highlighted in the editing area. To remove the highlighting from your
document, close the corresponding tab in the Results view at the bottom of the editor. To display the search
history, position the cursor in the search field and press Ctrl + DownArrow (Command + DownArrow on OS X) or
Ctrl + UpArrow (Command + UpArrow on OS X) on your keyboard. Pressing only the DownArrow key moves the
selection to the list of results.

Note: Searches are not case sensitive. For example, if you search for car you get the same results as when you
search for Car.

Tip: Suffix searches are also supported, both for searching in the content of your resources and in their
name. For this, you can use wildcards. If you search for *ing with the in content option selected, you will find
documents that contain the word presenting. If you search for */samples/*.gif with the in file paths option
selected, you will find all the gif images from the samples directory.

Options Available in the View

The Open/Find Resource view offers the following options:

• Settings - Drop-down menu that includes the following settings for the view:

• Clear Index - Clears the index.

Editing Documents 216

• Show description - Presents the search results in a more compact form, displaying only the title and the
location of the resources.

• Options - Opens the Open/Find Resource preferences page where you can configure various search
options. For example, you can specify a Content language that differs from the default UI language in case
your document contains multiple languages.

• In file paths - Select this option to search for resources by their name or by its path (or a fragment of its path).
• In content - Select this option to search through the content of your resources.
• In reviews - Select this option to search through the comments, tracked change insertions/deletions, or

highlights in your resources.
• Reindex - Use this option to reindex your resources.

Contextual Menu Actions

A contextual menu is available on each search result and provides actions applicable to that particular document.
These actions include:

• Open - Opens the document in one of Oxygen XML Developer internal editors.
• Open with - Allows you to choose to open the document in the Internal editor or an external System

application.
• Show in Explorer - Identifies the document in the system file explorer.
• Copy Location - Copies the file path and places it in the clipboard.

Indexing Process

The content of the resources used to search in is parsed from an index. The indexing is performed both
automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the
currently indexed project. If the index was never initialized, the index in not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-called
stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there,
these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing
process will not be able to match any of them. However, you can configure the list of stop words in the Open/Find
Resource preferences page.

Caching Mechanism

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current
project. When the first search is performed, all project files are indexed and added to the cache. The next search
operation uses the information extracted from the cache, thus improving the processing time. The cache is kept
for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also,
the cache is reset when you press the Reindex button.

Important: Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are
searching for was added to the Oxygen XML Developer project after the last caching operation. In this case, re-
indexing the project files with the Reindex button enables the file to be found. The date and time of the last index
operation are displayed below the file list.

Opening the Results

Once you find the files that you want to open, select them in the list and press the Open button (or double-click
them). Each of the selected files is opened in the editor associated with the type of the file.

Note: You can drag a resource from the Open/Find Resource view and drop it in a DocBook, DITA, TEI or XHTML
document to create a link to that resource.

To watch our video demonstration about the Open/Find Resource feature and its search capabilities, go to
https://www.oxygenxml.com/demo/Open_Find_Resource.html.

Related Information:
Open/Find Resource Dialog Box on page 218

Editing Documents 217

https://www.oxygenxml.com/demo/Open_Find_Resource.html

Open/Find Resource Dialog Box
The Open/Find Resource dialog box offers advanced search capabilities. To open the dialog box, go to Find >

Open/Find Resource (Ctrl + Shift + R (Command + Shift + R on OS X)). You can also click the Open/Find
Resource toolbar button or use the Search for file action that is available in some URL input fields.

Figure 89: Open/Find Resource Dialog Box

You can use this dialog box to find a file in the current Oxygen XML Developer project by typing a few letters
of the file name or a fragment of the content you are searching for. The Open/Find Resource dialog box also
supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content).

Note: Full support for searching in document edits (the In reviews option) is available only in the Enterprise
edition of Oxygen XML Developer. The Professional edition offers limited support to search through a maximum
of 10 edits.

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text are
highlighted in the results list displayed in the dialog box. When you open one of the documents from the results
list, the matching fragments of text are highlighted in the editing area. To remove the highlighting from your
document, close the corresponding tab in the Results view at the bottom of the editor. To display the search
history, position the cursor in the search field and press Ctrl + DownArrow (Command + DownArrow on OS X) or
Ctrl + UpArrow (Command + UpArrow on OS X) on your keyboard. Pressing only the DownArrow key moves the
selection to the list of results.

Note: Searches are not case sensitive. For example, if you search for car you get the same results as when you
search for Car.

Tip: Suffix searches are also supported, both for searching in the content of your resources and in their
name. For this, you can use wildcards. If you search for *ing with the in content option selected, you will find
documents that contain the word presenting. If you search for */samples/*.gif with the in file paths option
selected, you will find all the gif images from the samples directory.

Editing Documents 218

Options Available in the Dialog Box

The Open/Find Resource dialog box includes the following options:

• In file paths - Select this option to search for resources by their name or by its path (or a fragment of its path).
• In content - Select this option to search through the content of your resources.
• In reviews - Select this option to search through the comments, tracked change insertions/deletions, or

highlights in your resources.
• Options - Opens the Open/Find Resource preferences page where you can configure various search options.

For example, you can specify a Content language that differs from the default UI language in case your
document contains multiple languages.

• Clear Index - Clears the index.
• Reindex - Use this option to reindex your resources.

Contextual Menu Actions

A contextual menu is available on each search result and provides actions applicable to that particular document.
These actions include:

• Open - Opens the document in one of Oxygen XML Developer internal editors.
• Open with - Allows you to choose to open the document in the Internal editor or an external System

application.
• Show in Explorer - Identifies the document in the system file explorer.
• Copy Location - Copies the file path and places it in the clipboard.

Indexing Process

The content of the resources used to search in is parsed from an index. The indexing is performed both
automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the
currently indexed project. If the index was never initialized, the index in not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-called
stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there,
these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing
process will not be able to match any of them. However, you can configure the list of stop words in the Open/Find
Resource preferences page.

Caching Mechanism

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current
project. When the first search is performed, all project files are indexed and added to the cache. The next search
operation uses the information extracted from the cache, thus improving the processing time. The cache is kept
for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also,
the cache is reset when you press the Reindex button.

Important: Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are
searching for was added to the Oxygen XML Developer project after the last caching operation. In this case, re-
indexing the project files with the Reindex button enables the file to be found. The date and time of the last index
operation are displayed below the file list.

Opening the Results

Once you find the files that you want to open, select them in the list and press the Open button (or double-click
them). Each of the selected files is opened in the editor associated with the type of the file.

To watch our video demonstration about the Open/Find Resource feature and its search capabilities, go to
https://www.oxygenxml.com/demo/Open_Find_Resource.html.

Related Information:
Open/Find Resource View on page 171

Editing Documents 219

https://www.oxygenxml.com/demo/Open_Find_Resource.html

Open/Find Resource Preferences Page on page 132

Searching in Content
To perform a search through the content of your resources, open the Open/Find Resource dialog box (from the
Find menu or with Ctrl + Shift + R (Command + Shift + R on OS X)) or the Open/Find Resource view (by default,
located on the left side of the editor), select the in content option, and in the search field enter the terms that you
want to search for.

The Open/Find Resource feature is powered by Apache Lucene. Apache Lucene is a free open source information
retrieval software library.

You can use the Open/Find Resource feature to either perform a simple text search or a more complex search
using the Apache Lucene - Query Parser Syntax. Using the Apache Lucene - Query Parser Syntax means you can
perform any of the following searches:

Examples:

• Term Searches-

Searching for plain text:

Garden Preparation

• Element-Specific Searches-

Searching for content that belongs to a specific element:

title:"Garden Preparation"

• Wildcard Searches-

Using wildcards to make your search more permissive:

Garden Prepar?tion

• Fuzzy Searches-

If you are not sure of the exact form of a term that you are interested in, use the fuzzy search to find the terms
that are similar to the search term. To perform a fuzzy search, use the ~ symbol after the word that you are not
sure of:

Garden Preparing~

• Proximity Searches-

Use proximity searches to find words that are within a specific distance away. To perform a proximity
search, use the ~ symbol at the end of your search. For example, to search for the word Garden and the word
Preparation within 6 words of each other use:

"Garden Preparation"~6

• Range Searches-

Use range searches to match documents whose element values are between the lower and upper bound
specified in the range query. For example, to find all documents whose titles are between Iris and Lilac, use:

title:{Iris TO Lilac}

The curly brackets denote an exclusive query. The results you get when using this query are all the documents
whose titles are between Iris and Lilac, but not including Iris and Lilac. To create an inclusive query use square
brackets:

title:[Iris to Lilac]

• Term Prioritising Searches-

Use term prioritising searches if the fragment of text that you are searching for contains certain words that are
more important to your search than the rest of them. For example, if you are searching for Autumn Flowers, a

Editing Documents 220

http://lucene.apache.org/core/
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html
http://lucene.apache.org/core/old_versioned_docs/versions/2_9_1/queryparsersyntax.html

good idea is to prioritize the word Autumn since the word Flowers occurs more often. To prioritize a word use
the ^ symbol:

Autumn^6 Flowers

• Searches Using Boolean Operators-

You can use the AND, +, OR, -, and NOT operators.

To search for documents that contain both the words Garden and Preparation, use:

Garden AND Preparation

To search for documents that must contain the word Garden and may contain the word Preparation, use:

+Garden Preparation

To search for documents that contain either the word Garden or the word Preparation, use:

Garden OR Preparation

To search for documents that contain Garden Preparation but not Preparation of the Flowers, use:

"Garden Preparation" - "Preparation of the Flowers"

• Searches Using Grouping-

To search either for the word Garden or Preparation, and the word Flowers, use:

(Garden OR Preparation) AND Flowers

• Searches Using Element Grouping-

To search for a title that contains both the word Flowers and the phrase Garden Preparation, use:

title:(+Flowers +"Garden Preparation")

• Searching for Special Characters-

Sometimes you might need to search your content for special character, such as:

+ - && || ! () { } [] ^ ~ * ? : \

In this case, you should surround your search query with quotes. For example, to search for (Hydrogen +
Oxygen)=Water, use:

"(Hydrogen + Oxygen)=Water"

Searching in File Paths
To perform a search in the file paths of your resources, open the Open/Find Resource dialog box (from the Find
menu or with Ctrl + Shift + R (Command + Shift + R on OS X)) or the Open/Find Resource view (by default, located
on the left side of the editor), select the In file paths option, and in the search field enter the terms that you want
to search for.

The Open/Find Resource feature allows you to search for a resource either by its name or by its path (or by a
fragment of its path).

You can use wildcards when you perform such searches:

• Use "*" to match any sequence of characters.
• Use "?" to match any single character.

For example, if you search for *-preferences-page you will find all the resources that contain the -preferences-
page fragment in their name. If you search for */samples/*.gif, you will find all the .gif images from the
samples directory.

Editing Documents 221

Searching in Reviews
To perform a search in the edits of your resources, open the Open/Find Resource dialog box (from the Find menu
or with Ctrl + Shift + R (Command + Shift + R on OS X)) or the Open/Find Resource view (by default, located on
the left side of the editor), select the In reviews option, and in the search field enter the terms that you want to
search for.

The following options are available:

• Type - Specifies whether you want to search for content in comments, tracked change insertions/deletions, or
highlighted content.

• Author - Displays all the authors of the edits in your resources. The authors are collected when indexing. You
can set a specific author for your search or search all of them.

• Time- Specifies the time when the edits that you are searching through were created.

Both the view and the dialog box display the edits that contain the search results and their parent topics along
with a short description. To hide this description, go to Settings and deselect the Show Description option.

Technical Aspects
When Oxygen XML Developer performs the indexing of your resources, the refereed content from your
documents is not taken into account. For example, when DITA documents are indexed, the content
from the conref elements is not parsed. The files that make up the index are stored on disk in the
[user_home_directory]\AppData\Roaming\com.oxygenxml.developer\lucene folder.

Using Projects to Group Documents
Oxygen XML Developer includes a Project view that helps you organize your projects. Oxygen XML Developer
offers a variety of helpful features for working with projects and makes it easy to share your projects with other
members of your team. This section presents various unique features that will help you to create and work with
projects.

Creating a New Project
Oxygen XML Developer allows you to organize your XML-related files into projects. This helps you manage and
organize your files and also allows you to perform batch operations (such as validation and transformation) over
multiple files. You can also share your project settings and transformation/validation scenarios with other users.
Use the Project view to manage projects, and the files and folders contained within.

Creating a New Project

To create a new project, select New Project from the Project menu, the New menu in the contextual menu, or
the drop-down menu at the top-left of the Project view. This opens a dialog box that allows you to assign a name
to the new project and adds it to the structure of the project in the Project view.

Adding Items to the Project

To add items to the project, select any of the following actions that are available when invoking the contextual
menu in the Project view:

New > File
Opens a New file dialog box that helps you create a new file and adds it to the project structure.

New > Folder
Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure
of the project.

The project itself is considered a logical folder. You can add a logical folder, or content to a logical folder, by using
one of the following actions that are available in the contextual menu, when invoked from the project root:

Editing Documents 222

New > Logical Folder

Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X -).
New > Logical Folders from Web

Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical
folders. The newly created logical folders contain the file structure of the folder it points to.

Add Folder
Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file
system (the icon of this action is different on Mac OS X).

Add Files
Adds links to files on the local file system.

Add Edited File
Adds a link to the currently edited file in the project.

Using Linked Folders (Shortcuts)

Another easy way to organize your XML working files is to place them in a directory and then to create a
corresponding linked folder in you project. If you add new files to that folder, you can simply use the Refresh
(F5) action from the toolbar or contextual menu and the Project view will display the existing files and
subdirectories. If your files are scattered amongst several folders, but represent the same class of files, you might
find it useful to combine them in a logical folder.

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer (Mac OS
X Finder) to the project tree, or by selecting Add Folder in the contextual menu from the project root. Linked
folders are displayed in the Project view with bold text. To create a file inside a linked folder, select the New >

File action from the contextual menu. The linked files presented in the Project view are marked with a special
icon.

Note: Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

For more information on managing projects and their content, see Project View on page 165.

For more details about how you can share projects with other users, see Sharing a Project - Team Collaboration on
page 231.

Related Information:
Using Projects to Group Documents on page 222

Project View
The Project view is designed to assist you with organizing and managing related files grouped in the same XML
project. The actions available in the contextual menu and on the toolbar associated to this panel allow you to
create XML projects and provide shortcuts to various operations for the project documents.

Editing Documents 223

Figure 90: Project View

By default, the view is positioned on the left side of the Oxygen XML Developer window, above the Outline view. If
the view has been closed, it can be reopened at any time from the Window > Show View menu (or using the Show
Project View action from the Project menu).

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down menu
that contains all recently used projects and project management actions:

Open Project (Ctrl + F2 (Command + F2 on OS X))
Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Developer XPR
project file from the file explorer into the Project panel.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks
you to confirm that the project came from a trusted source. This is meant to help prevent potential security
issues.

New Project
Creates a new, empty project.

The following actions are grouped in the upper right corner:

Collapse All
Collapses all project tree folders. You can also collapse/expand a project tree folder if you select it and press
the Enter key or Left Arrow to collapse and Right Arrow to expand.

Link with Editor
When selected, the project tree highlights the currently edited file, if it is found in the project files.

Note: This button is disabled automatically when you move to the Debugger perspective.

Settings
A submenu that contains the following actions:

Filters
Allows you to filter the information displayed in the Project view. Click the toolbar button to set filter
patterns for the files you want to show or hide. Also, you can set filter patterns for the linked directories
that are hidden.

Show Full Path
When selected, linked files and folders are presented with a full file path.

Enable Master Files Support
Select this option to enable the Master Files support.

Change Search and Refactor operations scope
Allows you to change the collection of documents that define the context of the search and refactor
operations.

Editing Documents 224

• Use only Master Files, if enabled - Restricts Oxygen XML Developer to perform the search and refactor
operations starting from the master files that are defined for the current resource. This option is
available when you select Project in the Select the scope for Search and Refactor operations dialog
box and the Master Files support is enabled.

• Working sets - Allows you to specify the set of files that will be used for the scope of the search and
refactor operations.

The files are usually organized in an XML project as a collection of folders. There are three types of resources
displayed in the Project view:

• Logical folders - marked with a blue icon on Windows and Unix/Linux () and a magenta icon on Mac OS
X (). They help you group files within the project. This folder type has no correspondent on the physical
disk, since they are used as containers for related items. Creating and deleting them does not affect the file
system on disk. They are created on the project root or inside other logical folders by using the contextual
action New > Logical Folder. The contextual menu action Remove from Project can be used to remove them
from the project.

• Physical folders and files - marked with the operating system-specific icon for folders (usually a yellow icon
on Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that
exist in the local file system. They are created or added to the project by using contextual menu actions (such
as New > File, New > Folder, Add Folder, etc.) Also, the contextual menu action Remove from Disk (Shift
+Delete) can be used to remove them from the project and local file system.

• Shortcut folders and files - the icons for file shortcuts include a shortcut symbol and names of folder
shortcuts are displayed in bold text. All files and folders that appear as direct descendants of a logical folder
are considered shortcuts. They are created and added with the contextual actions Add Files and Add Folder
from the project root. Both contextual menu actions Remove from Project and Remove from Disk (Shift
+Delete) are available for shortcuts. Remove from Project just removes the shortcut from the project, while

Remove from Disk (Shift+Delete) removes the shortcut and the physical resource from the local file system.

Figure 91: Project View with Examples of all Three Types of Resources

Creating New Projects

The following action is available in the Project menu, the New menu in the contextual menu, or from the drop-
down menu in the top-left of the Project view:

New Project
Creates a new, empty project.

Editing Documents 225

Creating New Project Items

The following actions are available by selecting New from the contextual menu, when invoked from the Project
view:

New > File
Opens a New file dialog box that helps you create a new file and adds it to the project structure.

New > Folder
Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure
of the project.

New > Logical Folder
Available when invoked from the project root, this action creates a logical folder in the tree structure (the icon
is a magenta folder on Mac OS X -).

New > Logical Folders from Web
Available when invoked from the project root, this action replicates the structure of a remote folder accessible
over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file
structure of the folder it points to.

Managing Physical Folders and Files

You can create physical folders by selecting New > Folder from the contextual menu.

When adding files to a project, the default target is the project root. To change a target, select a new folder. Files
may have multiple instances within the folder system, but cannot appear twice within the same folder.

Removing Files and Folders

To remove one or more linked files or folders, select them in the project tree and press the Delete key, or select
the contextual menu action Remove from Project. To remove a linked file or folder from both project and local
file system, select the contextual menu action Remove from Disk (Shift+Delete). The Remove from Disk
(Shift+Delete) action is also used to remove physical files or folders.

CAUTION: In most cases this action is irreversible, deleting the file permanently. Under particular
circumstances (if you are running a Windows installation of Oxygen XML Developer and the Recycle Bin is
active) the file is moved to Recycle Bin.

Moving Files and Folders

You can move the resources of the project with drag and drop operations on the files and folders of the tree (the
Enable drag-and-drop in Project view option must be selected in the View preferences page).

You can also use the usual Cut, Copy, and Paste actions to move resources in the Project view.

Renaming Files and Folders

There are three ways you can rename an item in the Project view. Select the item in the Project view and do one of
the following:

• Invoke the Rename action from the contextual menu.
• Press F2 and type the new name.
• Click the selected item and type the new name.

To finish editing the item name, press Enter.

Note: The Rename action is also available on logical files.

Locating and Opening Files

If a project folder contains a lot of documents, a certain document can be located quickly in the project tree by
selecting the folder containing the desired document and typing the first few characters of the document name.
The desired document is automatically selected as soon as the typed characters uniquely identify its name in the
folder.

Editing Documents 226

The selected document can be opened by pressing the Enter key, by double-clicking it, or with one of the Open
actions from the contextual menu. The files with known document types are opened in the associated editor,
while binary files are opened with the associated system application. To open a file with a known document
type in an editor other than the default one, use the Open with action. Also, dragging and dropping files from the
project tree to the editor area results in the files being opened.

Saving the Project

The project file is automatically saved every time the content of the Project view is saved or modified by actions
such as adding or removing files and drag and drop.

Linked Folders

You can create linked folders (shortcuts) by dragging and dropping folders from a system explorer to the project
tree (the Enable drag-and-drop in Project view option must be selected in the Views preferences page), or by
selecting Add Folder in the contextual menu from the project root.

To create a file inside a linked folder, select the New > File action from the contextual menu. This opens the
New Document wizard.

Note: The linked files presented in the Project view are marked with a special icon. Linked folders are displayed
in bold text.

Logical Folders

The project itself is considered a logical folder. You can add content to a logical folder using one of the actions
available in the contextual menu, when invoked from the project root:

Add Folder
Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file
system (the icon of this action is different on Mac OS X).

Add Files
Adds links to files on the local file system.

Add Edited File
Adds a link to the currently edited file in the project.

Validate Files

The currently selected files in the Project view can be checked to be XML well-formed or validated against a
schema (DTD, XML Schema, Relax NG, Schematron or NVDL) with one of the following contextual menu actions
found in the Validate submenu:

Check Well-Formedness
Checks if the selected file or files are well-formed.

Validate
Validates the selected file or files against their associated schema. EPUB files make an exception, because
this action triggers a Validate and Check for Completeness operation.

Validate with Schema
Validates the selected file of files against a specified schema.

Configure Validation Scenario(s)
Allows you to configure and run a validation scenario.

Applying Transformation Scenarios

The currently selected files in the Project view can be transformed in one step with one of the following actions
available from contextual menu in the Transform submenu:

Editing Documents 227

Apply Transformation Scenario(s)
Obtains the output with one of the built-in scenarios.

Configure Transformation Scenario(s)
Opens a dialog box that allows you to configure pre-defined transformation scenarios.

Transform with
Allows you to select a transformation scenario to be applied to the currently selected files.

Along with the logical folder support, this allows you to group your files and transform them very easily.

Refactoring Actions (Available for certain document types (such as XML, XSD, and XSL)

Oxygen XML Developer includes some refactoring operations that help you manage the structure of your
documents. The following actions are available from the contextual menu in the Refactoring submenu:

Rename resource
Allows you to change the name of a resource.

Move resource
Allows you to change the location on disk of a resource.

XML Refactoring
Opens the XML Refactoring tool wizard that presents refactoring operations to assist you with managing the
structure of your XML documents.

Other XML Refactoring Actions
For your convenience, the last 5 XML Refactoring tool operations that were finished or previewed will also
appear in this submenu.

Other Contextual Menu Actions

Other actions that are available in the contextual menu from the project tree include:
Open

Opens the selected files in the corresponding editor.
Open with submenu

This submenu allows you to open the selected file with the internal editor, a system application, or other
internal tools: Archive Browser, Generate/Convert Schema, WSDL/SOAP Analyzer, Large File Viewer, Hex
Viewer, SVG Viewer.

Show in Explorer (or Show in Finder on OS X)
In Windows, the content of the selected folder or file is presented in a specific explorer window. On MAC OS
X, the parent folder is opened and the selected folder is highlighted in a specific finder window.

Copy Location
Copies an application-specific URL for the selected resource to the clipboard.

Refresh
Refreshes the content and the dependencies between the resources in the Master Files directory.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files.

XPath in Files
Opens the XPath/XQuery Builder view that allows you to compose XPath and XQuery expressions and
execute them over the currently edited XML document.

Open/Find Resource
Opens the Open/Find Resource dialog box.

Editing Documents 228

Check Spelling in Files
Allows you to check the spelling of multiple files.

Format and Indent Files
Opens the Format and Indent Files dialog box that allows you to configure the format and indent (pretty-print)
action that will be applied on the selected documents.

Open in SVN Client
Syncro SVN Client tool is opened and it highlights the selected resource in its corresponding working copy.

Compare
Allows you to compare multiple files or directories and the order of your selection determines where they are
opened in the Compare Files or Compare Directories tool. If you select two files or folders, your first selection
will be opened in the left panel and the other one in the right panel.

You can also select 3 files and the tool will automatically be opened in the three-way comparison mode. If you
select three files, your first selection will be opened in the left panel, the second in the right panel, and the
third selection will be the base (ancestor) file.

Generate Documentation > XML Schema Documentation
Opens the XML Schema Documentation Dialog Box.

Generate Documentation > XSLT Stylesheet Documentation
Opens the XSLT Stylesheet Documentation Dialog Box.

Generate Documentation > XQuery Documentation
Opens the XQuery Documentation Dialog Box.

Generate Documentation > WSDL Documentation
Opens the WSDL Documentation Dialog Box.

Properties
Displays the properties of the current file in a Properties dialog box.

Menu Level Actions

The following actions are available in the Project menu:

New Project
Creates a new, empty project.

Open Project (Ctrl + F2 (Command + F2 on OS X))
Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Developer XPR
project file from the file explorer into the Project panel.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks
you to confirm that the project came from a trusted source. This is meant to help prevent potential security
issues.

Save Project As
Allows you to save the current project under a different name.

Validate all project files
Checks if the project files are well-formed and their mark-up conforms with the specified DTD, XML Schema,
or Relax NG schema rules. It returns an error list in the message panel.

Filters
Opens the Project filters dialog box that allows you to decide which files and directories will be shown or
hidden.

Enable Master Files Support
Allows you to enable the Master Files Support for each project you are working on.

Editing Documents 229

Change Search and Refactor operations scope
Opens a dialog box that allows you to define the context of search and refactor operations.

Show Project View
Displays the Project view.

Reopen Project
Contains a list of links of previously used projects. This list can be emptied by invoking the Clear history
action.

Moving/Renaming Resources in the Project View

The Project view allows you to move or rename files in the current project.

Moving Resources

To move a file or directory in the Project view, drag and drop it to the new location in the tree structure (the Enable
drag-and-drop in Project view option must be selected in the View preferences page), or use the usual Cut,

Copy, and Paste actions from the contextual menu or Edit menu.

You can also move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the
Refactoring > Move resource action from the contextual menu. This action opens the Move resource dialog box
that includes the following options:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, based upon the selected scope. You can select or configure the scope by using the button.

Renaming Resources

To quickly rename a file or a directory, use the in-place editing either by pressing F2 or by selecting Rename from
the contextual menu.

You can also rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the
Refactoring > Rename resource action from the contextual menu. This action opens the Rename resource dialog
box that includes the following options:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references of the renamed resource - Select this option to update the references to the resource you

are renaming. You can select or configure the scope by using the button.

Problems Updating References of Moved/Renamed Resources

In some cases, the references of a moved or a renamed resource can not be updated. For example, when a
resource is resolved through an XML Catalog or when the path to the moved or renamed resource contains
entities. For these cases, Oxygen XML Developer displays a warning dialog box.

Editing Documents 230

Figure 92: Problems Dialog Box

Image Preview from the Project View

Images and SVG files from the Project view can be previewed in a separate panel.

To preview an image, either double-click the image name or click the Preview action from the contextual menu
of the Project view. Supported image types are GIF, JPEG/JPG, PNG, BMP. Once the image is displayed in the
Preview panel using the actions from the contextual menu, you can scale the image to its original size (1:1
action) or scale it down to fit in the view's available area (Scale to fit action).

To preview an SVG file, click the Preview action from the contextual menu of the Project view. Once the SVG is
displayed in the Preview panel, the following actions are available on the contextual menu: Zoom in, Zoom out,
Rotate and Refresh.

Note: You can drag an image from the Image Preview view and drop it in a DITA, DocBook, or TEI document.

Sharing a Project - Team Collaboration
You can use XML projects to make team collaboration and synergy efficient and effective. Not only can you share
the project files and folders, but Oxygen XML Developer also allows you to store preferences, transformation
scenarios, and validation scenarios at project level in a project file (.xpr file extension). It can be saved on a
version control system (such as SVN, CVS, or Source Safe) or in a shared folder, so that your team will have
access to the same resources stored in the project file.

Sharing Preferences (Creating a Project-Level Options File)

To share options that are configured in certain preferences pages, you can store them in a project file (.xpr file
extension) that can easily be shared with others. To do so, follow these steps:

Editing Documents 231

1. You many want to use a fresh install for this procedure, to make sure that you do not copy personal or local
preferences.

2. In the Project view, create a project or open an existing one.
3. Open the Preferences dialog box (Options > Preferences).
4. Configure the options in each preferences page that you want to be included in the project file and switch the

storage preference to Project Options in each page.

Note: Some pages do not have the Project Options button, since the options they host might contain sensitive
data (such as passwords, for example) that is unsuitable for sharing with other users.

5. Click OK and close the Preferences dialog box.

All explicitly set values are now saved in the project file. You can then share the project file so that your team
will have the same option configuration that you stored in the project file.

Note: The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you
to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

Sharing Transformation Scenarios

To share created and edited transformation scenarios, you can store them in a project file (.xpr file extension) by
following these steps:

1. In the Project view, create a project or open an existing one.
2. When you create a new transformation scenario or edit an existing one, there is a Storage option. Switch the

storage preference to Project Options in each transformation scenario you want to be included in the project
file.

3. Click OK to store the scenario in the project file.

You can then share the project file so that your team will have access to the same transformation scenarios
that you stored in the project file. When you create a scenario at the project level, the URLs from the scenario
become relative to the project URL.

Note: The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you
to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

Sharing Validation Scenarios

To share created and edited validation scenarios, you can store them in a project file (.xpr file extension) by
following these steps:

1. In the Project view, create a project or open an existing one.
2. When you create a new validation scenario or edit an existing one, there is a Storage option. Switch the

storage preference to Project Options in each validation scenario you want to be included in the project file.
3. Click OK to store the scenario in the project file.

You can then share the project file so that your team will have access to the same validation scenarios that
you stored in the project file. When you create a scenario at the project level, the URLs from the scenario
become relative to the project URL.

Note: The project file extension (.xpr) must be preserved when the file is distributed to others.

Notice: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you
to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

Syncro SVN Client (Apache Subversion™)

To assist you with team collaboration and sharing projects, Oxygen XML Developer includes an embedded
SVN (Subversion) Client. Even if you start developing a new project, or you want to migrate an existing one to
Subversion, the Syncro SVN Client allows you to easily share it with the rest of your team.

Editing Documents 232

It can be accessed from the Tools menu and can be used for synchronizing your working copy with a central
repository.

It can also be started by selecting the Open in SVN Client action from the contextual menu of the Project view.
This action opens the Syncro SVN Client and shows the selected project file in the Working Copy view.

Related Information:
Sharing Application Settings on page 141
Sharing Transformation Scenarios on page 710
Sharing Validation Scenarios on page 290

Minimize Differences Between Versions Saved on Multiple Computers

The number of differences between versions of the same file saved by multiple content authors on multiple
computers can be minimized by imposing the same set of formatting options when saving the file, for all the
content authors. An example, the following procedure can be used to minimize the differences:

1. Create an Oxygen XML Developer project file (.xpr) that will be shared by all content authors.
2. Configure your own formatting preferences. To do this, open the Preferences dialog box (Options >

Preferences), go to Editor > Format, configure the appropriate options in this page, then go to Editor >
Format > XML and configure the options there.

3. Save the configured options into your project file by selecting Project Options in both of the preferences
pages.

4. Save the project and commit the project file to your versioning system so all the content authors can use it.
5. Make sure the project is opened in the Project view.
6. Open and save your XML files in the Author mode.
7. Commit the saved XML files to your versioning system.

When other content authors change the files, only the changed lines will be displayed in your diff tool instead of
one big change that does not allow you to see the changes between two versions of the file.

Master Files Support
Oxygen XML Developer allows you to define Master Files at project level. These master files are automatically
used by Oxygen XML Developer to determine the context for operations such as validation, content completion,
refactoring, or searches for XML, XSD, XSL, WSDL, and RNG modules. Oxygen XML Developer maintains the
hierarchy of the master files, helping you to determine the editing context.

To watch our video demonstrations about the Master Files support for XML documents, XSL documents, and
WSDL documents, see Working with Modular XML Files, Master Files Support, and Working with Modular WSDL
Files.

Master Files Benefits

Using the Master Files support in Oxygen XML Developer includes the following benefits:

• When the module is validated, Oxygen XML Developer automatically identifies the master files that include the
module and validates all of them.

• The Content Completion Assistant presents all the components that are collected from the master files for the
modules they include.

• The Outline view displays all the components that are defined in the master files hierarchy.
• The master files that are defined for the current module determines the scope of the search and refactoring

actions. Oxygen XML Developer performs the search and refactoring actions in the context that the master
files determine, thus improving the speed of execution.

Enabling the Master Files Support

Oxygen XML Developer stores the master files in a folder located in the Project view, as the first child of the
project root. The Master Files Support is disabled by default and Oxygen XML Developer allows you to enable or
disable the Master Files Support for each project you are working on.

Editing Documents 233

https://www.oxygenxml.com/demo/Working_With_XML_Modules.html
https://www.oxygenxml.com/demo/MasterFilesSupport.html
https://www.oxygenxml.com/demo/WSDL_Working_Modules.html
https://www.oxygenxml.com/demo/WSDL_Working_Modules.html

To enable Master Files support, do one of the following:

• Select Enable Master Files Support from the Settings menu in the top-right corner of the Project view.
• Select Enable Master Files Support from the contextual menu of the project root folder in the Project view. If a

disabled Master Files folder exists, you can also select that option from its contextual menu.
• Click the Enable button in the tooltip located at the bottom of the Project view. This tooltip window is

displayed when the Master Files support is disabled. Clicking the Read more link takes you to the user guide.
Clicking the Enable button opens the Enable Master Files dialog box. This dialog box contains general
information about the Master Files Support and allows you to enable it. You can also use the Detect and
Enable button in this dialog box to detect the master files from the current project.

Warning: Once you close this window tip, Oxygen XML Developer hides it for all projects. You can
make the window tip reappear by resetting Oxygen XML Developer to its default settings. However,
doing so will result in you losing your customized options.

Related Information:
Detecting Master Files on page 234
Adding Files to the Master File Directory on page 235

Detecting Master Files

Oxygen XML Developer allows you to detect the master files using the Detect Master Files option. This action
applies to the folders you select in the project.

To detect master files over the entire project, do one of the following:

• Right-click the root of the project and select Detect Master Files.
• Use the Detect Master Files from Project option, available in the contextual menu of the Master Files

folder.

Both of these options display the Detect Master Files wizard. In the first panel you can select the type of master
files you want Oxygen XML Developer to detect. In the subsequent panel the detected master files are presented
in a tree-like fashion.The resources are grouped into three categories:

• Possible master files - The files presented on the first level in this category are not imported or included from
other files. These files are most likely to be set as master files.

Note: For DITA projects, only DITA Maps are reported as possible master files.
• Cycles - The files that are presented on the first level have circular dependencies between them. Any of the

files presented on the first level of a cycle is a possible master file.
• Standalone - Files that do not include or import other files and are also not included or imported themselves. It

is not necessary to set them as master files.

To set them as master files, simply select their checkboxes. Oxygen XML Developer marks all the children of
a master file as modules. Modules are rendered in gray and their tool-tip presents a list of their master files. A
module can be accessed from multiple master files.

The master files that are already defined in the project are automatically marked in the tree and cannot be
removed. The only way to disable a master file is to delete it from the Master Files folder.

The next panel displays a list with the selected master files. Click the Finish button to add the master files in the
Master Files folder.

You can use the Select Master Files option to automatically mark all master files. This action sets all the
resources from the Possible Master Files category and the first resource of each Cycle as master files . The
Deselect All button simply removes all of your selections.

Tip: We recommend that you to only add top-level files (files that are at the root of the include/import graph) in
the Master Files directory. Keep the file set to a minimum and only add files that import or include other files.

Attention: If the Master Files Support is disabled, the Master Files directory is rendered only if it
contains master files.

Editing Documents 234

Related Information:
Enabling the Master Files Support on page 233
Adding Files to the Master File Directory on page 235

Adding Files to the Master File Directory

The Master Files directory only contains logical folders and linked files. To add files in the Master Files
directory, use one of the following methods:

• Right-click a file from your project and select Add to Master Files from the contextual menu.
• Select Add Files or Add Edited File from the contextual menu of the Master Files directory.
• Drag and drop files into the Master Files directory.
• From the contextual menu of the Resource Hierarchy Dependencies view, use the Add to Master Files

action.

You can view the master files for the current resource by selecting Properties from the contextual menu of the
Project view and the master files for the current editor in the Properties and Information views.

Related Information:
Enabling the Master Files Support on page 233
Detecting Master Files on page 234

Project Validation and Transformation

The Master Files Support is also useful for project-level validation and transformation scenarios. When you
hover the cursor over a file in the Master Files directory, Oxygen XML Developer displays the Validate and

Transform buttons at the right of the file. Select one of these buttons to run a transformation or validation
scenario. If the current node is selected, Oxygen XML Developer executes a batch transformation and validation.
If the current node is not selected, Oxygen XML Developer executes the validation and transformation for the
current node only. The behavior of these actions is the same as the behavior of the corresponding actions that are
available in the contextual menu.

Note: The tooltip of the Validate and Transform buttons displays the associated scenarios that you can
apply.

When you hover the cursor over the Master Files directory itself, Oxygen XML Developer also displays a
Help button. Use this button (or press F1 on your keyboard) to open the Help section regarding the Master Files

Support.

Contextual Menu of the Master Files

The contextual menu of the Master Files directory contains the following actions:
New

Allows you to create a File, Logical Folder, or Project.

Add Files
Allows you to add master files to the Master Files directory.

Add Edited File
Use this option to add the currently edited file to the Master Files directory.

Open
Opens all the files of the Master Files directory.

Paste
Pastes the files you copy in the Master Files directory.

Rename
Allows you to rename a file in the Master Files directory.

Editing Documents 235

Refresh
Refreshes the content of the Master Files directory.

Find/Replace in Files
Opens the Find/Replace dialog box.

XPath in Files
Opens the XPath/XQuery Builder view that allows you to compose XPath and XQuery expressions and
execute them over the currently edited XML document.

Open/Find Resource
Opens the Open/Find Resource dialog box.

Check Spelling in Files
Opens the Check Spelling in Files dialog box.

Format and Indent Files
Opens the Format and Indent Files dialog box that allows you to configure the format and indent (pretty-print)
action that will be applied on the selected documents.

Transform
Provides access to one of the following actions:

Apply Transformations Scenario(s)
Applies the transformation scenarios associated with the Master Files directory.

Configure Transformation Scenario(s)
Opens the Configure Transformation Scenario dialog box.

Transform with
Opens the Transform with dialog box that allows you to select the transformation scenario you want to
execute.

Validate
Provides access to one of the following actions:

Check Well-Formedness
Allows you to check if a document is Namespace Well-Formed XML.

Validate
Oxygen XML Developer performs the validation of the master files.

Validate with Schema
Opens the Validate with dialog box. Oxygen XML Developer performs the validation of the master files
using a schema.

Configure Validation Scenario(s)
Opens the Configure Validation Scenario dialog box.

Detect Master Files from Project
Enables automatic detection of master files.

Enable Master Files Support
Select this option to enable the Master Files Support.

Editing Documents 236

Editing XML Documents
This section explains the various features in Oxygen XML Developer for editing XML documents. It includes
information about the user interface components and actions that are available in the various editing modes and
numerous features to help you edit XML documents in any mode.

Related Information:
Text Editing Mode on page 163
Grid Editing Mode on page 185

Editing XML Documents in Text Mode
The Oxygen XML Developer Text editing mode is designed to be a simple, yet powerful, XML source editor. You
can use this mode to edit XML code, markup, and text and it provides support to help you transform, and debug
XML-based documents. It is similar to other common text editors, but Oxygen XML Developer also includes
specialized editing actions, a powerful Content Completion Assistant, a helpful Outline view, and many other
unique features.

To switch to this mode, select Text at the bottom of the editing area.

Navigating the Document Content in Text Mode

Oxygen XML Developer includes some useful features to help you navigate XML documents in Text mode.

Using the Keyboard

Oxygen XML Developer allows you to quickly navigate through a document using the Ctrl + CloseBracket
(Command + CloseBracket on OS X) key to go to the next XML node and Ctrl + OpenBracket (Command +
OpenBracket on OS X) to go to the previous one.

To navigate one word forward or backwards, use Ctrl + RightArrow (Command + RightArrow on OS X), and Ctrl
+ LeftArrow (Command + LeftArrow on OS X), respectively. To position the cursor at the beginning or end of the
document you can use Ctrl + Home (Command + Home on OS X), and Ctrl + End (Command + End on OS X),
respectively.

Navigation Buttons

Oxygen XML Developer includes some actions that help you to quickly navigate to a particular modification.
These navigation buttons are available in the main toolbar and the actions can also be accessed from the Find
menu. The three actions include:

•
Last Modification - Moves the cursor to the last modification in any opened document.

•
Back - Moves the cursor to the previous position.

•
Forward - Moves the cursor to the next position. Available after you use the Back button at least once.

Navigating with the Outline View

Oxygen XML Developer includes a very useful Outline view that displays a hierarchical tag overview of the
currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is
synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are
highlighted in the editor area.

Editing Documents 237

Figure 93: Outline View Navigation in Text Mode

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can
also be used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 94: Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current element is
also highlighted by a thin light blue bar for easy identification. Clicking an element from the breadcrumb selects
the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go to dialog
box. To open this dialog box, go to Find > Go to (Ctrl+L (Command+L on OS X)).

Figure 95: Go to Dialog Box

The dialog box includes the following fields for specifying a specific navigation location:

• Line - Destination line in the current document.
• Column - Destination column in the current document.
• Offset - Destination offset relative to the beginning of document.

Navigating with Bookmarks

By using bookmarks, you can mark positions in an edited document so that you can return to it later. This is
especially helpful for navigating through large documents or while editing multiple documents. You can place up
to nine distinct bookmarks in any document. Shortcut keys are available to place the bookmarks or to return to
any of the marked positions. You can configure these shortcut keys in the Options > Menu Shortcut Keys menu.

Figure 96: Editor Bookmarks

A bookmark can be inserted in Text mode by doing one of the following:

• Click in the vertical stripe on the left side of the editor (to the left of the line number).

Editing Documents 238

• Select the Create Bookmark (F9) action from the Edit > Bookmarks menu.

A bookmark can be removed by right-clicking its icon on the vertical stripe and selecting Remove or Remove all
(Ctrl+F7 (Command+F7 on OS X)).

You can navigate the bookmarks by using one of the actions available on the Edit > Bookmarks > Go to menu or
by using the shortcut keys that are listed in that menu.

Smart Editing in Text Mode

Oxygen XML Developer includes smart editing features to help you edit XML documents in Text mode. The
following smart editing features are included:

• Closing tag auto-expansion - This feature helps save some keystrokes by automatically inserting a closing tag
when you insert a complete start tag and the cursor is automatically placed in between the start and end tags.
For instance, after entering a start <tag>, the corresponding closing </tag> is automatically inserted and the
cursor is placed between the two (<tag>|</tag>.

• Auto-rename matching tag - When you edit the name of a start tag, Oxygen XML Developer will mirror-edit the
name of the matching end tag. This feature can be controlled from the Content Completion option page.

• Auto-breaking the edited line - The Hard line wrap option automatically breaks the edited line when its length
exceeds the maximum line length defined for the format and indent operation.

• Indent on Enter - The Indent on Enter option indents the new line inserted when you press Enter.
• Smart Enter - The Smart Enter option inserts an empty line between the start and end tags. If you press Enter

between a start and end tag, the action places the cursor in an indented position on the empty line between
the lines that contain the start and end tag.

• Double-click - A double-click selects certain text, depending on the position of the click in the document:

• If the click position is on a start tag or end tag, then the element name is selected.
• If the click position is immediately after the opening quote or immediately before the closing quote of an

attribute value, then the entire attribute value is selected.
• Otherwise, a double-click selects contiguous text.

• Triple-click - A triple-click selects entire regions of text, depending on the click position:

• If the click position is on a start or end tag, then the entire tag is selected, including the start and end tags,
and the content in between.

• If the click position is after a start tag or before an end tag, then the entire content of the element without
the start and end tags is selected.

• If the click position is before a start tag or after an end tag, then the entire tag is selected, including the
start and end tags, and the content in between.

• If the click position is immediately before an attribute, then the entire attribute and its value is selected.
• If the click position is in between the opening and closing quotes of an attribute value, then the entire

attribute value is selected.
• Otherwise, it selects the entire current line of text.

Shortcut Actions in Text Mode

Oxygen XML Developer includes numerous shortcut actions to help you edit content in the Text editing mode.

Changing the Font Size (Zoom)

The font size of the editor panel can be changed with the following actions that are available with shortcuts or in
the Document > Font size menu:
Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on OS X) or Ctrl + MouseWheelForward
(Windows/Linux)

Increases the font size (zooms in) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming option in the Editor preferences page,
you can use Command + MouseWheelForward to increase the font size (zoom in). It is disabled by default
due to the way inertia affects the mouse wheel on Mac OS X.

Editing Documents 239

Decrease editor font (Ctrl + NumPad- (Command + NumPad- on OS X) or Ctrl + MouseWheelBackwards
(Windows/Linux)

Decreases the font size (zooms out) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming option in the Editor preferences page,
you can use Command + MouseWheelBackwards to decrease the font size (zoom out). It is disabled by
default due to the way inertia affects the mouse wheel on Mac OS X.

Normal editor font (Ctrl + 0 (Command + 0 on OS X))
Resets the font size to the value of the editor font set in the Fonts preferences page.

Undo/Redo Actions

The typical undo and redo actions are available with shortcuts or in the Edit menu:

Undo (Ctrl + Z (Command + Z on OS X))
Reverses a maximum of 200 editing actions (configurable with the Undo history size option in the Editor
preferences page) to return to the preceding state.

Note: Complex operations such as Replace All or Indent selection count as single undo events.

Redo (Ctrl + Y (Command + Shift + Z on OS X, Ctrl + Shift + Z on Linux/Unix))
Recreates a maximum of 100 editing actions that were undone by the Undo function.

Copy and Paste Actions

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit menu):

Cut (Ctrl + X (Command + X on OS X))
Removes the current selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on OS X))
Places a copy of the current selected content in the clipboard.

Paste (Ctrl + V (Command + V on OS X))
Inserts the current clipboard content into the document at the cursor position.

Select All (Ctrl + A (Command + A on OS X))
Selects the entire content of the current document.

Moving XML Nodes

You can use the following shortcuts to move XML elements or XSLT variables up or down in Text mode:
Ctrl + Alt + UpArrow (Command + Alt + UpArrow on OS X)

Moves the node up one line.
Ctrl + Alt + DownArrow (Command + Alt + DownArrow on OS X)

Moves the node down one line.

Note: The requirements for these node moving actions to work are as follows:

• The mechanism is designed to work without a selection. If you use these actions on a selection of content, it
moves the entire selection. To make this mechanism work as intended, simply position the cursor somewhere
on the line that you want to move.

• A start tag must be the first text occurrence on the line where the cursor is positioned.
• On the line where the element ends, only whitespaces are allowed after the end tag.

Miscellaneous Shortcut Actions in Text Mode

Oxygen XML Developer also includes the following other miscellaneous shortcut actions in Text mode:

Editing Documents 240

Ctrl + Delete (Command + Delete on OS X)
Deletes the next word.

Ctrl + Backspace (Command + Backspace on OS X)
Deletes the previous word.

Ctrl + W (Command + W on OS X)
Cuts the previous word.

Ctrl + K (Command + K on OS X)
Cuts to end of line.

Ctrl + Single-Click (Command + Single-Click on OS X)
Use this shortcut to open any of the following:

• Any absolute URL (URLs that have a protocol), regardless of their location in the document.
• URI attributes such as: schemaLocation, noNamespaceSchemaLocation, href and others.
• Processing instructions used for associating resources, xml-models, xml-stylesheets.

Ctrl + Shift + Y (Command + Shift + Y on OS X) (Document > Edit > Toggle Line Wrap)
Enables or disables line wrapping. When enabled, if text exceeds the width of the displayed editor, content is
wrapped so that you do not have to scroll horizontally.

Related Information:
Frequently Used Shortcut Keys on page 10

Editing XML Markup in Text Mode

Oxygen XML Developer includes some useful actions that allow you to easily edit XML markup in Text mode.
These actions are available in the Refactoring submenu of the contextual menu and in the Document > Markup
menu, and many of the actions can also be done with simple keyboard shortcuts.

Using the Breadcrumb

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can
also be used as a helpful tool to insert and edit specific elements in the document structure.

Figure 97: Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current element is
also highlighted by a thin light blue bar for easy identification. Clicking an element in the breadcrumb selects the
entire element in the editor area. Also, each element provides a contextual menu with access to the following
actions:
Append Child

Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it as a child of the current element.

Insert Before
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it immediately before the current element, as a sibling.

Insert After
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it immediately after the current element, as a sibling.

Edit Attributes
Opens an editing window that allows you to edit the attributes of the currently selected element.

Toggle Comment
Encloses the currently selected element in an XML comment, if the element is not already commented. If it is
already commented, this action will remove the comment.

Editing Documents 241

Cut
Removes the selected element and copies it to the clipboard.

Copy
Copies the selected element to the clipboard.

Delete
Deletes the currently selected element.

Move Nodes

You can easily move XML nodes in the current document by using the following shortcut keys:

Alt + UpArrow
Moves the current node or selected nodes in front of the previous node.

Alt + DownArrow
Moves the current node or selected nodes after the subsequent node.

Rename Elements

You can rename elements by using the following actions in the Refactoring submenu of the contextual menu (or
from the Document > Markup menu):

Rename Element
The element from the cursor position, and any elements with the same name, can be renamed according with
the options from the Rename dialog box.

Rename Prefix (Alt + Shift + P (Command + Shift + P on OS X))
The prefix of the element from the cursor position, and any elements with the same prefix, can be renamed
according with the options from the Rename dialog box.

• If you select the Rename current element prefix option, the application will recursively traverse the current
element and all its children. For example, to change the xmlns:p1="ns1" association in the current
element to xmlns:p5="ns1", if the xmlns:p1="ns1" association is applied on the parent element, then
Oxygen XML Developer will introduce xmlns:p5="ns1" as a new declaration in the current element and
will change the prefix from p1 to p5. If p5 is already associated with another namespace in the current
element, then the conflict will be displayed in a dialog box. By pressing OK, the prefix is modified from p1
to p5 without inserting a new declaration.

• If you select the Rename current prefix in all document option, the application will apply the change on the
entire document.

• To also apply the action inside attribute values, select the Rename also attribute values that start with the
same prefix checkbox.

Surround Content with Tags (Wrap)

You can surround a selection of content with tags (wrap the content) by using the following action in the
Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Surround with submenu
Presents a drop-down menu that allows you to choose a tag to surround a selected portion of content.

Surround with Tags (Ctrl + E (Command + E on OS X))
Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the start and
end tags are inserted at the cursor position.

• If the Position cursor between tags option is selected in the Content Completion preferences page, the
cursor is placed between the start and end tag.

• If the Position cursor between tags option is not selected in the Content Completion preferences page, the
cursor is placed at the end of the start tag, in an insert-attribute position.

Editing Documents 242

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))
Surround the selected content with the last tag used.

Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the Refactoring submenu of the
contextual menu (or from the Document > Markup menu):

Delete element tags (Alt + Shift + X (Command + Alt + X on OS X))
Deletes the start and end tag of the current element.

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring submenu
of the contextual menu (or from the Document > Markup menu):

Join elements (Alt + Shift + J (Command + Alt + J on OS X))
Joins the left and right elements relative to the current cursor position. The elements must have the same
name, attributes, and attributes values.

Split element (Alt + Shift + D (Ctrl + Alt + D on OS X))
Split the element from the cursor position into two identical elements. The cursor must be inside the element.

Other Refactoring Actions

You can also manage the structure of the markup by using the other specific XML refactoring actions that are
available in the Refactoring submenu of the contextual menu:

Attributes submenu
Contains predefined XML refactoring operations that pertain to attributes with some of the information
preconfigured based upon the current context.

Add/Change attribute
Allows you to change the value of an attribute or insert a new one.

Delete attribute
Allows you to remove one or more attributes.

Rename attribute
Allows you to rename an attribute.

Replace in attribute value
Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

Comments submenu
Contains predefined XML refactoring operations that pertain to comments with some of the information
preconfigured based upon the current context.

Delete comments
Allows you to delete comments found inside one or more elements.

DITA submenu
Contains predefined XML refactoring operations that pertain to DITA documents with some of the information
preconfigured based upon the current context.

Change topic ID to file name
Use this operation to change the ID of a topic to be the same as its file name.

Convert conrefs to conkeyrefs
Use this operation to convert conref attributes to conkeyref attributes.

Editing Documents 243

Convert simple tables to CALS tables
Use this operation to convert DITA simple tables to CALS tables.

Convert to Concept
Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to
Concept).

Convert to Reference
Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic
to Reference).

Convert to Task
Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to
Task).

Convert to Topic
Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting
Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example,
Topic to Troubleshooting).

Elements submenu
Contains predefined XML refactoring operations that pertain to elements with some of the information
preconfigured based upon the current context.

Delete element
Allows you to delete elements.

Delete element content
Allows you to delete the content of elements.

Insert element
Allows you to insert new elements.

Rename element
Allows you to rename elements.

Unwrap element
Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

Wrap element
Allows you to surround elements with element tags.

Wrap element content
Allows you to surround the content of elements with element tags.

Fragments submenu
Contains predefined XML refactoring operations that pertain to XML fragments with some of the information
preconfigured based upon the current context.

Insert XML fragment
Allows you to insert an XML fragment.

Replace element content with XML fragment
Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment
Allows you to replace elements with an XML fragment.

JATSKit submenu
Contains predefined XML refactoring operations that pertain to JATS documents with some of the
information preconfigured based upon the current context.

Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0
Adds an NLM 'BITS' 2.0 DOCTYPE declaration.

Editing Documents 244

Add Blue DOCTYPE - NISO JATS Publishing 1.1
Adds a JATS 'Blue' 1.1 DOCTYPE declaration.

Normalize IDs
Assigned IDs are normalized and IDs are assigned to some elements that are missing them.

Related Information:
Refactoring XML Documents on page 321
Contextual Menu Actions in Text Mode on page 264
Frequently Used Shortcut Keys on page 10

Folding XML Elements in Text Mode

When working with a large document, the folding support in Oxygen XML Developer can be used to collapse some
element content leaving only those that you need to edit in focus. Expanding and collapsing works on individual
elements. Expanding an element leaves the child elements unchanged.

By default, the folding feature is enabled in Oxygen XML Developer, but it can be disabled in the Text preferences
page with the Enable folding option.

Figure 98: Folding of XML Elements in Text Mode

The fact that the folds are persistent is a unique feature of Oxygen XML Developer. The next time you open the
document the folds are restored to its last state.

Folding Actions in Text Mode

Element folds are marked with a small triangle (/) in the left stripe. To toggle the fold, simply click the icon.
Also, if you right-click the icon, the following actions are available:

Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))
Folds all the elements except the current element.

Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))
Folds the child elements that are indented one level inside the current element.

Expand Child Folds
Unfolds all child elements of the currently selected element.

Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))
Unfolds all elements in the current document.

To watch our video demonstration about the folding support in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/FoldingSupport.html.

Drag and Drop in Text Mode

To move a whole region of text to other location in the same edited document, just select the text, drag the
selection by holding down the left mouse button and drop it to the target location.

You can also copy content from other applications and paste it into the document.

Editing Documents 245

https://www.oxygenxml.com/demo/FoldingSupport.html
https://www.oxygenxml.com/demo/FoldingSupport.html

Selecting Content in Text Mode

Oxygen XML Developer includes a variety of keyboard shortcuts that allow you to select content in Text mode.
These include numerous standard continuous selection possibilities that are common to many text editors, as
well as a selection feature that allows you to select a rectangular area within a document in Text mode.

Standard Continuous Selection Shortcuts

Ctrl + A (Meta + A on Mac OS X)
Selects all content in the document.

Shift + Left/Right Arrow Keys
Begins a continuous selection at the cursor position and extends it one character at a time in the direction
that you press the arrow keys.

Shift + Up/Down Arrow Keys
Begins a continuous selection at the cursor position and extends it one line at a time in the direction that you
press the arrow keys.

Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on Mac OS X)
Begins a continuous selection at the cursor position and extends it one word at a time in the direction that
you press the arrow keys.

Shift + Home
Begins a continuous selection at the cursor position and extends it to the beginning of the current line (on
Mac OS X, it extends to the beginning of the document).

Shift + End
Begins a continuous selection at the cursor position and extends it to the end of the current line (on Mac OS
X, it extends to the end of the document).

Ctrl + Shift + Home
Begins a continuous selection at the cursor position and extends it to the beginning of the document.

Ctrl + Shift + End
Begins a continuous selection at the cursor position and extends it to the end of the document.

Shift + PageUp
Begins a continuous selection at the cursor position and extends it up one screen page.

Shift + PageDown
Begins a continuous selection at the cursor position and extends it down one screen page.

Double-Click
Selects certain text, depending on the position of the click in the document. See Smart Editing Double-Click for
the specifics.

Triple-Click
Selects entire regions of text, depending on the position of the click in the document. See the Smart Editing
Triple-Click for the specifics.

Right-Click > Select > Element
Selects the entire element at the current cursor position.

Right-Click > Select > Content
Selects the entire content of the element at the current cursor position, excluding the start and end tag.
Performing this action repeatedly will result in the selection of the content of the ancestor of the currently
selected element content.

Right-Click > Select > Attributes
Selects all the attributes of the element at the current cursor position.

Right-Click > Select > Parent
Selects the entire parent element at the current cursor position.

Editing Documents 246

Rectangular Selection Shortcuts

Oxygen XML Developer also includes some keyboard shortcuts that allow you to select a rectangular block of
content in Text mode and you can then copy, cut, paste, delete, or edit the selection.

Attention: The rectangular selection shortcuts will not work if the Line Wrap option is selected in the Text
preferences page.

The following shortcuts can be used to create a rectangular selection:
Alt + Mouse Click + Mouse Movement (Alt + Meta + Mouse Click + Mouse Movement on Mac OS X)

Begins a rectangular selection at the mouse click position and extends it in the direction that you move the
mouse. Release Alt (Alt + Meta on Mac OS X) to enter the in-place editing mode.

Shift + Alt + Left/Right Arrow Keys (Shift + Alt + Meta + Left/Right Arrow Keys on Mac OS X)
Begins a rectangular selection at the cursor position and extends it one character at a time in the direction
that you press the arrow keys (you can also use the mouse to extend the selection).

Shift + Alt + Up/Down Arrow Keys (Shift + Alt + Meta + Up/Down Arrow Keys on Mac OS X)
Begins a rectangular selection at the cursor position and extends it one line at a time in the direction that you
press the arrow keys (you can also use the mouse to extend the selection).

Ctrl + Shift + Alt + Left/Right Arrow Keys (Ctrl + Shift + Alt + Meta + Left/Right Arrow Keys on Mac OS X)
Begins a rectangular selection at the cursor position and extends it one word at a time in the direction that
you press the arrow keys.

Shift + Alt + Home (Shift + Alt + Meta + Home on Mac OS X)
Begins a rectangular selection at the cursor position and extends it to the beginning of the current line.

Shift + Alt + End (Shift + Alt + Meta + End on Mac OS X)
Begins a rectangular selection at the cursor position and extends it to the end of the current line.

Shift + Alt + PageUp (Shift + Alt + Meta + PageUp on Mac OS X)
Begins a rectangular selection at the cursor position and extends it up one screen page.

Shift + Alt + PageDown (Shift + Alt + Meta + PageDown on Mac OS X)
Begins a rectangular selection at the cursor position and extends it down one screen page.

You can then use standard editing actions to copy, cut, paste, or delete the entire selection.

In-Place Editing Mode

To edit the content of the rectangular selection, you can enter an in-place editing mode by releasing the Alt key
(on Mac OS X, release both Alt & Meta). Once you are in the editing mode, you can simply use your keyboard to
edit the entire selection of content, or click anywhere inside the selection to edit the content at the cursor position
for all lines within the selection at once (as if the rectangular selection is a selection of columns). To exit the
editing mode, press either Enter or Esc.

Content Completion Assistant in Text Mode

Oxygen XML Developer includes an intelligent Content Completion Assistant that offers rapid, inline identification
and insertion of structured language elements, attributes, and attribute values. Oxygen XML Developer shows the
available entries that are valid in the current editing context.

Figure 99: Content Completion Assistant

Editing Documents 247

The Content Completion Assistant feature is schema-driven (XML Schema, DTD, and RELAX NG) and status
information about the detected schema is logged in the Information view.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options >
Preferences), go to Editor > Content Completion, and deselect the Enable content completion option.

Using the Content Completion Assistant in Text Mode

The feature is activated in Text mode in the following situations:

• After you press the < character when inserting an element, it is automatically activated after a short delay. You
can adjust the activation delay with the Activation delay of the proposals window (ms) option from the Content
Completion preferences page.

• After typing a partial element or attribute name, you can manually activate it by pressing Ctrl + Space
(Command + Space on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only
one valid proposal at the current location, it is inserted without displaying the list of proposals.

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. For each
selected item in the list, the Content Completion Assistant displays a documentation window. You can customize
the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Text mode, do one of the following:

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a
position suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor
between the tags in a position where you can start typing content.

Note: When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly added
element, they are inserted automatically only if the Add Element Content option (in the Content Completion
preferences page) is selected. The Content Completion Assistant can also add optional content and first choice
particle, as specified in the DTD, XML Schema, or RELAX NG schema. To activate these features, select the Add
optional content and Add first Choice particle options in the Content Completion preferences page.

After inserting an element, the cursor is positioned:

• Before the > character of the start tag, if the element allows attributes, to allow rapid insertion of any of the
attributes supported by the element. Pressing the space bar displays the Content Completion list once again.
This time it contains the list of allowed attribute names. If the attribute supports a fixed set of parameters,
the assistant list displays the list of valid parameters. If the parameter setting is user-defined and therefore
variable, the assistant is closed to allow manual insertion. The values of the attributes can be learned from the
same elements in the current document

• After the > character of the start tag if the element has no attributes.

Where the Content Completion Assistant is Displayed

The Content Completion Assistant is displayed:

• Anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD,or
Relax NG (full or compact syntax) schema.

• Anywhere within an attribute name or at the beginning of an attribute name in any XML document with an
associated schema.

• Within attribute values or at the beginning of attribute values in XML documents where lists of possible values
have been defined for that element in the schema associated with the document.

Types of Proposals Listed in the Content Completion Assistant

The following things are considered for determining the proposals that are listed in the content completion
window:

• The proposals that populate the Content Completion Assistant depend on the element structure specified in
the DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema associated with the edited
document.

Editing Documents 248

Note: The Content Completion Assistant is able to offer elements defined both by XML Schemas version 1.0
and 1.1.

• The number and type of elements displayed by the Content Completion Assistant is dependent on the cursor's
current position in the structured document. The child elements displayed within a given element are defined
by the structure of the specified DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL
schema.

• A schema may declare certain attributes as ID or IDREF/IDREFS. When the document is validated, Oxygen XML
Developer checks the uniqueness and correctness of the ID attributes. It also collects the attribute values
declared in the document to prepare the list of proposals. This is available for documents that use DTD, XML
Schema, and Relax NG schema.

• Values of all the xml:id attributes are handled as ID attributes. They are collected and displayed by the
Content Completion Assistant as possible values for anyURI attributes defined in the schema of the edited
document. This works only for XML Schema and Relax NG schemas.

• For documents that use an XML Schema or Relax NG schema, the content assistant offers proposals for
attributes and elements values that have an enumeration of tokens as the type. Also, if a default value or fixed
value is defined in the XML Schema used in validation for an attribute or element, then that value is offered in
the Content Completion Assistant window.

Related Information:

Set Schema to be Used for Content Completion in Text Mode

The list of proposals in the Content Completion Assistant depend on the associated schemas. The DTD, XML
Schema, Relax NG, or NVDL schema used to populate the Content Completion Assistant is specified in the
following methods, in the order of their precedence:

• The schema specified explicitly in the document. In this case, Oxygen XML Developer reads the beginning of
the document and resolves the location of the DTD, XML Schema, Relax NG schema, or NVDL schema.

• The default schema declared in the Document Type configuration dialog box that matches the edited document
type.

• For XSLT stylesheets, the schema specified in the Oxygen XML Developer XSL preferences page. Oxygen XML
Developer will read the content completion settings when the prolog fails to provide or resolve the location of
a DTD, XML Schema, Relax NG, or NVDL schema.

• For XML Schemas, the schema specified in the Oxygen XML Developer XSD preferences page. Oxygen XML
Developer will read the content completion settings and the specified schema will enhance the content
completion inside the xs:annotation/xs:appinfo elements of the XML Schema.

Oxygen XML Developer creates the content completion lists by analysing the detected schema and the current
context (the position in the editor). If you change the schema, then the list of tags to be inserted is also updated.

Figure 100: Example: Content Completion Driven by DocBook DTD

Schema Annotations in Text Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a
schema. If such a schema is associated with an XML document, the annotations are displayed in:

• The Content Completion Assistant.

Editing Documents 249

• A small tooltip window shown when the mouse hovers over an element or attribute. The tooltip window can be
invoked at any time by using the F2 shortcut.

The schema annotations support is available if the schema type is one of the following:

• XML Schema
• Relax NG
• NVDL schema
• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content
Completion Assistant option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves
the visual appearance and readability of the documentation window displayed when editing XML documents
validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least one
HTML element (such as div, body, p, br, table, ul, or ol).

The HTML rendering is controlled by the Show annotations using HTML format, if possible option in the
Annotations preferences page. When this options is deselected, the annotations are converted and displayed
as plain text and if the annotation contains one or more HTML tags (p, br, ul, li), they are rendered as an
HTML document loaded in a web browser. For example, p begins a new paragraph, br breaks the current line, ul
encloses a list of items, and li encloses an item of the list.

Collecting Annotations from XML Schemas

In an XML Schema, the annotations are specified in an <xs:annotation> element like this:

<xs:annotation>
 <xs:documentation>
 Description of the element.
 </xs:documentation>
</xs:annotation>

If an element or attribute does not have a specific annotation, then Oxygen XML Developer looks for an
annotation in the type definition of that element or attribute.

Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the <documentation> element from
the http://relaxng.org/ns/compatibility/annotations/1.0 namespace. However, any element
outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as annotation
and the text content is displayed in the annotation window. To activate this behavior, select the Use all Relax NG
annotations as documentation option in the Annotations preferences page.

Collecting Annotation from DTDs

For DTD, Oxygen XML Developer defines a custom mechanism for annotations using comments enabled by
the Prefer DTD comments that start with "doc:" as annotations option in the Annotations preferences page. The
following is an example of a DTD annotation:

<!--doc:Description of the element. -->

Content Completion Helper Views

Information about the current element being edited is also available in various dockable views, such as the Model
view, Attributes view, Elements view, and Entities view. By default, they are located on the right-hand side of the
main editor window. These views, along with the powerful Outline view, provide spatial and insight information
about the edited document and the current element. If any particular view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Editing Documents 250

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation
in the schema of the current document. By default, it is located on the right side of the editor. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 101: Model View

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The
information includes the name, model, and attributes of the current tag. The allowed attributes are shown along
with imposed restrictions, if any.

Figure 102: Element Structure Panel

Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is
collected from the XML schema.

Editing Documents 251

Figure 103: Annotation panel

Attributes View in Text Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document.
By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the
Window > Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

• The names of the attributes are rendered with a bold font, and their values with a plain font.
• Default values are rendered with a plain font, painted gray.
• Empty values display the text "[empty]", painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column . If the possible values of
the attribute are specified as list in the schema of the edited document, the Value column acts as a combo box
that allows you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as
follows:

• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order,

followed by the rest of the allowed elements sorted in ascending order.

Figure 104: Attributes View

Expand/Collapse Button

There is an Expand/ Collapse button at the top-right of the view. When expanded, this presents the following
additional combo boxes:

Editing Documents 252

Name Combo Box
Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed
by the schema of the document, as in the Attributes view. You can use the Remove button to delete an
attribute and its value from the selected element.

Value Combo Box
Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined
values in the schema, the drop-down list displays those possible values. You can use the Browse button to
select a URL for the value of an attribute. After you have entered or selected a value, use the Update button
(or press Enter) to add the value to the attribute.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Text mode:

Add
Allows you to insert a new attribute.

Set empty value
Specifies the current attribute value as empty.

Remove
Removes the attribute (action available only if the attribute is specified). You can invoke this action by
pressing the (Delete) or (Backspace) keys.

Copy
Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

• The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Paste
Depending on the content of the clipboard, the following cases are possible:

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The
attribute is selected and its value is changed if they exist in the Attributes view.

• If the clipboard contains an attribute name with an empty value, the attribute is introduced in the
Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists
in the Attributes view.

• If the clipboard only contains text, the value of the selected attribute is modified.

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to
the schema associated to the document. By default, it is located on the right side of the editor. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor
position.

Editing Documents 253

Figure 105: Elements View in Text Mode

Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting
certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the
DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

• Built-in or Predefined - Entities that are part of the predefined XML markup (<, >, &, ',
").

• Internal - Defined in the DOCTYPE declaration header of the current XML.
• External - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

Note: If you want to add internal entities, you would need to switch to the Text editing mode and manually modify
the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it
directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By
default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also
sort entities by name and value by clicking the column headers.

Figure 106: Entities View

Editing Documents 254

The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can
choose to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating
them with a comma.

Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position . Oxygen XML
Developer includes a set of built-in code templates for CSS, Schematron, XSL, XQuery, and XML Schema
document types. You can also define your own code templates for any type of file and share them with others.

To get a complete list of available code templates, press Ctrl + Shift + Space in Text mode. To enter the code
template, select it from the list or type its code and press Enter. If a shortcut key has been assigned to the code
template, you can also use the shortcut key to enter it. Code templates are displayed with a symbol in the
content completion list.

When the Content Completion Assistant is invoked (Ctrl + Space (Command + Space on OS X) in Text mode or
Enter in Author mode), it also presents a list of code templates specific to the type of the active editor.

To watch our video demonstration about code templates, go to https://www.oxygenxml.com/demo/
Code_Templates.html.

Syntax Highlighting in XML Documents

Oxygen XML Developer supports syntax highlighting in XML documents to improve the readability of the content
and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for XML files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Customize Syntax Highlight colors on page 82

Outline View in Text Mode

The Outline view in Text mode displays a general tag overview of the currently edited XML Document. When you
edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you
modify. This functionality gives you great insight on the location of your modifications in the current document.
It also shows the correct hierarchical dependencies between elements. This makes it easy for you to be aware of
the document structure and the way element tags are nested.

Outline View Features

The Outline view allows you to:

• Quickly navigate through the document by selecting nodes in the Outline tree.
• Insert or delete nodes using contextual menu actions.
• Move elements by dragging them to a new position in the tree structure.
• Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in

the editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.
• View document errors, as they are highlighted in the Outline view. A tooltip also provides more information

about the nature of the error when you hover over the faulted element.

Editing Documents 255

https://www.oxygenxml.com/demo/Code_Templates.html
https://www.oxygenxml.com/demo/Code_Templates.html

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents a variety of options to help you filter the
view even further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view
with drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be
moved after the drop target element.

• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target
element will be expanded first and the dragged element will be moved inside the drop target element after its
opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper
or lower part of the targeted element. A marker will indicate whether the drop will be performed before or after
the target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead
of a move.

Figure 107: Outline View in Text Mode

Outline View Filters in Text Mode

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view when editing in Text mode:
Filter returns exact matches

The text filter of the Outline view returns only exact matches.

Editing Documents 256

Selection update on cursor move
Controls the synchronization between Outline view and source document. The selection in the Outline view
can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components
from the Outline view also selects the corresponding item in the source document.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Configure displayed attributes
Displays the XML Structured Outline preferences page.

Outline View Contextual Menu Actions in Text Mode

The following actions are available from the contextual menu in the Outline view in Text mode:

Append Child
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it as a child of the current element.

Insert Before
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it immediately before the current element, as a sibling.

Insert After
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts
it immediately after the current element, as a sibling.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Toggle Comment
Encloses the currently selected element in an XML comment, if the element is not already commented. If it is
already commented, this action will remove the comment.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

Editing Documents 257

Inserting or Opening a File at Cursor Location

When editing content in Text mode, the following actions (in regards to inserting, opening, or comparing files) are
available in the Document > File menu:
Insert File

Inserts the content of the file with the specified file path into the current document, at the current position of
the cursor.

Open File at Cursor
Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be
opened in system file browser. If the file at the specified location does not exist, an error dialog box is
displayed and it includes a Create new file button that starts the New document wizard. This allows you to
choose the type or the template for the file. If the action succeeds, the file is created with the referenced
location and name and is opened in a new editor panel.

Open File at Cursor in System Application
Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target
is opened in the default system application associated with that file type.

Compare
Opens the current file in the Compare Files tool.

Adjusting the Transparency of XML Markup

Most of the time you want the content of a document displayed on screen with zero transparency. However, if you
want to focus your attention only on editing text content inside XML markup, Oxygen XML Developer offers the
option of reducing the visibility of the markup by increasing their transparency when displayed in Text mode. To

change the level of transparency, use the [Tags Transparency Selector] drop-down menu that is available
from the Source toolbar. By default, this drop-down menu is not visible. You can add it to the toolbar by using
the Configure Toolbars action. There are several levels of transparency that can be adjusted to make the content
more or less visible:

• Normal Contrast - Resets the transparency level back to normal.
• Semi-transparent Text - Slightly reduces the visibility of text to place greater emphasis on the visibility of

the XML markup.
• Transparent Text - Greatly reduces the visibility of text to place even greater emphasis on the visibility of

the XML markup.
• Semi-transparent Markup - Slightly reduces the visibility of the XML markup to place greater emphasis on

the visibility of the text.
• Transparent Markup - Greatly reduces the visibility of the XML markup to place even greater emphasis on

the visibility of the text.

Figure 108: Tags Transparency Selector

Editing Documents 258

Locking and Unlocking XML Markup

For documents with fixed markup, such as forms in which the XML tags are not allowed to be modified (only

their text content), the possibility to edit the XML tag names can be toggled on or off with the Lock / Unlock
the XML tags action available in Text editing mode from the Source submenu from the contextual menu (or
Document > Source menu).

You can set the default lock state for all opened editors using the Lock the XML tags option in the Text
preferences page.

Formatting and Indenting XML Documents

Oxygen XML Developer creates XML documents using several edit modes. In Text mode, you as the author decide
how the XML file is formatted and indented. In the other modes, and when you switch between modes, Oxygen
XML Developer must decide how to format and indent the XML. Oxygen XML Developer will also format and
indent your XML for you in Text mode if you use one of the Format and Indent options:

• Document > Source > Format and Indent - Formats and indents the whole document.
• Document > Source > Indent Selection - Indents the current selection (but does not add line breaks). This

action is also available in the Source submenu of the contextual menu.
• Document > Source > Format and Indent Element - Formats and indents the current element (the inmost

nested element that currently contains the cursor) and its child-elements. This action is also available in the
Source submenu of the contextual menu.

A number of settings affect how Oxygen XML Developer formats and indents XML. Many of these settings have
to do with how whitespace is handled.

Significant and insignificant whitespace in XML

XML documents are text files that describe complex documents. Some of the white space (spaces, tabs, line
feeds, etc.) in the XML document belongs to the document it describes (such as the space between words in
a paragraph) and some of it belongs to the XML document (such as a line break between two XML elements).
Whitespace belonging to the XML file is called insignificant whitespace. The meaning of the XML would be the
same if the insignificant whitespace were removed. Whitespace belonging to the document being described is
called significant whitespace.

Knowing when whitespace is significant or insignificant is not always easy. For instance, a paragraph in an XML
document might be laid out like this:

<p>NO Free man shall be taken or imprisoned, or be stripped of his Freedom,
or Liberties, or free Customs, or be outlawed, or exiled, or any otherwise
destroyed; nor will we not pass upon him, nor condemn him, but by lawful
judgment of his Peers, or by the <xref
href="http://en.wikipedia.org/wiki/Law_of_the_land" format="html"
scope="external">Law of the land</xref>.
We will sell to no man, we will not deny to any man either Justice or Right.</p>

By default, XML considers a single whitespace between words to be significant, and all other whitespace to be
insignificant. The paragraph above could have been written on one line because the XML parser would see it as
exactly the same paragraph since all multiple consecutive whitespaces will be replaced with a single whitespace.
Removing the insignificant space in markup like this is called normalizing space.

In some cases, all the spaces inside an element should be treated as significant. For example, in a code sample:

<codeblock>
class HelloWorld
{
 public static void main(String args[])
 {
 System.out.println("Hello World");
 }
}
</codeblock>

Here every whitespace character between the codeblock tags should be treated as significant.

Editing Documents 259

How Oxygen XML Developer determines when whitespace is significant

When Oxygen XML Developer formats and indents an XML document, it introduces or removes insignificant
whitespace to produce a layout with reasonable line lengths and elements indented to show their place in the
hierarchy of the document. To correctly format and indent the XML source, Oxygen XML Developer needs to know
when to treat whitespace as significant and when to treat it as insignificant. However it is not always possible
to tell this from the XML source file alone. To determine what whitespace is significant, Oxygen XML Developer
assigns each element in the document to one of four categories:

Ignore space

In the ignore space category, all whitespace is considered insignificant. This generally applies to content that
consists only of elements nested inside other elements, with no text content.

Normalize space

In the normalize space category, a single whitespace character between character strings is considered
significant and all other spaces are considered insignificant. Therefore, all consecutive whitespaces will be
replaced with a single space. This generally applies to elements that contain text content only.

Mixed content

In the mixed content category, a single whitespace between text characters is considered significant and all
other spaces are considered insignificant. However,

• Whitespace between two child elements embedded in the text is normalized to a single space (rather
than to zero spaces as would normally be the case for a text node with only whitespace characters, or the
space between elements generally).

• The lack of whitespace between a child element embedded in the text and either adjacent text or another
child element is considered significant. That is, no whitespace can be introduced here when formatting
and indenting the file.

For example:

<p>The file is located in <i>HOME</i>/<i>USER</i>/hello.
 This is a big

<emphasis>deal</emphasis>.
</p>

In this example, whitespace should not be introduced around the i tags as it would introduce extra significant
whitespace into the document. The space between the end tag and the beginning <emphasis>
tag should be normalized to a single space, not zero spaces.

Preserve space

In the preserve space category, all whitespace in the element is regarded as significant. No changes are made
to the spaces in elements in this category. However, child elements may be in another category, and may be
treated differently.

Attribute values are always in the preserve space category. The spaces between attributes in an element tag are
always in the default space category.

Oxygen XML Developer consults several pieces of information to assign an element to one of these categories.
An element is always assigned to the most restrictive category (from Ignore to Preserve) that it is assigned to
by any of the sources Oxygen XML Developer consults. For instance, if the element is named on the Default
elements list (as described below) but it has an xml:space="preserve" attribute in the source file, it will be
assigned to the preserve space category. If an element has the xml:space="default" attribute in the source,
but is listed on the Mixed content elements list, it will be assigned to the mixed content category.

To assign elements to these categories, Oxygen XML Developer consults information from the following sources:

xml:space
If the XML element contains the xml:space attribute, the element is promoted to the appropriate category
based on the value of the attribute.

Editing Documents 260

Schema aware formatting

If a schema is available for the XML document, Oxygen XML Developer can use information from the schema
to promote the element to the appropriate category. For example:

• If the schema declares an element to be of type xs:string, the element will be promoted to the preserve
space category because the string built-in type has the whitespace facet with the value preserve.

• If the schema declares an element to be mixed content, it will be promoted to the mixed content category.

Schema aware formatting can be turned on and off.

• To turn it on or off for the Text editing mode ,open the Preferences dialog box (Options > Preferences), go
to Editor > Format > XML, and select/deselect the Schema aware format and indent option.

Preserve space elements list

If an element is listed in the Preserve space tab of the Element Spacing list in the XML formatting preferences,
it is promoted to the preserve space category.

Default space elements list

If an element is listed in the Default space tab of the Element Spacing list in the XML formatting preferences, it
is promoted to the default space category

Mixed content elements list

If an element is listed in the Mixed content tab of the Element Spacing list in the XML formatting preferences, it
is promoted to the mixed content category.

Element content

If an element contains mixed content, that is, a mix of text and other elements, it is promoted to the mixed
content category. (Note that, in accordance with these rules, this happens even if the schema declares the
element to have element only content.)

If an element contains text content, it is promoted to the default space category.

Text node content
If a text node contains any non-whitespace characters then the text node is promoted to the normalize space
category.

How Oxygen XML Developer formats and indents XML

You can control how Oxygen XML Developer formats and indents XML documents. This can be particularly
important if you store your XML document in a version control system, as it allows you to limit the number
of trivial changes in spacing between versions of an XML document. The following preference pages include
options that control how XML documents are formatted:

• Format preferences page
• XML Formatting preferences page
• Whitespaces preferences page

When Oxygen XML Developer formats and indents XML

Oxygen XML Developer formats and indents a document, or part of it, on the following occasions:

• In Text mode when you select one of the format and indent actions (Document > Source > Format and Indent,
Document > Source > Indent Selection, or Document > Source > Format and Indent Element).

• When saving documents in Design mode.
• When switching from Design mode to another mode.
• When saving or switching to Text mode from Grid mode, if the Format and indent when passing from grid to

text or on save option is selected in the Grid preferences page.

Editing Documents 261

Setting an Indent Size to Zero

Oxygen XML Developer will automatically format and indent documents at certain times. This includes indenting
the content from the margin to reflect its structure. In some cases, you may not want your content indented. To
avoid your content being indented, you can set an indent size of zero.

Note: Changing the indent size does not override the rules that Oxygen XML Developer uses for handling
whitespace when formatting and indenting XML documents. Therefore, changing the indent size will have no
effect on elements that require whitespaces to be maintained.

There are two cases to consider.

Maintaining zero indent in documents with zero indent

If you have existing documents with zero indent and you want Oxygen XML Developer to maintain a zero
indent when editing or formatting those documents:

1. Open the Preferences dialog box (Options > Preferences) and go to Editor > Format.
2. Select Detect indent on open.
3. Select Use zero-indent if detected.

Oxygen XML Developer will examine the indent of each document as it is opened and if the indent is zero
for all lines, or for nearly all lines, a zero indent will be used when formatting and indenting the document.
Otherwise, Oxygen XML Developer will use the indent closest to what it detects in the document.

Enforcing zero indent for all documents

If you want all documents to be formatted with zero indent, regardless of their current indenting:

1. Open the Preferences dialog box (Options > Preferences) and go to Editor > Format.
2. Deselect Detect indent on open.
3. Set Indent size to 0.

All documents will be formatted and indented with an indent of zero.

Warning: Setting the indent size to zero can change the meaning of some file types, such as Python
source files.

Format and Indent (Pretty-Print) Multiple Files

Oxygen XML Developer provides support for formatting and indenting (pretty-print) multiple files at once. This
action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the contextual
menu of the Project view or from the Tools menu. This opens the Format and Indent Files dialog box that allows
you to configure options for the action.

Editing Documents 262

Figure 109: Format and Indent Files Dialog Box

The Scope section allows you choose from the following scopes:

• All opened files - The pretty-print is performed in all opened files.
• Directory of the current file - All the files in the folder of the current edited file.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - the pretty-print is performed in the files located at a specified path.

The Options section includes the following options:

• File filter - Allow you to filter the files from the selected scope.
• Recurse subdirectories - When selected, the pretty-print is performed recursively for the specified scope. The

one exception is that this option is ignored if the scope is set to All opened files.
• Include hidden files - When selected, the pretty-print is also performed in the hidden files.
• Make backup files with extension - When selected, Oxygen XML Developer makes backup files of the modified

files. The default extension is .bak, but you can change the extension as you prefer.

Managing Highlighted Content

While working with XML documents you often have frequent changes to the structure and content. You are often
faced with a situation where you need to make a slight change in multiple places in the same document. Oxygen
XML Developer includes a feature, Manage Highlighted Content, that is designed to help you achieve this.

When you are in Text mode and you perform a search operation or apply an XPath that highlights multiple
results, you can select the Manage Highlighted Content action from the contextual menu of any highlight in the
document, and the following options are available in its submenu:

• Modify All - Use this option to modify (in-place) all the occurrences of the selected content. When you use this
option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter
cases are found, a dialog box is displayed that allows you select whether you want to modify only matches
with the same letter case or all matches.

Note: If you select a very large number of highlights that you want to modify using this feature, a dialog box
informs you that you may experience performance issues. You have the option to either use the Find/Replace
operation, or continue the operation.

• Surround All - Use this option to surround the highlighted content with a specific tag. This option opens the
Tag dialog box. The Specify the tag drop-down menu presents all the available elements that you can choose
from.

• Remove All - Removes all the highlighted content.

Editing Documents 263

If you right-click content in another part of the document, other than a highlight, you have the option to select the
following option:

• Modify All Matches - Use this option to modify (in-place) all the occurrences of the selected content (or the
contiguous fragment in which the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is
displayed that allows you select whether you want to modify only matches with the same letter case or all
matches.

Quick Assist Support for IDs and IDREFS

The Quick Assist support is activated automatically when you place the cursor inside an ID or IDREF in Text mode.
To access it, click the yellow bulb help marker placed on the current line, in the line number stripe of the editor.
You can also invoke the Quick Assist menu from the contextual menu or by pressing Alt 1 (Meta Alt 1 on Mac OS
X) on your keyboard.

The following actions are available:

Rename in
Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This
dialog box lets you insert the new ID value and choose the scope of the rename operation. For a preview of the
changes you are about to make, click Preview. This opens the Preview dialog box, which presents a list with
the files that contain changes and a preview zone of these changes.

Search Declarations
Searches for the declaration of the ID reference. By default, the scope of this action is the current project.
If you configure a scope using the Select the scope for the Search and Refactor operations dialog box, this
scope will be used instead.

Search References
Searches for the references of the ID. By default, the scope of this action is the current project. If you
configure a scope using the Select the scope for the Search and Refactor operations dialog box, this scope
will be used instead.

Change scope
Opens the Select the scope for the Search and Refactor operations dialog box.

Rename in File
Renames the ID you are editing and all its occurrences from the current file.

Search Occurrences
Searches for the declaration an references of the ID located at the cursor position in the current document.

Related Information:
Working with Modular XML Files in the Master Files Context on page 311

Highlight ID Occurrences in Text Mode

To see the occurrences of an ID in an XML document in the Text mode, place the cursor inside the ID declaration
or reference. The occurrences are marked in the vertical side bar at the right of the editor. Click a marker on the
side bar to jump to the occurrence that it corresponds to. The occurrences are also highlighted in the editing area.

Note: Highlighted ID declarations are rendered with a different color than highlighted ID references. To customize
these colors or disable this feature, open the Preferences dialog box (Options > Preferences) and go to Editor >
Mark Occurrences.

Related Information:
Working with Modular XML Files in the Master Files Context

Contextual Menu Actions in Text Mode

When editing XML documents in Text mode, Oxygen XML Developer provides the following actions in the
contextual menu (many of them also appear in the submenus of the Document menu):

Editing Documents 264

Cut, Copy, Paste
Executes the typical editing actions on the currently selected content.

Copy XPath
Copies the XPath expression of the current element or attribute from the current editor to the clipboard.

Toggle Comment (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Comments the current selection of the current editor. If the selection already contains a comment the action
removes the comment from around the selection. If there is no selection in the current editor and the cursor is
not positioned inside a comment the current line is commented. If the cursor is positioned inside a comment
then the commented text is uncommented.

Go to submenu
This submenu includes the following actions:

Go to Matching Tag (Ctrl + Shift + G)
Moves the cursor to the end tag that matches the start tag, or vice versa.

Go after Next Tag (Ctrl + CloseBracket (Command + CloseBracket on OS X))
Moves the cursor to the end of the next tag.

Go after Previous Tag (Ctrl + OpenBracket (Command + OpenBracket on OS X))
Moves the cursor to the end of the previous tag.

Select submenu
This submenu allows you to select the following:

Element
Selects the entire element at the current cursor position.

Content
Selects the entire content of the element at the current cursor position, excluding the start and end tag.
Performing this action repeatedly will result in the selection of the content of the ancestor of the currently
selected element content.

Attributes
Selects all the attributes of the element at the current cursor position.

Parent
Selects the parent element at the current cursor position.

Source submenu
This submenu includes the following actions:

Shift Right (Tab)
Shifts the currently selected block to the right.

Shift Left (Shift + Tab)
Shifts the currently selected block to the left.

Indent selection (Ctrl + I (Command + I on OS X))
Corrects the indentation of the selected block of lines if it does not follow the current indenting
preferences.

Escape Selection
Escapes a range of characters by replacing them with the corresponding character entities.

Unescape Selection
Replaces the character entities with the corresponding characters.

Format and Indent Element (Ctrl + Shift + I (Command + Shift + I on OS X))
Pretty-prints the element that surrounds the current cursor position.

Editing Documents 265

To Upper Case
Converts the content selection to upper case characters.

To Lower Case
Converts the content selection to lower case characters.

Capitalize Lines
It capitalizes the first letter found on every new line that is selected. Only the first letter is affected, the rest
of the line remains the same. If the first character on the new line is not a letter then no changes are made.

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))

Converts a sequence of hexadecimal characters to the corresponding Unicode character. The action can
be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at
the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2
to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X prefix. Examples of valid
sequences: 0x0045, 0X0125, 1253, 265, 43.

Base64 Encode/Decode submenu
This submenu include the following actions for encoding or decoding base64 schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another
file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment where the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box
is displayed that allows you select whether you want to modify only matches with the same letter case
or all matches.

Base32 Encode/Decode submenu
This submenu include the following actions for encoding or decoding base32 schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another
file.

Editing Documents 266

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment where the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box
is displayed that allows you select whether you want to modify only matches with the same letter case
or all matches.

Hex Encode/Decode submenu
This submenu include the following actions for encoding or decoding hex schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another
file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment where the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box
is displayed that allows you select whether you want to modify only matches with the same letter case
or all matches.

Editing Documents 267

Join and Normalize Lines (Ctrl + J (Command + J on OS X))
For the current selection, this action joins the lines by replacing the line separator with a single space
character. It also normalizes the whitespaces by replacing a sequence of such characters with a single
space.

Insert new line after (Ctrl + Alt + Enter (Command + Alt + Enter on OS X))
This action has the same result as moving the cursor to the end of the current line and pressing the ENTER
key.

Insert XInclude
Displays a dialog box that allows you to browse and select the content to be included and automatically
generates the corresponding XInclude instruction.

Note: In the Author mode, this dialog box presents a preview of the inserted document as an author page
in the Preview tab and as a text page in the Source tab. In the Text mode, the Source tab is presented.

Import entities list
Displays a dialog box that allows you to select a list of files as sources for external DTD entities. The
internal subset of the DOCTYPE declaration of your document will be updated with the chosen entities.
For instance, choosing the files chapter1.xml and chapter2.xml inserts the following section in the
DOCTYPE:

 <!ENTITY chapter1 SYSTEM "chapter1.xml">
 <!ENTITY chapter2 SYSTEM "chapter2.xml">

Lock / Unlock the XML Tags
Disables or enables the ability to edit XML tags.

Canonicalize
Opens the Canonicalize dialog box that allows you to select a canonicalization algorithm to standardize
the format of the document.

Sign
Opens the Sign dialog box that allows you to configure a digital signature for the document.

Verify Signature
Allows you to specify the location of a file to verify its digital signature.

Manage Highlighted Content submenu
This submenu is available from the contextual menu when it is invoked from a highlight after you perform a
search operation or apply an XPath expression that highlights more than one result. The following options are
available in this submenu:

Modify All
Allows you to modify (in-place) all the occurrences of the selected content. A thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is
displayed that allows you select whether you want to modify only matches with the same letter case or all
matches.

Surround All
Surround the highlighted content with a specific tag. This option opens the Tag dialog box. The Specify
the tag drop-down menu presents all the available elements that you can choose from.

Remove All
Removes all the highlighted content.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment
where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows
you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you
select whether you want to modify only matches with the same letter case or all matches.

Editing Documents 268

Show Definition (Ctrl + Shift + Enter)
Moves the cursor to the definition of the current element or attribute in the schema (DTD, XML Schema, Relax
NG schema) associated with the edited XML document. If the current attribute is a “type” belonging to the
“http://www.w3.org/2001/XMLSchema-instance” namespace, the cursor is moved in the XML schema to the
definition of the type referenced in the value of the attribute.

Refactoring submenu
This submenu includes the following actions:

Rename Element
The element from the cursor position, and any elements with the same name, can be renamed according
with the options from the Rename dialog box.

Rename Prefix (Alt + Shift + P (Command + Shift + P on OS X))
The prefix of the element from the cursor position, and any elements with the same prefix, can be renamed
according with the options from the Rename dialog box.

• If you select the Rename current element prefix option, the application will recursively traverse the
current element and all its children. For example, to change the xmlns:p1="ns1" association in the
current element to xmlns:p5="ns1", if the xmlns:p1="ns1" association is applied on the parent
element, then Oxygen XML Developer will introduce xmlns:p5="ns1" as a new declaration in the
current element and will change the prefix from p1 to p5. If p5 is already associated with another
namespace in the current element, then the conflict will be displayed in a dialog box. By pressing OK,
the prefix is modified from p1 to p5 without inserting a new declaration.

• If you select the Rename current prefix in all document option, the application will apply the change on
the entire document.

• To also apply the action inside attribute values, select the Rename also attribute values that start with
the same prefix checkbox.

Surround with submenu
Presents a drop-down menu that allows you to choose a tag to surround a selected portion of content.

Surround with Tags (Ctrl + E (Command + E on OS X))
Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the start
and end tags are inserted at the cursor position.

• If the Position cursor between tags option is selected in the Content Completion preferences page, the
cursor is placed between the start and end tag.

• If the Position cursor between tags option is not selected in the Content Completion preferences page,
the cursor is placed at the end of the start tag, in an insert-attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))
Surround the selected content with the last tag used.

Delete element tags (Alt + Shift + X (Command + Alt + X on OS X))
Deletes the start and end tag of the current element.

Split element (Alt + Shift + D (Ctrl + Alt + D on OS X))
Split the element from the cursor position into two identical elements. The cursor must be inside the
element.

Join elements (Alt + Shift + J (Command + Alt + J on OS X))
Joins the left and right elements relative to the current cursor position. The elements must have the same
name, attributes, and attributes values.

Attributes submenu
Contains predefined XML refactoring operations that pertain to attributes with some of the information
preconfigured based upon the current context.

Editing Documents 269

http://www.w3.org/2001/XMLSchema-instance

Add/Change attribute
Allows you to change the value of an attribute or insert a new one.

Delete attribute
Allows you to remove one or more attributes.

Rename attribute
Allows you to rename an attribute.

Replace in attribute value
Allows you to search for a text fragment inside an attribute value and change the fragment to a new
value.

Comments submenu
Contains predefined XML refactoring operations that pertain to comments with some of the information
preconfigured based upon the current context.

Delete comments
Allows you to delete comments found inside one or more elements.

DITA submenu
Contains predefined XML refactoring operations that pertain to DITA documents with some of the
information preconfigured based upon the current context.

Change topic ID to file name
Use this operation to change the ID of a topic to be the same as its file name.

Convert conrefs to conkeyrefs
Use this operation to convert conref attributes to conkeyref attributes.

Convert simple tables to CALS tables
Use this operation to convert DITA simple tables to CALS tables.

Convert to Concept
Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example,
Topic to Concept).

Convert to Reference
Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example,
Topic to Reference).

Convert to Task
Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to
Task).

Convert to Topic
Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting
Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for
example, Topic to Troubleshooting).

Elements submenu
Contains predefined XML refactoring operations that pertain to elements with some of the information
preconfigured based upon the current context.

Delete element
Allows you to delete elements.

Delete element content
Allows you to delete the content of elements.

Insert element
Allows you to insert new elements.

Editing Documents 270

Rename element
Allows you to rename elements.

Unwrap element
Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

Wrap element
Allows you to surround elements with element tags.

Wrap element content
Allows you to surround the content of elements with element tags.

Fragments submenu
Contains predefined XML refactoring operations that pertain to XML fragments with some of the
information preconfigured based upon the current context.

Insert XML fragment
Allows you to insert an XML fragment.

Replace element content with XML fragment
Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment
Allows you to replace elements with an XML fragment.

JATSKit submenu
Contains predefined XML refactoring operations that pertain to JATS documents with some of the
information preconfigured based upon the current context.

Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0
Adds an NLM 'BITS' 2.0 DOCTYPE declaration.

Add Blue DOCTYPE - NISO JATS Publishing 1.1
Adds a JATS 'Blue' 1.1 DOCTYPE declaration.

Normalize IDs
Assigned IDs are normalized and IDs are assigned to some elements that are missing them.

Manage IDs submenu
This submenu is available for XML documents that have an associated DTD, XML Schema, or Relax NG
schema. It includes the following actions:

Rename in
Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This
dialog box lets you insert the new ID value and choose the scope of the rename operation. For a preview of
the changes you are about to make, click Preview. This opens the Preview dialog box, which presents a list
with the files that contain changes and a preview zone of these changes.

Rename in File
Renames the ID you are editing and all its occurrences from the current file.

Search References
Searches for the references of the ID. By default, the scope of this action is the current project. If you
configure a scope using the Select the scope for the Search and Refactor operations dialog box, this scope
will be used instead.

Search References in
Searches for the references of the ID. Selecting this action opens the Select the scope for the Search and
Refactor operations.

Search Declarations
Searches for the declaration of the ID reference. By default, the scope of this action is the current project.
If you configure a scope using the Select the scope for the Search and Refactor operations dialog box, this
scope will be used instead.

Editing Documents 271

Search Declarations in
Searches for the declaration of the ID reference. Selecting this action opens the Select the scope for the
Search and Refactor operations.

Search Occurrences in file
Searches for the declaration an references of the ID in the current document.

Quick Assist (Alt + 1 (Command + Alt + 1 on OS X))
Available when the cursor is inside an ID or IDREF, this action opens the Quick Assist window that allows you
to select some search and refactoring actions for the selected ID or IDREF.

Open submenu
The following actions are available in this submenu:

Open File at Cursor
Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be
opened in system file browser. If the file at the specified location does not exist, an error dialog box is
displayed and it includes a Create new file button that starts the New document wizard. This allows you to
choose the type or the template for the file. If the action succeeds, the file is created with the referenced
location and name and is opened in a new editor panel.

Open File at Cursor in System Application
Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The
target is opened in the default system application associated with that file type.

Compare
Opens the current file in the Compare Files tool.

Resource Hierarchy
Opens the Resource Hierarchy/Dependencies view that allows you to see the resource hierarchy for an XML
document.

Resource Dependencies
Opens the Resource Hierarchy/Dependencies view that allows you to see the resource dependencies for an
XML document.

Editing XML Documents in Grid Mode
The Grid mode in Oxygen XML Developer displays the XML document as a structured grid of nested tables
where the text content can be modified without directly interacting with the XML markup. This is helpful for non-
technical users who want to edit text content without modifying the XML markup. You can easily expand or
collapse elements within the table and the document structure can be changed with simple drag/drop or copy/
paste operations. A useful Content Completion Assistant is also available in Grid mode.

To switch to this mode, select Grid at the bottom of the editing area.

To watch our video demonstration about some of the features available in the Grid editor, go to https://
www.oxygenxml.com/demo/Grid_Editor.html.

Editing Actions in Grid Mode

A variety of editing actions are available in Grid mode from the contextual menu, the Document menu, the toolbar,
and with shortcut keys. This section explains some of those useful editing actions.

Sorting a Table Column

You can sort certain table columns by using the Sort Ascending or Sort Descending actions that are
available on the toolbar or from the contextual menu.

The sorting result depends on the data type of the column content. It could be a numerical sorting for numbers
or an alphabetical sorting for text information. The editor automatically analyzes the content and decides what
type of sorting to apply. When a mixed set of values is present in the sorted column, a dialog box is displayed that
allows you to choose the desired type of sorting between numerical and alphabetical.

Editing Documents 272

https://www.oxygenxml.com/demo/Grid_Editor.html
https://www.oxygenxml.com/demo/Grid_Editor.html

Inserting a Row in a Table

You can add a new row using the Copy/Paste actions, or by selecting Insert row from the contextual menu or
the toolbar.

For a faster way to insert a new row, move the selection over the row header, and then press Enter. The row
header is the zone in the left of the row that holds the row number. The new row is inserted below the selection.

Inserting a Column in a Table

You can insert a column after the selected column by using the Insert column action from the contextual menu
or the toolbar.

Clearing the Content of a Column

You can clear all the cells from a column by using the Clear content action from the contextual menu.

Adding Nodes

You can add nodes before, after, or as a child of the currently selected node by using the various actions in the
following submenus of the contextual menu:

• Insert before - Offers a list of valid nodes, depending on the context, and inserts your selection before the
currently selected node, as a sibling.

• Insert after - Offers a list of valid nodes, depending on the context, and inserts your selection after the
currently selected node, as a sibling.

• Append child - Offers a list of valid nodes, depending on the context, and appends your selection as a child of
the currently selected node.

Duplicating Nodes

You can quickly create new nodes by duplicating existing ones. The Duplicate action is available in the contextual
menu and in the Document > Grid Edit menu.

Refresh Layout

When using drag and drop to reorganize the document, the resulting layout can be different from the expected
one. For instance, the layout can contain a set of sibling tables that can be joined together. To force the layout
to be recomputed, you can use the Refresh selected action that is available in the contextual menu and in the
Document > Grid Edit menu.

Editing a Cell Value

To edit the value of a cell, simply select the grid cell and press (Enter) or you can use the Start Editing action
found in the Document > Grid Edit menu.

To stop editing a cell value, press (Enter) again or use the End Editing action found in the Document > Grid Edit
menu.

To cancel the editing without saving the current changes in the document, press the (Esc) key.

Drag and Drop in the Grid Editing Mode

You can easily arrange sections in your XML document in the Grid mode by using drag and drop actions.

You can do the following with drag and drop:

• Copy or move a set of nodes.
• Change the order of columns in the tables.
• Move the rows from the tables.

These operations are available for both single and multiple selections. To deselect one of the selected fragments,
use Ctrl + Single-Click (Command + Single-Click on OS X).

While dragging, the editor paints guide-lines showing the locations where you can drop the nodes. You can also
drag nodes outside the Grid editor and text from other applications into the Grid. For more information, see Copy
and Paste in the Grid Editor.

Editing Documents 273

Copy and Paste in the Grid Editing Mode

The selection in the Grid mode is a bit complex compared to the selection in a text component. It consists of a
currently selected cell and additional selected cells. These additional cells are either selected with the cursor, or
implied by the currently selected cell. To be more specific, consider that you click the name of the column (this
becomes the current selected cell), but the editor automatically extends the selection so that it contains all the
cells from that column. The currently selected cell is painted with a color that is different from the rest of the
selection.

You can also select discontinuous regions of nodes and place them in the clipboard with the copy action. To
deselect one of the selected fragments, use Ctrl + Single-Click (Command + Single-Click on OS X).

Pasting Content Within Grid Mode

You can paste the copied nodes relative to the currently selected cell using one of the following actions (available
in the contextual menu):

• Paste (Ctrl + V (Command + V on OS X)) - Pastes the content, as a sibling, just below (after) the current
selection.

• Paste as Child - Pastes the content as the last child of the current selection.

Pasting Content from Grid Mode to Other Edtiors

Nodes that are copied from the Grid editor can also be pasted into the Text editor or other applications. When
copying from the Grid into the Text editor or other text based applications, the inserted string represents the
nodes serialization. The nodes from tables can be copied using HTML or RTF in table format. The resulting cells
contain only the concatenated values of the text nodes.

Figure 110: Copying from Grid to Other Editors

Pasting Content from Other Editors into Grid Mode

You can also paste well-formed XML content or tab separated values from other editors into the Grid editor. If you
paste XML content, the result will be the insertion of the nodes obtained by parsing this content.

Editing Documents 274

Figure 111: Pasting XML Data into Grid

If the pasted text contains multiple lines of tab-separated values, it can be considered as a matrix of values. By
pasting this matrix of values into the Grid editor, the result will be a matrix of cells. If the operation is performed
inside existing cells, the existing values will be overwritten and new cells will be created when needed. This is
useful, for example, when trying to transfer data from spreadsheet-like editors to the Grid editor.

Figure 112: Pasting Tab-Separated Values into Grid

Content Completion Assistant in Grid Mode

If the edited document is associated with a schema (DTD, XML Schema, Relax NG, etc.), the Grid editing mode
offers a Content Completion Assistant for the names and values of elements and attributes. If you choose to
insert an element that has required content, the sub-tree of needed elements and attributes are automatically
included.

To display the content completion pop-up menu, simply start editing a cell (for example, double-click a cell) or
press Ctrl + Space (Command + Space on OS X) on your keyboard.

Figure 113: Content Completion in Grid Editing Mode

Validating XML Documents
The W3C XML specification states that a program should not continue to process an XML document if it finds
a validation error. The reason is that XML software should be easy to write and all XML documents should be
compatible. With HTML, for example, it is possible to create documents with lots of errors (for instance, when
you forget an end tag). One of the main reasons that various HTML browsers have performance and compatibility
problems is that they have different methods of figuring out how to render a document when an HTML error is
encountered. Using XML helps to eliminate such problems.

Even when creating XML documents, errors are easily introduced. When working with large projects or a large
number of files, the probability that errors will occur is even greater. Preventing and solving errors in your projects
can be time consuming and frustrating. Fortunately, Oxygen XML Developer provides validation functions that
allow you to easily identify errors and their location.

Editing Documents 275

Related Information:
Working with Modular XML Files in the Master Files Context

Checking XML Well-Formedness

A Well-formed XML document is a document that conforms to the XML syntax rules. A Namespace Well-Formed
XML document is a document that is Well-formed XML and is also Namespace-wellformed and Namespace-valid.

Well-Formedness Rules

The XML Syntax rules for Well-formed XML are as follows:

• All XML elements must have a closing tag.
• XML tags are case-sensitive.
• All XML elements must be properly nested.
• All XML documents must have a root element.
• Attribute values must always be quoted.
• With XML, whitespace is preserved.

The Namespace-wellformed rules are as follows:

• All element and attribute names contain either zero or one colon.
• No entity names, processing instruction targets, or notation names contain any colons.

The Namespace-valid rules are as follows:

• The xml prefix is by definition bound to the namespace name: http://www.w3.org/XML/1998/namespace. It
MAY be declared, but MUST NOT be undeclared or bound to any other namespace name. Other prefixes MUST
NOT be bound to this namespace name.

• The xmlns prefix is used only to declare namespace bindings and is by definition bound to the namespace
name: http://www.w3.org/2000/xmlns/. It MUST NOT be declared or undeclared. Other prefixes MUST NOT be
bound to this namespace name.

• All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved. This
means that users SHOULD NOT use them except as defined by later specifications and processors MUST NOT
treat them as fatal errors.

• The namespace prefix (unless it is xml or xmlns) MUST have been declared in a namespace declaration
attribute in either the start tag of the element where the prefix is used or in an ancestor element (for example,
an element in whose content the prefixed markup occurs). Furthermore, the attribute value in the innermost
such declaration MUST NOT be an empty string.

Check for Well-Formedness

To check if a document is Namespace Well-Formed XML and Namespace-valid, select the Check Well-
Formedness (Ctrl + Shift + W (Command + Shift + W on OS X)) action from the Document > Validate menu or
from the Validation drop-down menu on the toolbar.

The selected files in the current project can also be checked for well-formedness with a single action by selecting
the Check Well-Formedness action from the Validate submenu when invoking the contextual menu in the
Project view.

If any errors are found, the result is displayed in the message panel at the bottom of the editor. Each error is
displayed as one record in the result list and is accompanied by an error message. Clicking the record will open
the document containing the error and highlight its approximate location.

Example: A non Well-formed XML Document

<root><tag></root>

When Check Well-Formedness is performed the following error is raised:

The element type "tag" must be terminated by the matching end-tag "</tag>"

Editing Documents 276

To resolve the error, click the record in the result list and it will locate and highlight the approximate position of
the error. In this case, identify the tag that is missing an end tag and insert </tag>.

Example: A non Namespace-wellformed Document

<x::y></x::y>

When Check document form is performed the following error is raised:

Element does not match QName production: QName::=(NCName':')?NCName.

Example: A non Namespace-valid Document

<x:y></x:y>

When Check document form is performed the following error is raised:

The prefix "x" for element "x:y" is not bound.

Validating XML Documents Against a Schema

A Valid XML document is a Well-Formed XML document that also conforms to the rules of a schema that defines
the legal elements of an XML document. The schema type can be: XML Schema, Relax NG (full or compact
syntax), Schematron, Document Type Definition (DTD), or Namespace-based Validation Dispatching Language
(NVDL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the document
structure with a list of legal elements.

The Validate function ensures that your document is compliant with the rules defined by an associated DTD,
XML Schema, Relax NG, or Schematron schema. XML Schema or Relax NG schema also allows you to embed
Schematron rules. For Schematron validations you can also select the validation phase.

Related Information:
Presenting Schematron Validation Issues
Associating a Schema to XML Documents on page 294

Automatic Validation

Oxygen XML Developer can be configured to automatically mark validation errors in the document as you are
editing. The Enable automatic validation option in the Document Checking preferences page controls whether or
not all validation errors and warnings will automatically be highlighted in the editor panel.

The automatic validation starts parsing the document and marking the errors after a configurable delay from the
last key typed. Errors are highlighted with underline markers in the main editor panel and small rectangles on the
right side ruler of the editor panel. Hovering over a validation error presents a tooltip message with more details
about the error.

If the error message is long and it is not displayed completely in the error line at the bottom of the editing area,
double-clicking the error icon at the left of the error line or on the error line displays an information dialog box with
the full error message. You can use the arrow buttons in this dialog box to navigate through the errors issued by
the Automatic Validation feature.

Related Information:
Manual Validation Actions on page 277
Presenting Validation Errors in Text Mode on page 183

Manual Validation Actions

You can choose to validate documents at any time by using the manual validation actions that are available in
Oxygen XML Developer.

Manually Validate Current Document

To manually validate the currently edited document, use one of the following actions:

Editing Documents 277

Validate (Ctrl + Shift + V (Command + Shift + V on OS X))

Available from the Validation drop-down menu on the toolbar, the Document > Validate menu, or from the
Validate submenu when invoking the contextual menu in the Project view.

An error list is presented in the message panel at the bottom of the editor. Markup of the current document
is checked to conform with the specified DTD, XML Schema, or Relax NG schema rules. This action also re-
parses the XML Catalogs and resets the schema used for content completion.

Validate (cached)

Available from the Validation drop-down menu on the toolbar or the Document > Validate menu.

This action caches the schema, allowing it to be reused for the next validation. Markup of the current
document is checked to conform with the specified DTD, XML Schema, or Relax NG schema rules.

Note: Automatic validation also caches the associated schema.

Validate with

Available from the Validation drop-down menu on the toolbar, (or Document > Validate menu).

This action opens a dialog box that allows you to specify a schema for validating the current document.

You can use this action to validate the current document using a schema of your choice (XML Schema,
DTD, Relax NG, NVDL, Schematron schema), other than the associated one. An error list is presented in the
message panel at the bottom of the editor. Markup of current document is checked to conform with the
specified schema rules.

Note: The Validate with action does not work for files loaded through an Oxygen XML Developer custom
protocol plugin developed independently and added to Oxygen XML Developer after installation.

Validate with Schema
Available from the Validate submenu when invoking contextual menu in the Project view.

This action opens a dialog box that allows you to specify a schema for validating all selected files.

Other Validation Options

To quickly open the schema used for validating the current document, select the Open Associated Schema
action from the toolbar (or Document > Schema menu).

The Validation options button, available in the Document > Validate menu, allows you to quickly access to the
validation options for the built-in validator in the Oxygen XML Developer preferences page.

Tip: If a large number of validation errors are detected and the validation process takes too long, you can limit the
maximum number of reported errors in the Document Checking preferences page.

Related Information:
Automatic Validation on page 277
Presenting Validation Errors in Text Mode on page 183

Presenting Validation Errors in Text Mode

Oxygen XML Developer can be configured to automatically validate documents while editing in the Text mode, and
actions are also available to manually validate documents on-request.

In Text mode, validation issues are marked in the following locations:

• In the main editing pane, with the issue underlined in a color according to the type of issue.
• In the right-side vertical stripe, with a marker that is colored according to the type of issue.
• For attributes with detected issues, in the Attributes view, with the attribute and its value colored according to

the type of issue.

The colors for each type of issue are as follows:

Editing Documents 278

• Validation Errors [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and
the foreground color of the attribute in the Attributes view are colored in red.

• Validation Warnings [Yellow] - By default, the underline in the editing pane, the marker in the right vertical
stripe, and the foreground color of the attribute in the Attributes view are colored in yellow.

• Validation Info [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and
the foreground color of the attribute in the Attributes view are colored in blue.

You can configure the color for each type in the Document Checking preferences page.

Hovering over a validation issue presents a tooltip message with more details about the problem and possible
quick fixes (if available for that issue).

Figure 114: Presenting Validation Errors in Text Mode

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation
process and to help you locate them in the document. The stripe contains the following:
Upper Part of the Stripe

A success indicator square will turn green if the validation is successful or only info messages are found, red
if validation errors are found, or yellow if only validation warnings are found. More details about the issues
are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first
three are presented in the tool tip.

Middle Part of the Stripe
Errors are depicted with red markers, warnings with yellow markers, and info message with blue markers.
If you want to limit the number of markers that are displayed, open the Preferences dialog box (Options >
Preferences), go to Editor > Document checking, and specify the desired limit in the Maximum number of
validation highlights option.

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also
displayed both in a tool tip (when hovering over the marker) and in the message area on the bottom of the
editor panel (clicking the Document checking options button opens the Document Checking preferences
page.

Bottom Part of the Stripe

Two navigation arrows () allow you to jump to the next or previous issue. The same actions can be
triggered from Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X))
and Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X)). Also,
the button can be used to clear all the validation markers.

Status messages from every validation action are also logged in the Information view.

If you want to see all the validation messages grouped in the Results panel, you should use the Validate action
from the toolbar or Document > Validate menu..

Editing Documents 279

Related Information:
Validating XML Documents Against a Schema on page 277
Presenting Schematron Validation Issues

Customizing Assert Error Messages

To customize the error messages that the Xerces or Saxon validation engines display for the assert and
assertion elements, set the message attribute on these elements.

• For Xerces, the message attribute has to belong to the http://xerces.apache.org namespace.
• For Saxon, the message attribute has to belong to the http://saxon.sourceforge.net/ namespace.

The value of the message attribute is the error message displayed if the assertion fails.

Custom Validators

If you need to validate the edited document with a validation engine that is different from the built-in engine, you
can configure external validators in the Custom Validation Engines preferences page. After a custom validation
engine is properly configured, it can be applied on the current document by selecting it from the list of custom
validation engines in the Validation toolbar drop-down menu. The document is validated against the schema
declared in the document.

Some validators are configured by default but there are third-party processors that do not support the output
message format of Oxygen XML Developer for linked messages:

• LIBXML - Included in Oxygen XML Developer (Windows edition only). It is associated to XML Editor. It is able
to validate the edited document against XML Schema, Relax NG schema full syntax, internal DTD (included
in the XML document) or a custom schema type. Support for XML Catalogs (the --catalogs parameter) and
XInclude processing (--xinclude) are enabled by default in the preconfigured LIBXML validator. The --postvalid
parameter is also set by default and it allows LIBXML to validate correctly the main document even if the
XInclude fragments contain IDREFS to ID's located in other fragments.

For validation against an external DTD specified by URI in the XML document, add the --dtdvalid ${ds}
parameter manually to the DTD validation command line. ${ds} represents the detected DTD declaration in
the XML document.

CAUTION: File paths containing spaces are not handled correctly in the LIBXML processor. For
example, the built-in XML Catalog files of the predefined document types (DocBook, TEI, DITA, etc.) are
not handled by LIBXML if Oxygen XML Developer is installed in the default location on Windows (C:
\Program Files) because the built-in XML catalog files are stored in the frameworks subfolder of
the installation folder and in this case, the file path contains at least one space character.

Attention: On OS X, if the full path to the LIBXML executable file is not specified in the Executable path
text field, some errors may occur during validation against a W3C XML Schema, such as:
Unimplemented block at ... xmlschema.c

To avoid these errors, specify the full path to the LIBXML executable file.
• Saxon-EE - Included in Oxygen XML Developer. It is associated to XML Editor and XSD Editor. It is able to

validate XML Schema schemas and XML documents against XML Schema schemas. The validation is done
according to the W3C XML Schema 1.0 or 1.1. This can be configured in Preferences.

• MSXML 4.0 - Included in Oxygen XML Developer (Windows edition only). It is associated to XML Editor, XSD
Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included in
the XML document), external DTD or a custom schema type.

• MSXML.NET - Included in Oxygen XML Developer (Windows edition only). It is associated to XML Editor, XSD
Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included in
the XML document), external DTD or a custom schema type.

• XSV - Not included in Oxygen XML Developer. Windows and Linux distributions of XSV can be downloaded
from http://www.cogsci.ed.ac.uk/~ht/xsv-status.html. The executable path is already configured in Oxygen XML
Developer for the [OXYGEN_INSTALL_DIR]/xsv installation folder. If it is installed in a different folder, the
predefined executable path must be corrected in Preferences. It is associated to XML Editor and XSD Editor. It
is able to validate the edited document against XML Schema or a custom schema type.

• SQC (Schema Quality Checker from IBM) - Not included in Oxygen XML Developer. It can be downloaded
from here (it comes as a .zip file, at the time of this writing SQC2.2.1.zip is about 3 megabytes).

Editing Documents 280

http://www.cogsci.ed.ac.uk/%7Eht/xsv-status.html
http://www.alphaworks.ibm.com/tech/xmlsqc/download

The executable path and working directory are already configured for the SQC installation directory
[OXYGEN_INSTALL_DIR]/sqc. If it is installed in a different folder, the predefined executable path and
working directory must be corrected in the Preferences page. It is associated to XSD Editor.

A custom validator cannot be applied on files loaded through an Oxygen XML Developer custom protocol plugin
developed independently and added to Oxygen XML Developer after installation.

Linked Output Messages of an External Engine

Validation engines display messages in an output view at the bottom of the Oxygen XML Developer window. If
such an output message (warning, error, fatal error, etc) spans between three to six lines of text and has the
format specified below, then the message is linked to a location in the validated document. Clicking the message
in the output view highlights the location of the message in an editor panel containing the file referenced in the
message. This behavior is similar to the linked messages generated by the default built-in validator.

Linked messages have the following format:

• Type:[F|E|W] (the string Type: followed by a letter for the type of the message: fatal error, error, warning) - this
property is optional in a linked message.

• SystemID: a system ID of a file (the string SystemID: followed by the system ID of the file that will be opened
for highlighting when the message is clicked in the output message - usually the validated file, the schema file
or an included file).

• Line: a line number (the string Line: followed by the number of the line that will be highlighted).
• Column: a column number (the string Column: followed by the number of the column where the highlight will

start on the highlighted line) - this property is optional in a linked message.
• EndLine: a line number (the string EndLine: followed by the number of the line where the highlight ends) - this

property is optional in a linked message.
• EndColumn: a column number (the string EndColumn: followed by the number of the column where the

highlight ends on the end line) - this property is optional in a linked message.

Note: The Line/Column pair works in conjunction with the EndLine/EndColumn pair. Thus, if both pairs are
specified, then the highlight starts at Line/Column and ends at EndLine/EndColumn. If the EndLine/EndColumn
pair is missing, the highlight starts from the beginning of the line identified by the Line parameter and ends at
the column identified by the Column parameter.

• AdditionalInfoURL: the URL string pointing to a remote location where additional information about the error
can be found - this line is optional in a linked message.

• Description: message content (the string Description: followed by the content of the message that will be
displayed in the output view).

Example:

Example of how a custom validation engine can report an error using the format specified above:

Type: E
SystemID: file:///c:/path/to/validatedFile.xml
Line: 10
Column: 20
EndLine: 10
EndColumn: 35
AdditionalInfoURL: http://www.host.com/path/to/errors.html#errorID
Description: custom validator message

Validation Scenarios

A complex XML document is split in smaller interrelated modules. These modules do not make much sense
individually and cannot be validated in isolation due to interdependencies with other modules. Oxygen XML
Developer validates the main module of the document when an imported module is checked for errors.

A typical example is the chunking of a DocBook XSL stylesheet that has chunk.xsl as the main module and
param.xsl, chunk-common.xsl, and chunk-code.xsl as imported modules. param.xsl only defines
XSLT parameters. The module chunk-common.xsl defines an XSLT template with the name chunk. Chunk-
code.xsl calls this template. The parameters defined in param.xsl are used in the other modules without
being redefined.

Validating chunk-code.xsl as an individual XSLT stylesheet generates misleading errors in regards to
parameters and templates that are used but undefined. These errors are only caused by ignoring the context in

Editing Documents 281

which this module is used in real XSLT transformations and in which it is validated. To validate such a module,
define a validation scenario to set the main module of the stylesheet and the validation engine used to find the
errors. Usually this engine applies the transformation during the validation process to detect the errors that the
transformation generates.

You can validate a stylesheet with several engines to make sure that you can use it in various environments and
have the same results. For example, an XSLT stylesheet may be applied with Saxon 6.5, Xalan, and MSXML 4.0
engines in different production systems.

Other examples of documents that can benefit from a validation scenario include:

• A complex XQuery file with a main module that imports modules developed independently but validated in the
context of the main module of the query. In an XQuery validation scenario, the default validator of Oxygen XML
Developer (Saxon 9) or any connection to a database that supports validation (Berkeley DB XML Database,
eXist XML Database, Documentum xDB (X-Hive/DB) 10 XML Database, MarkLogic version 5 or newer) can be
set as a validation engine.

• An XML document in which the master file includes smaller fragment files using XML entity references.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file,
along with any Schematron schema defined in the default scenarios for that particular framework, are used
for the validation. These take precedence over other types of validation units defined in the default scenarios
for the particular framework. For more information on master files, see Master Files Support on page 233 or
Working with Modular XML Files in the Master Files Context on page 311.

To watch our video demonstration about how to use a validation scenario in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/Validation_Scenario.html.

Related Information:
Validating XML Documents Against a Schema on page 277
Presenting Validation Errors in Text Mode on page 183

Creating a New Validation Scenario

To create a validation scenario, follow these steps:

1. Select the Configure Validation Scenario(s) from the Validation toolbar drop-down menu, or from
the Document > Validate menu (or the Validate submenu when invoking the contextual menu on a file in the
Project view).
The Configure Validation Scenario(s) dialog box is displayed. It contains predefined and user-defined
scenarios. The predefined scenarios are organized in categories depending on the type of file they apply to
and you can identify them by a yellow key icon that marks them as read-only. The user-defined scenarios are
organized under a single category. The default scenarios for the particular framework are rendered in bold.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file,
along with any Schematron schema defined in the default scenarios for that particular framework, are used
for the validation. These take precedence over other types of validation units defined in the default scenarios
for the particular framework. For more information on master files, see Master Files Support on page 233 or
Working with Modular XML Files in the Master Files Context on page 311.

Editing Documents 282

https://www.oxygenxml.com/demo/Validation_Scenario.html
https://www.oxygenxml.com/demo/Validation_Scenario.html

Figure 115: Configure Validation Scenario Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the
 Settings button allows you to configure the following options:

Show all scenarios
Select this option to display all the available scenarios, regardless of the document they are associated
with.

Show only the scenarios available for the editor
Select this option to only display the scenarios that Oxygen XML Developer can apply for the current
document type.

Show associated scenarios
Select this option to only display the scenarios associated with the document you are editing.

Import scenarios
This option opens the Import scenarios dialog box that allows you to select the scenarios file that
contains the scenarios you want to import. If one of the scenarios you import is identical to an existing
scenario, Oxygen XML Developer ignores it. If a conflict appears (an imported scenario has the same
name as an existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Developer adds imported to the name of the
imported scenario.

Export selected scenarios
Use this option to export selected scenarios individually. Oxygen XML Developer creates a scenarios
file that contains the scenarios that you export. This is useful if you want to share scenarios with others or
export them to another computer.

2. To add a scenario, click the New button.
The New scenarios dialog box is displayed and it lists all the validation units for the scenario.

Editing Documents 283

Figure 116: Create New Validation Scenario

This scenario configuration dialog box allows you to configure the following information and options:
Name

The name of the validation scenario.
Storage

You can choose between storing the scenario in the Project Options or Global Options.
URL of the file to validate

The URL of the main module that includes the current module. It is also the entry module of the validation
process when the current one is validated. To edit the URL, double-click its cell and specify the URL of the
main module by doing one of the following:

• Enter the URL in the text field or select it from the drop-down list.
• Use the Browse drop-down button to browse for a local, remote, or archived file.
• Use the Insert Editor Variable button to insert an editor variable or a custom editor variable.

Figure 117: Insert an Editor Variable

File type
The type of the document that is validated in the current validation unit. Oxygen XML Developer
automatically selects the file type depending on the value of the URL of the file to validate field.

Editing Documents 284

Validation engine
You can select one of the engines available in Oxygen XML Developer for validation of the particular
document type.

Default engine means that the default engine is used to run the validation for the current document type,
as specified in the preferences page for that type of document (for example, XSLT preferences page,
XQuery preferences page, XML Schema preferences page).

The DITA Validation engine performs DITA-specific checks in the context of the specifications.

The Table Layout Validation engine looks for table layout problems.

Automatic validation
If this option is selected, the validation operation defined by this row is also applied by the automatic
validation feature. If the Automatic validation feature is disabled in the Document Checking preferences
page, then this option is ignored, as the preference setting has a higher priority.

Schema
This option becomes active when you set the File type to XML Document and allows you to specify the
schema used for the validation unit.

Specify Schema
Opens the Specify Schema dialog box that allows you to set a schema to be used for validating XML
documents.

Figure 118: Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema
Uses the schema detected for the particular document.

Use custom schema
Allows you to specify the schema using the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a
remote server through HTTP(S), FTP(S) or a custom protocol. You can specify the URL by using the
text field, the history drop-down, the Insert Editor Variables button, or the browsing tools in the

Browse drop-down list.
• Schema type - Select a possible schema type from this combo box that is populated based on the

extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Embedded schematron rules - If you have selected XML Schema or Relax NG schemas with
embedded Schematron rules and you want to use those embedded rules, select this option.

Editing Documents 285

• Extensions- Opens a dialog box that allows you to specify Java extension JARs to be used during
the validation.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Schematron phase - If you select a Schematron schema, this drop-down list allows you to select

a Schematron phase that you want to use for validation. The listed phases are defined in the
Schematron document.

Move Up
Moves the selected scenario up one spot in the list.

Move Down
Moves the selected scenario down one spot in the list.

Add
Adds a new validation unit to the list.

Remove
Removes an existing validation unit from the list.

3. Configure any of the existing validation units according to the information above, and you can use the buttons
at the bottom of the table to add, remove, or move validation units. Note that if you add a Schematron
validation unit, you can also select the validation phase.

4. Press OK.
The newly created validation scenario will now be included in the list of scenarios in the Configure Validation
Scenario(s) dialog box. You can select the scenario in this dialog box to associate it with the current
document and press the Apply associated button to run the validation scenario.

Editing a Validation Scenario

To edit an existing validation scenario, follow these steps:

1. Select the Configure Validation Scenario(s) from the Validation toolbar drop-down menu, or from
the Document > Validate menu (or the Validate submenu when invoking the contextual menu on a file in the
Project view).
The Configure Validation Scenario(s) dialog box is displayed. It contains predefined and user-defined
scenarios. The predefined scenarios are organized in categories depending on the type of file they apply to
and you can identify them by a yellow key icon that marks them as read-only. The user-defined scenarios are
organized under a single category. The default scenarios for the particular framework are rendered in bold.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file,
along with any Schematron schema defined in the default scenarios for that particular framework, are used
for the validation. These take precedence over other types of validation units defined in the default scenarios
for the particular framework. For more information on master files, see Master Files Support on page 233 or
Working with Modular XML Files in the Master Files Context on page 311.

Editing Documents 286

Figure 119: Configure Validation Scenario Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the
 Settings button allows you to configure the following options:

Show all scenarios
Select this option to display all the available scenarios, regardless of the document they are associated
with.

Show only the scenarios available for the editor
Select this option to only display the scenarios that Oxygen XML Developer can apply for the current
document type.

Show associated scenarios
Select this option to only display the scenarios associated with the document you are editing.

Import scenarios
This option opens the Import scenarios dialog box that allows you to select the scenarios file that
contains the scenarios you want to import. If one of the scenarios you import is identical to an existing
scenario, Oxygen XML Developer ignores it. If a conflict appears (an imported scenario has the same
name as an existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Developer adds imported to the name of the
imported scenario.

Export selected scenarios
Use this option to export selected scenarios individually. Oxygen XML Developer creates a scenarios
file that contains the scenarios that you export. This is useful if you want to share scenarios with others or
export them to another computer.

2. Select the scenario and press the Edit button. If you try to edit one of the read-only predefined scenarios, you
will receive a warning message that Oxygen XML Developer needs to creates customizable duplicate (you can
also use the Duplicate button).
The Edit scenario dialog box is displayed and it lists all the validation units for the scenario.

Editing Documents 287

Figure 120: Edit Validation Scenario

This scenario configuration dialog box allows you to configure the following information and options:
Name

The name of the validation scenario.
Storage

You can choose between storing the scenario in the Project Options or Global Options.
URL of the file to validate

The URL of the main module that includes the current module. It is also the entry module of the validation
process when the current one is validated. To edit the URL, double-click its cell and specify the URL of the
main module by doing one of the following:

• Enter the URL in the text field or select it from the drop-down list.
• Use the Browse drop-down button to browse for a local, remote, or archived file.
• Use the Insert Editor Variable button to insert an editor variable or a custom editor variable.

Figure 121: Insert an Editor Variable

File type
The type of the document that is validated in the current validation unit. Oxygen XML Developer
automatically selects the file type depending on the value of the URL of the file to validate field.

Editing Documents 288

Validation engine
You can select one of the engines available in Oxygen XML Developer for validation of the particular
document type.

Default engine means that the default engine is used to run the validation for the current document type,
as specified in the preferences page for that type of document (for example, XSLT preferences page,
XQuery preferences page, XML Schema preferences page).

The DITA Validation engine performs DITA-specific checks in the context of the specifications.

The Table Layout Validation engine looks for table layout problems.

Automatic validation
If this option is selected, the validation operation defined by this row is also applied by the automatic
validation feature. If the Automatic validation feature is disabled in the Document Checking preferences
page, then this option is ignored, as the preference setting has a higher priority.

Schema
This option becomes active when you set the File type to XML Document and allows you to specify the
schema used for the validation unit.

Specify Schema
Opens the Specify Schema dialog box that allows you to set a schema to be used for validating XML
documents.

Figure 122: Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema
Uses the schema detected for the particular document.

Use custom schema
Allows you to specify the schema using the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a
remote server through HTTP(S), FTP(S) or a custom protocol. You can specify the URL by using the
text field, the history drop-down, the Insert Editor Variables button, or the browsing tools in the

Browse drop-down list.
• Schema type - Select a possible schema type from this combo box that is populated based on the

extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Embedded schematron rules - If you have selected XML Schema or Relax NG schemas with
embedded Schematron rules and you want to use those embedded rules, select this option.

Editing Documents 289

• Extensions- Opens a dialog box that allows you to specify Java extension JARs to be used during
the validation.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Schematron phase - If you select a Schematron schema, this drop-down list allows you to select

a Schematron phase that you want to use for validation. The listed phases are defined in the
Schematron document.

Move Up
Moves the selected scenario up one spot in the list.

Move Down
Moves the selected scenario down one spot in the list.

Add
Adds a new validation unit to the list.

Remove
Removes an existing validation unit from the list.

3. Configure any of the existing validation units according to the information above, and you can use the buttons
at the bottom of the table to add, remove, or move validation units. Note that if you add a Schematron
validation unit, you can also select the validation phase.

4. When you are done configuring the scenario, press OK.
The modified validation scenario will now be included in the list of scenarios in the Configure Validation
Scenario(s) dialog box. If you chose to duplicate an existing one, the modified scenario will be listed with the
word copy at the end of its name.

Sharing Validation Scenarios

The validation scenarios and their settings can be shared with other users by saving them at project level or
by exporting them to a specialized scenarios file that can then be imported. When you create a new validation
scenario or edit an existing one, there is a Storage option to control whether the scenarios are stored in Project
Options or Global Options.

Selecting Project Options stores the scenario in the project file and can be shared with other users that have
access to the project. If your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe,
etc.) then your team will have access to the scenarios that you define. When you create a scenario at the project
level, the URLs from the scenario become relative to the project URL.

Selecting Global Options stores the scenario in the global options that are stored in the user home directory.

You can also change the storage options on existing validation scenarios by using the Change storage action
from the contextual menu of the list of scenarios.

Related Information:
Sharing Application Settings on page 141

References to XML Schema Specification

If validation is done against XML Schema, Oxygen XML Developer indicates a specification reference relevant for
each validation error. The error messages contain an Info field that, when clicked, will open the browser on the
XML Schema Part 1:Structures specification at exactly the point where the error is described. This allows you to
understand the reason for that error.

Editing Documents 290

Figure 123: Link to Specification for XML Schema Errors

Resolving References to Remote Schemas with an XML Catalog

When a reference to a remote schema must be used in the validated XML document for interoperability purposes,
but a local copy of the schema should actually be used for performance reasons, the reference can be resolved to
the local copy of the schema with an XML Catalog.

For example, if the XML document contains a reference to a remote schema docbook.rng like this:

<?xml-model href="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>

it can be resolved to a local copy with a catalog entry like this:

<uri name="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 uri="rng/docbook.rng"/>

An XML Catalog can also be used to map a W3C XML Schema specified with a URN in the
xsi:schemaLocation attribute of an XML document to a local copy of the schema. For example, if the XML
document specifies the schema with:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

the URN can be resolved to a local schema file with a catalog entry like this:

<uri name="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

Related Information:
Working with XML Catalogs on page 314

Validation Example - A DocBook Validation Error

In the following DocBook 4 document, the content of the listitem element does not match the rules of the
DocBook 4 schema (docbookx.dtd).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN"
 "http://www.docbook.org/xml/4.4/docbookx.dtd">
<article>
 <title>Article Title</title>
 <sect1>
 <title>Section1 Title</title>
 <itemizedlist>
 <listitem>
 <link>a link here</link>
 </listitem>
 </itemizedlist>
 </sect1>
</article>

The Validate Document action will return the following error:

Editing Documents 291

Unexpected element "link". The content of the parent element type must match
"(calloutlist|glosslist|bibliolist|itemizedlist|orderedlist|segmentedlist|simplelist
|variablelist|caution|important|note|tip|warning|literallayout|programlisting
|programlistingco|screen|screenco|screenshot|synopsis|cmdsynopsis|funcsynopsis
|classsynopsis|fieldsynopsis|constructorsynopsis|destructorsynopsis|methodsynopsis
|formalpara|para|simpara|address|blockquote|graphic|graphicco|mediaobject|mediaobjectco
|informalequation|informalexample|informalfigure|informaltable|equation|example|figure
|table|msgset|procedure|sidebar|qandaset|task|anchor|bridgehead|remark|highlights
|abstract|authorblurb|epigraph|indexterm|beginpage)+".

This error message is a little more difficult to understand, so understanding of the syntax or processing rules for
the DocBook XML DTD listitem element is recommended. However, the error message does offer a clue as to
the source of the problem, indicating that “The content of element type must match”.

Fortunately, most standards-based DTDs, XML Schemas, and Relax NG schemas are supplied with reference
documentation. This enables you to lookup the element and read about it. In this case, you should learn about the
child elements of listitem and their nesting rules. Once you have correctly inserted the required child element
and nested it in accordance with the XML rules, the document will become valid.

XML Quick Fixes
The Oxygen XML Developer Quick Fix support helps you resolve errors that appear in an XML document by
offering Quick Fixes to problems such as missing required attributes or invalid elements. Quick Fixes are available
in Text mode

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error
or warning occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix
proposals with any of the following methods:

• When hovering over the error or warning, the proposals may be presented in a tooltip pop-up window and the
available quick Quick Fixes include a link that can be used to perform the fix.

Figure 124: Quick Fix Presented in a Tooltip in Text Mode

• If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon ()
is displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Developer displays the
list of available fixes.

Figure 125: Quick Fix Menu Invoked by Clicking on the Icon

• With the cursor placed in the highlighted area of the error or warning, you can also invoke the Quick Fix menu
by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Whenever you make a modification in the XML document or you apply a fix, the list of Quick Fixes is recomputed
to ensure that you always have valid proposals.

Note: A Quick Fix that adds an element inserts it along with required and optional elements, and required and
fixed attributes, depending on how the Content Completion preferences are configured.

Editing Documents 292

Quick Fixes for DTD, XSD, and Relax NG Errors

Oxygen XML Developer offers Quick Fixes for common errors that appear in XML documents that are validated
against DTD, XSD, or Relax NG schemas.

Note: For XML documents validated against XSD schemas, the Quick Fixes are only available if you use the
default Xerces validation engine.

Quick Fixes are available in Text mode .

Oxygen XML Developer provides Quick Fixes for numerous types of problems, including the following:

Problem Type Available Quick Fixes

A specific element is required in the current
context

Insert the required element

An element is invalid in the current context Remove the invalid element

The content of the element should be empty Remove the element content

An element is not allowed to have child elements Remove all child elements

Text is not allowed in the current element Remove the text content

A required attribute is missing Insert the required attribute

An attribute is not allowed to be set for the current
element

Remove the attribute

The attribute value is invalid Propose the correct attribute values

ID value is already defined Generate a unique ID value

References to an invalid ID Change the reference to an already defined ID

Related Information:
Schematron Quick Fixes (SQF) on page 293

Schematron Quick Fixes (SQF)

Oxygen XML Developer provides support for Schematron Quick Fixes (SQF). They help you resolve issues that
appear in XML documents that are validated against Schematron schemas by offering you solution proposals.
The Schematron Quick Fixes are an extension of the Schematron language and they allow you to define fixes for
Schematron validation messages. Specifically, they are associated with assert or report messages.

A typical use case is using Schematron Quick Fixes to assist content authors with common editing tasks.
For example, you can use Schematron rules to automatically report certain validation warnings (or errors)
when performing regular editing tasks, such as inserting specific elements or changing IDs to match
specific naming conventions. For more details and examples, please see the following blog post: http://
blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html.

Displaying the Schematron Quick Fix Proposals

The defined Schematron Quick Fixes are displayed on validation errors in Text mode.

Figure 126: Example of a Schematron Quick Fix

Related Information:
Editing Schematron Quick Fixes on page 524

Editing Documents 293

http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html
http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html

Schematron Quick Fix Specifications
Presenting Schematron Validation Issues

Associating a Schema to XML Documents
Oxygen XML Developer relies on schemas to validate XML documents and to compute valid proposals for the
Content Completion Assistant.

Supported Types of Schema

The following schema types are supported:

• W3C XML Schema 1.0 and 1.1 (with and without embedded Schematron rules)
• DTD
• Relax NG - XML syntax (with and without embedded Schematron rules)
• Relax NG - compact syntax
• NVDL
• Schematron (both ISO Schematron and Schematron 1.5)

Detecting a Schema

For the purposes of using validation and content completion mechanisms, Oxygen XML Developer tries to detect
a schema by searching multiple locations, in the following order:

• The schema defined in a validation scenario.
• The schema defined in the validation scenarios associated with the particular document type (if defined).
• The schema that is associated directly in the XML document.
• The schema defined in the framework (document type) configuration.

In addition, the locations of the schema can be mapped through the use of an XML Catalog. For more information,
see Resolving Schema Locations Through XML Catalogs on page 301.

Tip: To quickly open the schema used for validating the current document, select the Open Associated
Schema action from the toolbar (or Document > Schema menu).

Related Information:
Working with Modular XML Files in the Master Files Context

Associating a Schema Through a Validation Scenario

Oxygen XML Developer uses the rules defined in the detected schema to report errors and warnings during
automatic and manual validations that help maintain the structural integrity of your XML documents. You can
specify the schema to be used for validation directly in validation scenarios and there are several methods that
can be used to do so.

Configure a Validation Scenario and Specify the Schema

To associate a schema to a validation scenario to be used whenever the scenario is invoked, follow these steps:

1. Select the Configure Validation Scenario(s) from the Validation toolbar drop-down menu, or from
the Document > Validate menu (or the Validate submenu when invoking the contextual menu on a file in the
Project view).

2. Press the New button to create a new validation scenario or the Edit button to modify an existing one.
3. Add or configure validation units according to your needs and click the Specify Schema button.

Step Result: The Specify Schema dialog box is displayed:

Editing Documents 294

http://schematron-quickfix.github.io/sqf/publishing-snapshots/April2015Draft/spec/SQFSpec.html

Figure 127: Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema
Uses the schema detected for the particular document.

Use custom schema
Allows you to specify the schema using the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a
remote server through HTTP(S), FTP(S) or a custom protocol. You can specify the URL by using the
text field, the history drop-down, the Insert Editor Variables button, or the browsing tools in the

Browse drop-down list.
• Schema type - Select a possible schema type from this combo box that is populated based on the

extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Embedded schematron rules - If you have selected XML Schema or Relax NG schemas with embedded
Schematron rules and you want to use those embedded rules, select this option.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Extensions- Opens a dialog box that allows you to specify Java extension JARs to be used during the

validation.
• Schematron phase - If you select a Schematron schema, this drop-down list allows you to select a

Schematron phase that you want to use for validation. The listed phases are defined in the Schematron
document.

4. Select the schema to be associated with the validation unit and configure the rest of the options according to
your preferences.

5. Click OK on both dialog boxes.

Result: The schema is now associated with that validation scenario whenever it is invoked.

Use the Validate with Action to Specify a Schema for Validating the Current Document

To validate the current document using a specified schema, follow these steps:

1. Select the Validation with action from the Validation drop-down menu on the toolbar (or Document >
Validate menu).

Step Result: The Validate with dialog box is displayed:

Editing Documents 295

Figure 128: Validate with Dialog Box

This dialog box contains the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote
server through HTTP(S), FTP(S) or a custom protocol. You can specify the URL by using the text field, the
history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list.

• Schema type - Select a possible schema type from this combo box that is populated based on the
extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Embedded schematron rules - If you have selected XML Schema or Relax NG schemas with embedded
Schematron rules and you want to use those embedded rules, select this option.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Extensions- Opens a dialog box that allows you to specify Java extension JARs to be used during the

validation.
• Schematron phase - If you select a Schematron schema, this drop-down list allows you to select a

Schematron phase that you want to use for validation. The listed phases are defined in the Schematron
document.

2. Select the schema to be associated with the manual validation and configure the rest of the options according
to your preferences.

3. Click OK.

Result: The current document is validated using the schema you specified.

Tip: To quickly open the schema used for validating the current document, select the Open Associated
Schema action from the toolbar (or Document > Schema menu).

Use the Validate with Schema Action to Specify a Schema for Validating all Selected Documents

To validate multiple documents using a specified schema, follow these steps:

1. Select all the documents you want to validate in the Project view .
2. Invoke the contextual menu (right-click) and select the Validate with Schema action from the Validate

submenu.

Step Result: The Validate with dialog box is displayed:

Editing Documents 296

Figure 129: Validate with Dialog Box

This dialog box contains the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote
server through HTTP(S), FTP(S) or a custom protocol. You can specify the URL by using the text field, the
history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list.

• Schema type - Select a possible schema type from this combo box that is populated based on the
extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Embedded schematron rules - If you have selected XML Schema or Relax NG schemas with embedded
Schematron rules and you want to use those embedded rules, select this option.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Extensions- Opens a dialog box that allows you to specify Java extension JARs to be used during the

validation.
• Schematron phase - If you select a Schematron schema, this drop-down list allows you to select a

Schematron phase that you want to use for validation. The listed phases are defined in the Schematron
document.

3. Select the schema that you want to use to validate all selected documents and configure the rest of the
options according to your preferences.

4. Click OK.

Result: The selected documents are validated using the schema you specified.

Associating a Schema in Validation Scenarios Defined in the Document Type

To report errors and warnings during automatic and manual validations that help maintain the structural integrity
of particular XML document types, Oxygen XML Developer uses rules defined in the schema that is detected in
the validation scenarios that are associated to each particular document type.

To associate a schema in validation scenarios defined in the framework (document type) configuration, follow
these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Document Type Association.
2. Select your particular document type and click the Edit or Duplicate button to modify an existing framework (or

use the New button to create a new one).

Step Result: This opens a Document type configuration dialog box.
3. Go to the Validation tab.
4. Create or edit a validation scenario:

a. To create a new validation scenario, click the New button.
b. To edit the properties of an existing validation scenario, select it and click the Edit button (you can also

use the Duplicate button to copy an existing scenario and edit its properties).
5. Add or configure validation units according to your needs and click the Specify Schema button.

Step Result: The Specify Schema dialog box is displayed:

Editing Documents 297

Figure 130: Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema
Uses the schema detected for the particular document.

Use custom schema
Allows you to specify the schema using the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a
remote server through HTTP(S), FTP(S) or a custom protocol. You can specify the URL by using the
text field, the history drop-down, the Insert Editor Variables button, or the browsing tools in the

Browse drop-down list.
• Schema type - Select a possible schema type from this combo box that is populated based on the

extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Embedded schematron rules - If you have selected XML Schema or Relax NG schemas with embedded
Schematron rules and you want to use those embedded rules, select this option.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Extensions- Opens a dialog box that allows you to specify Java extension JARs to be used during the

validation.
• Schematron phase - If you select a Schematron schema, this drop-down list allows you to select a

Schematron phase that you want to use for validation. The listed phases are defined in the Schematron
document.

6. Select the schema to be associated with the validation unit and configure the rest of the options according to
your preferences.

7. Click OK on both dialog boxes.

Result: The schema is now associated with the validation scenario you just configured for that particular
document type.

Associating a Schema Directly in XML Documents

Associate Schema Action

The schema used by the Content Completion Assistant and document validation engine can be associated with
the current document by using the Associate Schema action. For most of the schema types, it uses the xml-
model processing instruction, with the exceptions of:

• W3C XML Schema - The xsi:schemaLocation attribute is used.
• DTD - The DOCTYPE declaration is used.

Editing Documents 298

The association can specify a relative file path or a URL of the schema. The advantage of relative file path is that
you can configure the schema at file level instead of framework level.

To associate a schema to the current document, follow these steps:

1. Select the Associate Schema action from the toolbar (or Document > Schema menu).

Step Result: The Associate Schema dialog box is displayed:

Figure 131: Associate Schema Dialog Box

This dialog box contains the following options:

• URL - Allows you to specify or select a URL for the schema. It also keeps a history of the last used
schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote
server through HTTP(S), FTP(S) or a custom protocol.

• Use path relative to file location - Select this option if the XML instance document and the associated
schema contain relative paths. The location of the schema file is inserted in the XML instance document
as a relative file path. This practice allows you, for example, to share these documents with other users
without running into problems caused by multiple project locations on physical disk.

• Schema type - Select a possible schema type from this combo box that is populated based on the
extension of the schema file that was entered in the URL field. The possible schema types are: XML
Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• Add additional association for embedded schematron rules - If you have selected XML Schema or Relax
NG schemas with embedded Schematron rules and you want to use those embedded rules, select this
option.

• Public ID - Allows you to specify a public ID if you have selected a DTD.
• Keep existing schema associations - Select this option to use the existing schema associations of the

currently edited document.
2. Select the schema that will be associated with the XML document and configure the rest of the options

according to your preferences.
3. Click OK.

Result: The schema association is created based upon the specified type.

• XML Schema - The association with an XML Schema is added as an attribute of the root element with one of
the following:

• xsi:schemaLocation attribute, if the root element of the document sets a default namespace with an
xmlns attribute.

• xsi:noNamespaceSchemaLocation attribute, if the root element does not set a default namespace.

Editing Documents 299

• DTD - The association with a DTD is added as a DOCTYPE declaration.
• Other - The association with a Relax NG, Schematron, or NVDL schema is added as xml-model processing

instruction.

Tip: To quickly open the schema used for validating the current document, select the Open Associated
Schema action from the toolbar (or Document > Schema menu).

Associate Schema with the xml-model Processing Instruction

The xml-model processing instruction associates a schema with the XML document that contains the
processing instruction. It must be added at the beginning of the document, just after the XML prolog. The
following code snippet contains an xml-model processing instruction declaration:

<?xml-model href="../schema.sch" type="application/xml"
 schematypens="http://purl.oclc.org/dsdl/schematron" phase="ALL"
 title="Main schema"?>

It is available in the Content Completion Assistant, before XML document root element, and includes the following
attributes:

• href (required) - The schema file location.
• type - The content type of the schema. This is an optional attribute with the following possible values for

each specified type:

• DTD - The recommended value is application/xml-dtd.
• W3C XML Schema - The recommended value is application/xml, or can be left unspecified.
• RELAX NG XML Syntax - The recommended value is application/xml, or can be left unspecified.
• RELAX NG Compact Syntax - The recommended value is application/relax-ng-compact-syntax.
• Schematron - The recommended value is application/xml, or can be left unspecified.
• NVDL - The recommended value is application/xml, or can be left unspecified.

• schematypens - The namespace for the schema language of the referenced schema with the following
possible values:

• DTD - Not specified.
• W3C XML Schema - The recommended value is http://www.w3.org/2001/XMLSchema.
• RELAX NG XML Syntax - The recommended value is http://relaxng.org/ns/structure/1.0.
• RELAX NG Compact Syntax - Not specified.
• Schematron - The recommended value is http://purl.oclc.org/dsdl/schematron.
• NVDL - The recommended value is http://purl.oclc.org/dsdl/nvdl/ns/structure/1.0.

• phase - The phase name for the validation function in Schematron schema. This is an optional attribute. To
run all phases from the Schematron, use the special #ALL value. If the phase is not specified, the default
phase that is configured in the Schematron will be applied.

• title - The title for the associated schema. This is an optional attribute.

Older versions of Oxygen XML Developer used the oxygen processing instruction with the following attributes:

• RNGSchema - Specifies the path to the Relax NG schema that is associated with the current document.
• type - Specifies the type of Relax NG schema. It is used along with the RNGSchema attribute and can have the

value xml or compact.
• NVDLSchema - Specifies the path to the NVDL schema that is associated with the current document.
• SCHSchema - Specifies the path to the SCH schema that is associated with the current document.

Note: Documents that use the oxygen processing instruction are compatible with newer versions of Oxygen
XML Developer.

Related Information:
Validating XML Documents on page 275
Content Completion Assistant in Text Mode on page 247

Editing Documents 300

Associating a Schema in a Framework (Document Type) Configuration

The schema used to compute valid proposals in the Content Completion Assistant and by the document
validation engine to report errors and warnings can be defined in each particular framework (document type).
This schema will be used only if one is not detected in the current XML file.

To associate a schema in a particular framework (document type), follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Document Type Association.
2. Select your particular document type and click the Edit, Extend, or Duplicate button to modify an existing

framework (or use the New button to create a new one).

Step Result: This opens a Document type configuration dialog box.
3. Go to the Schema tab.
4. Select the schema type and its URI.
5. Click OK.

Result: The schema is now associated with the particular document type and will be used by the Content
Completion Assistant and validation engine if a schema is not detected in the current XML document.

Resolving Schema Locations Through XML Catalogs

Schema locations can be mapped using an XML Catalog. Oxygen XML Developer resolves the location of a
schema in the following order:

• First, it attempts to resolve the schema location as a URI (uri, uriSuffix, rewriteUri, delegateUri
mappings from the XML Catalog). If this succeeds, the process end here.

• If the Resolve schema locations also through system mappings option is selected, it attempts to resolve the
schema location as a system ID (system, systemSuffix, rewriteSuffix, rerwriteSystem from the
XML Catalog). If this succeeds, the process ends here.

• If the Process "schemaLocation" namespaces through URI mappings for XML Schema option is selected, the
target namespace of the imported XML Schema is resolved through URI mappings. If the schema specified
in the schemaLocation attribute is not resolved successfully, the namespace of the root element is taken into
account. If this succeeds, the process ends here.

• If none of these succeeds, the actual schema location is used.

Related Information:
Working with XML Catalogs on page 314

Learn Document Structure when Schema is not Detected

When working with documents that do not specify a schema, or for which the schema is not known or does not
exist, Oxygen XML Developer is able to learn and translate the document structure to a DTD. You can choose
to save the learned structure to a file to provide a DTD as an initialization source for content completion and
document validation. This feature is also useful for producing DTDs for documents that contain personal or
custom element types.

When you open a document that is not associated with a schema, Oxygen XML Developer automatically learns
the document structure and uses it for content completion. To disable this feature, deselect the Learn on open
document option in the user preferences.

Related Information:
Detecting a Schema on page 294

Create a DTD from Learn Document Structure Option

When there is no schema associated with an XML document, Oxygen XML Developer can learn the document
structure by parsing the document internally. This feature is enabled by the Learn on open document option that is
available in the user preferences.

To create a DTD from the learned structure, follow these steps:

1. Open the XML document for which a DTD will be created.
2. Go to Document > XML Document > Learn Structure (Ctrl + Shift + L (Command + Shift + L on OS X)).

Editing Documents 301

The Learn Structure action reads the mark-up structure of the current document. The Learn completed
message is displayed in the application status bar when the action is finished.

3. Go to Document > XML Document > Save Structure (Ctrl + Shift + S (Command + Shift + S on OS X)) and
enter the DTD file path.

4. Press the Save button.

Finding and Replacing Text in the Current File
This section walks you through the find and replace features available in Oxygen XML Developer.

You can use a number of advanced views depending on what you need to find in the document you are editing or
in your entire project. The Find/Replace dialog box allows you to search through the current project or selected
resources and offers a set of options to improve your search. The Find All Elements/Attributes dialog box allows
you to search through the structure of the current document for elements and attributes.

As an alternative to the dedicated search operations, you can also use the Quick Find toolbar.

Find/Replace Dialog Box

To open the Find/Replace dialog box, use the Find/Replace action that is available in the Find menu, on the
toolbar, or by pressing Ctrl + F (Command + F on OS X). It is also invoked by the Find/Replace contextual menu
action found in certain views.

You can use the Find/Replace dialog box to perform the following operations:

• Replace occurrences of target defined in the Find area with a new fragment of text defined in Replace with
area.

• Find all the occurrences of a word or string of characters (that can span over multiple lines) in the document
you are editing. This operation also takes into account all the white spaces contained in the fragment you are
searching for.

Note: The Find/Replace dialog box counts the number of occurrences of the text you are searching for and
displays it at the bottom of the dialog box, above the Close button. This number is also displayed in the Results
view.

The find operation works on multiple lines, meaning that a find match can cover characters on multiple lines of
text. To input multiple-line text in the Find and Replace with areas, do one of the following:

• Press Ctrl + Enter (Command + Enter on OS X) on your keyboard.
• Use the Insert newline contextual menu action.

You can use Perl-like regular expressions syntax to define patterns. A content completion assistance window is
available in the Find and Replace with areas to help you edit regular expressions. It is activated every time you
type \(backslash key) or on-demand if you press Ctrl + Space (Command + Space on OS X) on your keyboard.

The replace operation can bind regular expression capturing groups ($1, $2, etc.) from the find pattern.

Tip: To replace the tag-name start tag and its attributes with the new-tag-name tag use as Find the
expression <tag-name(\s+)(.*)> and as Replace with the expression <new-tag-name$1$2>.

The Find/Replace dialog box contains the following options:

• Find - The target character string to search for. You can search for Unicode characters specified in the \uNNNN
format. Also, hexadecimal notation (\xNNNN) and octal notation (\0NNNN) can be used. In this case you have
to select the Regular expression option. For example, to search for a space character you can use the \u0020
code.

• Replace with - The character string with which to replace the target. The string for replace can be on a line
or on multiple lines. It can contain Perl notation capturing groups, only if the search expression is a regular
expression and the Regular expression option is selected.

Note: Some regular expressions can indefinitely block the application. If the execution of the regular
expression does not end in about 5 seconds, the application displays a dialog box that allows you to interrupt
the operation.

Editing Documents 302

Tip: Special characters such as newline and tab can be inserted in the Find and Replace with text boxes using
dedicated actions in the contextual menu (Insert newline and Insert tab).

Unicode characters in the \uNNNN format can also be used in the Replace with area.
• The History button - Contain lists of the last find and replace expressions. Use the Clear history action

from the bottom of the lists to remove these expressions.
• XPath - The XPath 2.0 expression you input in this combo is used for restricting the search scope.

Note: The Content Completion Assistant helps you input XPath expressions, valid in the current context.
• Direction - Specifies if the search direction is from current position to end of file (Forward) or to start of file

(Backward).
• Scope - Specifies whether the Find/Replace operation is executed over the entire content of the edited

document (All option), or over the selected lines of text (Only selected lines option). If the selection spans
across multiple lines, when you open the Find/Replace dialog box, the scope is set to Only selected lines.

• Case sensitive - When selected, the search operation follows the exact letter case of the text entered in the
Find field.

• Whole words only - Only entire occurrences of a word are included in the search operation.
• Incremental - The search operation is started every time you type or delete a letter in the Find text box.
• Regular expression - When this option is selected, you can use regular expressions in Perl-like regular

expressions syntax to look for specific pieces of text.

• Dot matches all - A dot used in a regular expression also matches end of line characters.
• Canonical equivalence - If selected, two characters will be considered a match if, and only if, their full

canonical decompositions match. For example, the ã symbol can be inserted as a single character or as
two characters (the a character, followed by the tilde character). This option is not selected by default.

• Wrap around - When the end of the document is reached, the search operation is continued from the start of
the document, until its entire content is covered.

• Enable XML search options - This option is only available when editing in Text mode. It provides access to a
set of options that allow you to search specific XML component types:

• Element names - Only the element names are included in the search operation that ignores XML-tag
notations ('<', '/', '>'), attributes or white-spaces.

• Element contents - Search in the text content of XML elements.
• Attribute names - Only the attribute names are included in the search operation, without the leading or

trailing white-spaces.
• Attribute values - Only the attribute values are included in the search operation, without single quotes(') or

double quotes(").
• Comments - Only the content of comments is included in the search operation, excluding the XML

comment delimiters ('<!--', '-->').
• PIs (Processing Instructions) - Only the content are searched, skipping '<?', '?>'. e. g.: <?processing

instruction?>
• CDATA - Searches inside content of CDATA sections.
• DOCTYPE - Searches inside content of DOCTYPE sections.
• Entities - Only the entity names are searched.

The two buttons Select All and Deselect All allow a simple activation and deactivation of all types of XML
components.

Note: Even if you select all options of the Enable XML search options section, the search is still XML-aware. If
you want to perform the search over the entire file content, deselect Enable XML search options.

• Find - Executes a find operation for the next occurrence of the target. It stops after highlighting the find match
in the editor panel.

• Replace - Executes a replace operation for the target followed by a find operation for the next occurrence.
• Find All - Executes a find operation and displays all results in the Results view. The results are displayed in the

Results view.
• Replace All - Executes a replace operation in the entire scope of the document.
• Replace to End - Executes a replace operation starting from current target until the end of the document, in the

direction specified by the current selection of the Direction switch (Forward or Backward).

Editing Documents 303

Find All Elements Dialog Box

To open the Find All Elements dialog box, go to Find > Find All Elements(Ctrl + Shift + E (Command + Shift + E on
OS X)) or from the shortcut Find All Elements that is available in the Find / Replace dialog box. It assists you in
defining XML element / attribute search operations in the current document.

Figure 132: Find All Elements Dialog Box

The dialog box can perform the following actions:

• Find all the elements with a specified name
• Find all the elements that contain, or does not contain, a specified string in their text content
• Find all the elements that have a specified attribute
• Find all the elements that have an attribute with, or without, a specified value

You can combine all of these search criteria to filter your results.

The following fields are available in the dialog box:

• Element name - The qualified name of the target element to search for. You can use the drop-down menu to
find an element or enter it manually. It is populated with valid element names collected from the associated
schema. To specify any element name, leave the field empty.

Note: Use the qualified name of the element (<namespace prefix>:<element name>) when the
document uses this element notation.

• Element text - The target element text to search for. The drop-down menu beside this field allows you to
specify whether you are looking for an exact or partial match of the element text. For any element text, select
contains from the drop-down menu and leave the field empty. If you leave the field empty but select equals
from the drop-down menu, only elements with no text will be found. Select not contains to find all elements
that do not include the specified text.

• Attribute name - The name of the attribute that must be present in the element. You can use the drop-down
menu to select an attribute or enter it manually. It is populated with valid attribute names collected from the
associated schema. For any or no attribute name, leave the field empty.

Note: Use the qualified name of the attribute (<namespace prefix>:<attribute name>) when the
document uses this attribute notation.

• Attribute value - The drop-down menu beside this field allows you to specify that you are looking for an exact
or partial match of the attribute value. For any or no attribute value, select contains from the drop-down
menu and leave the field empty. If you leave the field empty but select equals from the drop-down menu,
only elements that have at least an attribute with an empty value will be found. Select not contains to find all
elements that have attributes without a specified value.

• Case sensitive - When this option is selected, operations are case-sensitive

When you press Find All, Oxygen XML Developer tries to find the items that match all the search parameters. The
results of the operation are presented as a list in the message panel.

Editing Documents 304

Quick Find Toolbar

A reduced version of the Find / Replace dialog box is available as a dockable toolbar. To display it press the Alt
+ Shift + F (Command + Alt + F on OS X) key combination or invoke the Find > Quick Find action. By default,
the toolbar is displayed at the bottom of the Oxygen XML Developer window, above the status bar, but can be
changed at any time by dragging (and docking) it to a different location. To hide the toolbar, use the Close button.

All matches are highlighted in the current editor.

Figure 133: Quick Find Toolbar

The toolbar offers the following controls:

• Search input box - This is where you can insert the text you want to search for. The input box keeps a history of
the last used search text. The background color of the input box turns red when no match is found.

• Next - Advances to the next match.
• Previous - Jumps to the previous match.
• All - Highlights all matches of the search string in the current document.
• Incremental - If selected, the search operation is started every time you type or delete a character in the

search input box.
• Case sensitive - If selected, the search operation follows the exact letter case of the search text.
• Find/Replace - Opens the Find/Replace dialog box.
• Find/Replace in Files - Opens the Find/Replace in Files dialog box.
• Close - Closes the Quick Find toolbar.

Keyboard Shortcuts for Finding the Next and Previous Match

Navigating from one match to the next or previous one is very easy to perform using the F3 and Shift + F3
(Command + Shift + G on OS X) keyboard shortcuts. They are useful for quickly repeating the last find action
performed in the Find / Replace dialog box, taking into account the same find options.

Restriction: These shortcuts only take XPath expressions into account if the Find / Replace dialog box remains
opened. Once you close it, the XPath expressions are no longer considered.

Regular Expressions Syntax

Oxygen XML Developer uses the Java regular expression syntax. It is similar to that used in Perl 5, with several
exceptions. Thus, Oxygen XML Developer does not support the following constructs:

• The conditional constructs (?{X}) and (?(condition)X|Y).
• The embedded code constructs (?{code}) and (??{code}).
• The embedded comment syntax (?#comment).
• The preprocessing operations \l, \u, \L, and \U.

When using regular expressions, note that some sets of characters from XPath/XML Schema/Schematron
are slightly different than the ones used by Oxygen XML Developer/Java in the text searches from the Find/
Replace dialog box and Find/Replace in Files dialog box. The most common example is with the \w and \W
set of characters. To ensure consistent results between the two, it is recommended that you use the following
constructs in the Find/Replace dialog box and Find/Replace in Files dialog box:

• /w - [#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}] instead of \w
• /W - [\p{P}\p{Z}\p{C}] instead of \W

There are some other notable differences that may cause unexpected results, including the following:

• In Perl, \1 through \9 are always interpreted as back references. A backslash-escaped number greater than
9 is treated as a back reference if at least that many sub-expressions exist. Otherwise, it is interpreted, if
possible, as an octal escape. In this class octal escapes must always begin with a zero. In Java, \1 through \9
are always interpreted as back references, and a larger number is accepted as a back reference if at least that

Editing Documents 305

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
https://www.w3.org/TR/xmlschema-2/#dt-ccesN

many sub-expressions exist at that point in the regular expression. Otherwise, the parser will drop digits until
the number is smaller or equal to the existing number of groups or it is one digit.

• Perl uses the g flag to request a match that resumes where the last match left off.
• In Perl, embedded flags at the top level of an expression affect the whole expression. In Java, embedded flags

always take effect at the point where they appear, whether they are at the top level or within a group. In the
latter case, flags are restored at the end of the group just as in Perl.

• Perl is forgiving about malformed matching constructs, as in the expression *a, as well as dangling brackets,
as in the expression abc], and treats them as literals. This class also accepts dangling brackets but is strict
about dangling meta-characters such as +, ? and *.

Related Information:
Comparison between the Java and Perl 5 regular expression syntax

Finding and Replacing Text in Multiple Files

To open the Find/Replace in Files dialog box, use the Find/Replace in Files action that is available in the
following locations::

• The Find menu.
• The main toolbar.
• The contextual menu of the Project view.
• The contextual menu of the Data Source Explorer view for most types of database connections.

The operation works on both local and remote files from an (S)FTP, WebDAV or CMS server.

It enables you to define Search for or Search for and Replace operations across a number of files. You can use
Perl-like regular expression syntax to match patterns in text content. The replace operation can bind regular
expression capturing groups ($1, $2, etc.) from the find pattern.

Tip: To replace the tag-name start tag and its attributes with the new-tag-name tag use as Text to find the
expression <tag-name(\s+)(.*)> and as Replace with the expression <new-tag-name$1$2>.

The encoding used to read and write the files is detected from the XML header or from the BOM. If a file does not
have an XML header or BOM Oxygen XML Developer uses by default the UTF-8 encoding for files of type XML,
that is for files with one of the extensions: .xml, .xsl, .fo, .xsd, .rng, .nvdl, .sch, .wsdl or an extension
associated with the XML editor type. For the other files it uses the encoding configured for non-XML files.

You can cancel a long operation at any time by pressing the Cancel button of the progress dialog box displayed
when the operation is executed.

Since the content of read-only files cannot be modified, the Replace operation is not processing those files. For
every such file, a warning message is displayed in the message panel.

Editing Documents 306

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#jcc

Figure 134: Find / Replace in Files Dialog Box

The dialog box contains the following options:

• Text to find - The target character string to search for. You can search for Unicode characters specified in the
\uNNNN format. Also, hexadecimal notation (\xNNNN) and octal notation (\0NNNN) can be used. In this case
you have to select the Regular expression option. For example, to search for a space character you can use
the \u0020 code.

• Case sensitive - When selected, the search operation follows the exact letter case of the value entered in the
Text to find field.

• Whole words only - Only entire occurrences of a word are included in the search operation.
• Ignore extra whitespaces - If selected, the application normalizes the content (collapses any sequence of

whitespace characters into a single space) and trims its leading and trailing whitespaces when performing the
search operation.

• Regular expression - When this option is selected, you can use regular expressions in Perl-like regular
expressions syntax to look for specific pieces of text.

• Dot matches all - A dot used in a regular expression also matches end of line characters.
• Canonical equivalence - If selected, two characters will be considered a match if, and only if, their full

canonical decompositions match. For example, the ã symbol can be inserted as a single character or as
two characters (the a character, followed by the tilde character). This option is not selected by default.

• XPath - The XPath 2.0 expression you input in this combo is used for restricting the search scope.

Note: The Content Completion Assistant helps you input XPath expressions, valid in the current context.
• Enable XML search options - This option is only available when editing in Text mode. It provides access to a

set of options that allow you to search specific XML component types:

Editing Documents 307

• Element names - Only the element names are included in the search operation that ignores XML-tag
notations ('<', '/', '>'), attributes or white-spaces.

• Element contents - Search in the text content of XML elements.
• Attribute names - Only the attribute names are included in the search operation, without the leading or

trailing white-spaces.
• Attribute values - Only the attribute values are included in the search operation, without single quotes(') or

double quotes(").
• Comments - Only the content of comments is included in the search operation, excluding the XML

comment delimiters ('<!--', '-->').
• PIs (Processing Instructions) - Only the content are searched, skipping '<?', '?>'. e. g.: <?processing

instruction?>
• CDATA - Searches inside content of CDATA sections.
• DOCTYPE - Searches inside content of DOCTYPE sections.
• Entities - Only the entity names are searched.

The two buttons Select All and Deselect All allow a simple activation and deactivation of all types of XML
components.

Note: Even if you select all options of the Enable XML search options section, the search is still XML-aware. If
you want to perform the search over the entire file content, deselect Enable XML search options.

• Replace with - The character string with which to replace the target. It may contain regular expression group
markers if the search expression is a regular expression and the Regular expression checkbox is selected.

• Make backup files with extension - In the replace process Oxygen XML Developer makes backup files of the
modified files. The default extension is .bak, but you can change the extension as you prefer.

• Selected project resources - Searches only in the selected files of the currently opened project. This option is
not displayed when this dialog box is opened from the Archive Browser view.

• Project files - Searches in all files from the current project. This option is not displayed when this dialog box is
opened from the Archive Browser view.

• All opened files - Searches in all files opened in Oxygen XML Developer . You are prompted to save all
modified files before any operation is performed. This option is not displayed when this dialog box is started
from the Archive Browser view.

• Current file directory - The search is done in the directory of the file opened in the current editor panel. If there
is no opened file, this option is not available. Also, this option is not displayed when this dialog box is opened
from the Archive Browserview.

• Opened archive - The search is done in an archive opened in the Archive Browser view. Displayed only when
this dialog box is opened from the Archive Browser view.

• Specified path - Chooses the search path.
• Include files - Narrows the scope of the operation only to the files that match the given filters.
• Recurse subdirectories - When selected, the search is performed recursively for the specified scope. The one

exception is that this option is ignored if the scope is set to All opened files.
• Include hidden files - When selected, the search is also performed in the hidden files.
• Include archives - When selected, the search is also done in all individual file entries from all supported ZIP-

type archives.
• Show separate results for each search expression - When selected, the application opens a new tab to display

the result of each new search expression. When the option is unchecked, the search results are displayed in
the Find in Files tab, replacing any previous search results.

• Find All - Executes a find operation and returns the result list to the message panel. The results are displayed
in a view that allows grouping the results as a tree with two levels.

• Replace All - Replaces all occurrences of the target contained in the specified files.

When you replace a fragment of text, Oxygen XML Developer provides a preview of the changes you make. The
Preview dialog box is divided in two sections. The first section presents a list of all the documents containing the
fragment of text you want to modify. The second section offers a view of the original file and a view of the final
result. It also allows you to highlight all changes using the vertical bar from the right side of the view. The Next
change and Previous change buttons allow you to navigate through the changes displayed in the Preview dialog
box.

Editing Documents 308

CAUTION: Use this option with caution. Global search and replace across all project files does not open
the files containing the targets, nor does it prompt on a per occurrence basis, to confirm that a replace
operation must be performed. As the operation simply matches the string defined in the find field, this
may result in replacement of matching strings that were not originally intended to be replaced.

Regular Expressions Syntax

Oxygen XML Developer uses the Java regular expression syntax. It is similar to that used in Perl 5, with several
exceptions. Thus, Oxygen XML Developer does not support the following constructs:

• The conditional constructs (?{X}) and (?(condition)X|Y).
• The embedded code constructs (?{code}) and (??{code}).
• The embedded comment syntax (?#comment).
• The preprocessing operations \l, \u, \L, and \U.

When using regular expressions, note that some sets of characters from XPath/XML Schema/Schematron
are slightly different than the ones used by Oxygen XML Developer/Java in the text searches from the Find/
Replace dialog box and Find/Replace in Files dialog box. The most common example is with the \w and \W
set of characters. To ensure consistent results between the two, it is recommended that you use the following
constructs in the Find/Replace dialog box and Find/Replace in Files dialog box:

• /w - [#x0000-#x10FFFF]-[\p{P}\p{Z}\p{C}] instead of \w
• /W - [\p{P}\p{Z}\p{C}] instead of \W

There are some other notable differences that may cause unexpected results, including the following:

• In Perl, \1 through \9 are always interpreted as back references. A backslash-escaped number greater than
9 is treated as a back reference if at least that many sub-expressions exist. Otherwise, it is interpreted, if
possible, as an octal escape. In this class octal escapes must always begin with a zero. In Java, \1 through \9
are always interpreted as back references, and a larger number is accepted as a back reference if at least that
many sub-expressions exist at that point in the regular expression. Otherwise, the parser will drop digits until
the number is smaller or equal to the existing number of groups or it is one digit.

• Perl uses the g flag to request a match that resumes where the last match left off.
• In Perl, embedded flags at the top level of an expression affect the whole expression. In Java, embedded flags

always take effect at the point where they appear, whether they are at the top level or within a group. In the
latter case, flags are restored at the end of the group just as in Perl.

• Perl is forgiving about malformed matching constructs, as in the expression *a, as well as dangling brackets,
as in the expression abc], and treats them as literals. This class also accepts dangling brackets but is strict
about dangling meta-characters such as +, ? and *.

Related Information:
Comparison between the Java and Perl 5 regular expression syntax

Search and Refactoring Actions for IDs and IDREFS
Oxygen XML Developer allows you to search for ID declarations and references (IDREFS) and to define the scope
of the search and refactor operations. These operations are available for XML documents that have an associated
DTD, XML Schema, or Relax NG schema. These operations are available through the search and refactor actions
in the contextual menu. In Text mode, these actions are also available in the Quick Assist menu.

The search and refactor actions from the contextual menu are grouped in the Manage IDs section:

Rename in
Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This
dialog box lets you insert the new ID value and choose the scope of the rename operation. For a preview of the
changes you are about to make, click Preview. This opens the Preview dialog box, which presents a list with
the files that contain changes and a preview zone of these changes.

Rename in File
Renames the ID you are editing and all its occurrences from the current file.

Note: Available in the Text mode only.

Editing Documents 309

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
https://www.w3.org/TR/xmlschema-2/#dt-ccesN
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html#jcc

Search References
Searches for the references of the ID. By default, the scope of this action is the current project. If you
configure a scope using the Select the scope for the Search and Refactor operations dialog box, this scope
will be used instead.

Search References in
Searches for the references of the ID. Selecting this action opens the Select the scope for the Search and
Refactor operations.

Search Declarations
Searches for the declaration of the ID reference. By default, the scope of this action is the current project.
If you configure a scope using the Select the scope for the Search and Refactor operations dialog box, this
scope will be used instead.

Note: Available in the Text mode only.

Search Declarations in
Searches for the declaration of the ID reference. Selecting this action opens the Select the scope for the
Search and Refactor operations.

Note: Available in the Text mode only.

Search Occurrences in file
Searches for the declaration and references of the ID in the current document.

Tip: A quick way to go to the declaration of an ID in Text mode is to move the cursor over an ID reference and use
the Ctrl + Single-Click (Command + Single-Click on OS X) navigation.

Selecting an ID that you use for search or refactor operations differs between the Text and Author modes. In the
Text mode, you position the cursor inside the declaration or reference of an ID. In the Author mode, Oxygen XML
Developer collects all the IDs by analyzing each element from the path to the root. If more IDs are available, you
are prompted to choose one of them.

Figure 135: Selecting an ID in the Author Mode

Related Information:
Working with Modular XML Files in the Master Files Context

Search and Refactor Operations Scope

The scope is a collection of documents that define the context of a search and refactor operation. To control it
you can use the Change scope operation, available in the Quick Assist action set or on the Resource Hierarchy/
Dependency View toolbar. You can restrict the scope to the current project or to one or multiple working sets. The
Use only Master Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations
to the resources from the Master Files directory. Click read more for details about the Master Files support.

Editing Documents 310

Figure 136: Change Scope Dialog Box

The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu
actions allow you to add or delete files, folders, and other resources to the working set structure.

Working with Modular XML Files in the Master Files Context
Smaller interrelated modules that define a complex XML modular structure cannot be correctly edited or
validated individually, due to their interdependency with other modules. Oxygen XML Developer provides the
support for defining the main module (or modules), allowing you to edit any file from the hierarchy in the context
of the master files.

You cat set a main XML document either using the master files support from the Project view, or using a
validation scenario.

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen XML
Developer warns you if the current module is not part of the dependencies graph computed for the main XML
document. In this case, it considers the current module as the main XML document.

The advantages of working with modular XML files in the context of a master file include:

• Correct validation of a module in the context of a larger XML structure.
• Content Completion Assistant displays all collected entities and IDs starting from the master files.
• Oxygen XML Developer uses the schema defined in the master file when you edit a module that is included in

the hierarchy through the External Entity mechanism.
• The master files defined for the current module determines the scope of the search and refactoring actions

for ID/IDREFS values and for updating references when renaming/moving a resource. Oxygen XML Developer
performs the search and refactoring actions in the context that the master files determine, improving the
speed of execution.

To watch our video demonstration about editing modular XML files in the master files context, go to https://
www.oxygenxml.com/demo/Working_With_XML_Modules.html.

Related Information:
Master Files Support on page 233
XML Resource Hierarchy/Dependencies View on page 312

Editing Documents 311

https://www.oxygenxml.com/demo/Working_With_XML_Modules.html
https://www.oxygenxml.com/demo/Working_With_XML_Modules.html

XML Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to easily see the hierarchy / dependencies for
an XML document. The tree structure presented in this view is built based on the XIinclude and External
Entity mechanisms. To define the scope for calculating the dependencies of a resource, click Configure
dependencies search scope on the Resource Hierarchy/Dependencies toolbar.

To open this view, go to Window > Show View > Resource Hierarchy/Dependencies . As an alternative, right-click
the current document and either select Resource Hierarchy or Resource Dependencies.

Figure 137: Resource Hierarchy/Dependencies View - Hierarchy for Syncro phone v1.xml

The build process for the dependencies view is started with the Resource Dependencies action available on the
contextual menu.

Figure 138: Resource Hierarchy/Dependencies View - Dependencies for Insert battery.xml

The following actions are available in the Resource Hierarchy/Dependencies view:

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Editing Documents 312

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.
Show Resource Hierarchy

Shows the hierarchy for the selected resource.
Show Resource Dependencies

Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource. Only the references made through the XInclude and External Entity mechanisms are handled.

Related Information:
Working with Modular XML Files in the Master Files Context on page 311
Search and Refactor Operations Scope on page 310

Moving/Renaming XML Resources

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Select this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the
Move resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

Editing Documents 313

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is selected, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are
updated.

Working with XML Catalogs
Oxygen XML Developer uses XML Catalogs to resolve references for validations and transformations and they
are especially helpful for resolving external resources when internet access is not available or your connection is
slow.

Oxygen XML Developer supports any XML Catalog file that conforms to one of the following:

1. OASIS XML Catalogs Committee Specification v1.1.
2. OASIS Technical Resolution 9401:1997, including the plain-text flavor described in that resolution.

The version 1.1 of the OASIS XML Catalog specification introduces the possibility to map a system ID, public ID,
or a URI to a local copy using only a suffix of the ID or URI used in the actual document. This is done using the
catalog elements systemSuffix and uriSuffix.

Depending on the resource type, Oxygen XML Developer uses different catalog mappings.

Table 6: Catalog Mappings

DocumentReferenced
Resource

Mappings

DTD system or public

The Prefer option controls which one of the mappings should be used.

XML Schema

Relax NG

Schematron

XML

NVDL

The following strategy is used (if one step fails to provide a resource, the next is
applied):

1. resolve the schema using URI catalog mappings.
2. resolve the schema using system catalog mappings.

This happens only if the Resolve schema locations also through system
mappings option is selected (it is by default).

3. resolve the root namespace using URI catalog mappings.

XSL XSL/ANY URI

CSS CSS URI

XML
Schema

XML Schema

Relax
NG

Relax NG

The following strategy is used (if one step fails to provide a resource, the next is
applied):

1. resolve schema reference using URI catalog mappings.
2. resolve schema reference using system catalog mappings.

This happens only if the Resolve schema locations also through system
mappings option is selected (it is by default).

3. resolve schema namespace using URI catalog mappings.

This happens only if the Process namespaces through URI mappings for XML
Schema option is selected (it is not by default).

Editing Documents 314

https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
https://www.oasis-open.org/specs/a401.htm
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.systemsuffix
https://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html#s.urisuffix

Creating an XML Catalog with a Template

An XML Catalog file can be created quickly in Oxygen XML Developer starting from the two document templates
called OASIS XML Catalog 1.0 and OASIS XML Catalog 1.1. They are available when creating new document
templates.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog
 PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN"
 "http://www.oasis-open.org/committees/entity/release/1.1/catalog.dtd">

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <!-- Use "system" and "public" mappings when resolving DTDs -->
 <system
 systemId="http://www.docbook.org/xml/4.4/docbookx.dtd"
 uri="frameworks/docbook/4.4/dtd/docbookx.dtd"/>

 <!-- "systemSuffix" matches any system ID ending in a specified string -->
 <systemSuffix
 systemIdSuffix="docbookx.dtd"
 uri="frameworks/docbook/dtd/docbookx.dtd"/>

 <!-- Use "uri" for resolving XML Schema and XSLT stylesheets -->
 <uri
 name="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng"
 uri="frameworks/docbook/5.0/rng/docbookxi.rng"/>

 <!-- The "uriSuffix" matches any URI ending in a specified string -->
 <uriSuffix
 uriSuffix="docbook.xsl"
 uri="frameworks/docbook/xsl/fo/docbook.xsl"/>

</catalog>

How Oxygen XML Developer Determines which Catalog to Use

Oxygen XML Developer uses XML Catalogs to resolve references for validations and transformations and it maps
such references to the built-in local copies of the schemas associated with the various frameworks (DocBook,
DITA, TEI, XHTML, SVG, etc.)

Oxygen XML Developer includes default global catalogs as well as default catalogs for each of the built-in
frameworks, and you can also create your own.

Oxygen XML Developer looks for catalogs in the following order:

• Global user-defined catalogs that are set in the XML Catalog preferences page.
• User-defined catalogs that are set for each frameworks in the Catalog tab of the Document Type configuration

dialog box.
• Default built-in catalogs.

Example:

An XML Catalog can be used to map a W3C XML Schema specified with an URN in the
xsi:noNamespaceSchemaLocation attribute of an XML document to a local copy of the schema.

Considering the following XML document code snippet:

<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1">

The URN can be resolved to a local schema file with a catalog entry like this:

<uri name="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
 uri="topic.xsd"/>

Related Information:
XML Catalog Preferences on page 91

Resolving Schema Locations Through XML Catalogs

Schema locations can be mapped using an XML Catalog. Oxygen XML Developer resolves the location of a
schema in the following order:

Editing Documents 315

• First, it attempts to resolve the schema location as a URI (uri, uriSuffix, rewriteUri, delegateUri
mappings from the XML Catalog). If this succeeds, the process end here.

• If the Resolve schema locations also through system mappings option is selected, it attempts to resolve the
schema location as a system ID (system, systemSuffix, rewriteSuffix, rerwriteSystem from the
XML Catalog). If this succeeds, the process ends here.

• If the Process "schemaLocation" namespaces through URI mappings for XML Schema option is selected, the
target namespace of the imported XML Schema is resolved through URI mappings. If the schema specified
in the schemaLocation attribute is not resolved successfully, the namespace of the root element is taken into
account. If this succeeds, the process ends here.

• If none of these succeeds, the actual schema location is used.

Related Information:
Working with XML Catalogs on page 314

Editing Large XML Documents with DTD Entities or XInclude
Consider the case of documenting a large project. It is likely that there will be several people involved. The
resulting document can be few megabytes in size. The question becomes how to deal with this amount of data in
such a way that work parallelism will not be affected.

Fortunately, XML provides two solutions for this: DTD Entities and XInclude. A master document can be
created, with references to the other document parts, containing the document sections. The users can edit
the documents individually, then apply an XSLT stylesheet over the master and obtain the output files in various
formats (for example, PDF or HTML).

Including Document Parts with DTD Entities

There are two conditions for including a part using DTD entities:

• The master document should declare the DTD to be used, while the external entities should declare the XML
sections to be referenced.

• The document containing the section must not define again the DTD.

A master document looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [
<!ENTITY testing SYSTEM "testing.xml" >]
>
<book>
<chapter> ...

The referenced document looks like this:

<section> ... here comes the section content ... </section>

Note:

The indicated DTD and the element names (section, chapter) are used here only for illustrating the inclusion
mechanism. You can use any DTD and element names you need.

At a certain point in the master document there can be inserted the section testing.xml entity:

... &testing; ...

When splitting a large document and including the separate parts in the master file using external entities, only
the master file will contain the Document Type Definition (DTD) or other type of schema. The included sections
can not define the schema again because the main document will not be valid. If you want to validate the parts
separately you have to use XInclude for assembling the parts together with the master file.

Including Document Parts with XInclude

XInclude is a standard for assembling XML instances into another XML document through inclusion. It enables
larger documents to be dynamically created from smaller XML documents without having to physically duplicate
the content of the smaller files in the master file. XInclude is targeted as the replacement for External Entities.
The advantage of using XInclude is that, unlike the entities method, each of the assembled documents is

Editing Documents 316

permitted to contain a Document Type Declaration (DOCTYPE). This means that each file is a valid XML instance
and can be independently validated. It also means that the main document, which includes smaller instances, can
be validated without having to remove or comment out the DOCTYPE. as is the case with External Entities. This
makes XInclude a more convenient and effective method for managing XML instances that need to be stand-
alone documents and part of a much larger project.

The main application for XInclude is in the document-oriented content such as manuals and Web pages.
Employing XInclude enables you to manage content in a modular fashion that is akin to Object Oriented methods
used in languages such as Java, C++ or C#.

The advantages of modular documentation include: reusable content units, smaller file units that are easier to be
edited, better version control and distributed authoring.

The XInclude support in Oxygen XML Developer is enabled by default. It is controlled by the Enable XInclude
processing option in the XML > XML Parser preferences page. When enabled, Oxygen XML Developer will be able
to validate and transform documents comprised of parts added using XInclude.

Example: Using XInclude to Include a Chapter in an Article

Chapter file (introduction.xml) looks like this:

<?xml version="1.0"?>
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.oasis-open.org/docbook/xml/4.3/docbookx.dtd">
<chapter>
 <title>Getting started</title>
 <section>
 <title>Section title</title>
 <para>Para text</para>
 </section>
</chapter>

Main article file looks like this:

<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[<!ENTITY % xinclude SYSTEM "../frameworks/docbook/dtd/xinclude.mod">
%xinclude;
]>
<article>
 <title>Install guide</title>
 <para>This is the install guide.</para>
 <xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
 href="introduction.xml">
 <xi:fallback>
 <para>
 <emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis>
 </para>
 </xi:fallback>
 </xi:include>
</article>

In this example, note the following:

• The DOCTYPE declaration defines an entity that references a file containing the information to add the xi
namespace to certain elements defined by the DocBook DTD.

• The href attribute of the xi:include element specifies that the introduction.xml file will replace the
xi:include element when the document is parsed.

• If the introduction.xml file cannot be found, the parser will use the value of the xi:fallback element - a
FIXME message.

Example: Include only a Fragment

If you want to include only a fragment of a file in the master file, the fragment must be contained in a tag having
an xml:id attribute and you must use an XPointer expression pointing to the xml:id value.

Notice: Oxygen XML Developer supports the XPointer Framework and the XPointer element() Scheme, but it does
NOT support the XPointer xpointer() Scheme.

For example, if the master file is:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>

Editing Documents 317

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-element-20030325/
https://www.w3.org/TR/xptr-xpointer/

 <xi:include href="a.xml" xpointer="a1"
 xmlns:xi="http://www.w3.org/2001/XInclude"/>
</test>

and the a.xml file is:

<?xml version="1.0" encoding="UTF-8"?>
<test>
 <a xml:id="a1">test
</test>

after resolving the XPointer reference the document is:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>
 <a xml:id="a1" xml:base="a.xml">test
</test>

Viewing Status Information
Status information generated by operations such as schema detection, manual validation, automatic validation,
and transformations are fed into the Information view, allowing you to monitor how the operation is being
executed.

Figure 139: Information view messages

Messages contain a timestamp, the name of the thread that generated it and the actual status information.
The number of displayed messages can be controlled with the Maximum number of lines option in the Views
preference page.

To make the view visible, select Window > Show View > Information.

Making a Persistent Copy of Results
The Results view displays the results from the following operations:

• document validation
• checking the form of documents
• XSLT or FO transformation
• find all occurrences of a string in a file
• find all occurrences of a string in multiple files
• applying an XPath expression to the current document

Editing Documents 318

To make a persistent copy of the Results view, use one of these actions:
File > Save Results

Displays the Save Results dialog box, used to save the result list of the current message tab. The action is
also available on the right-click menu of the Results panel.

File > Print Results
Displays the Page Setup dialog box used to define the page size and orientation properties for printing the
result list of the current Results panel. The action is also available on the right-click menu of the Results
panel.

Save Results as XML from the contextual menu
Saves the content of the Results panel in an XML file with the format:

<Report>
 <Incident>
 <engine>The engine who provide the error.<engine>
 <severity>The severity level<severity>
 <Description>Description of output message.</Description>
 <SystemID>The location of the file linked to the message.</SystemID>
 <Location>
 <start>
 <line>Start line number in file.<line>
 <column>Start column number in file<column>
 </start>
 <end>
 <line>End line number in file.<line>
 <column>End column number in file<column>
 </start>
 </Location>
 </Incident>
</Report>

Related Information:
Results View on page 180

Editor Highlights
An editor highlight is a text fragment emphasized by a colored background.

Highlights are generated when the following actions generate results:

• Find/Replace in Files
• Find/Replace
• Open/Find Resource
• Find All
• Find All Elements
• XPath in Files
• Search References
• Search Declarations

By default, Oxygen XML Developer uses a different color for each type of highlight (XPath in Files, Find/Replace,
Search References, Search Declarations, etc.) You can customize these colors and the maximum number of
highlights displayed in a document on the Editor preferences page. The default maximum number of highlights is
10000.

You can navigate the highlights in the current document by using the following methods:

• Clicking the markers from the range ruler, located at the right side of the document.
• Clicking the Next and Previous buttons () from the bottom of the range ruler.

Note: When there are multiple types of highlights in the document, the Next and Previous buttons ()
navigate through highlights of the same type.

• Clicking the messages displayed in the Results view at the bottom of the editor.

To remove the highlights, you can do the following:

• Click the Remove all button from bottom of the range ruler.

Editing Documents 319

• Close the results tab at the bottom of the editor that contains the output of the action that generated the
highlights.

• Click the Remove all button on the right side of the Results panel at the bottom of the editor.

Note: Use the Highlight all results in editor button (on the right side of the Results panel) to either display
all the highlights or hide them.

Printing a Document
Printing is supported in Text and Grid modes. The Print(Ctrl + P (Command + P on OS X)) action that is available
from File menu displays the Page Setup dialog box, used for defining the page size and orientation properties for
printing.

A Print Preview action is also available in the File menu. It allows you to manage the format of the printed
document.

Figure 140: Print Preview Dialog Box

The main window is split in three sections:

• Preview area - Displays the formatted document page as it will appear on printed paper.
• Left stripe - The left-side stripe that displays a list of thumbnail pages. Clicking any of them displays the page

content in the main preview area.
• Toolbar - The toolbar area at the top that contains controls for printing, page settings, page navigation, print

scaling, and zoom.

Editing Documents 320

Other Printing Features

• If you are printing a document that is opened in Text mode and line numbers are displayed (the Show line
numbers option is selected), the printed output will include the line numbers.

• If you are printing an XML document that is opened in Text mode and the folding support is activated (the
Enable folding option is selected), the printed output will include the current folded state. Note that this applies
to printing an entire document and not selections within the document.

• If you are printing an XML document that is opened in Text mode and a block of content is selected, you have
the ability to print only the selection of text rather than the entire document. When you invoke the print action
with a block of content selected in Text mode, a dialog box will be presented that offers you the choice to print
the selection or the entire document.

Refactoring XML Documents
In the life cycle of XML documents there are instances when the XML structure needs to be changed to
accommodate various needs. For example, when an associated schema is updated, an attribute may have been
removed, or a new element added to the structure.

These types of situations cannot be resolved with a traditional Find/Replace tool, even if the tool accepts regular
expressions. The problem becomes even more complicated if an XML document is computed or referenced from
multiple modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Developer includes a specialized XML
Refactoring tool that helps you manage the structure of your XML documents.

XML Refactoring Tool

The XML Refactoring tool is presented in the form of an easy to use wizard that is designed to reduce the time
and effort required to perform various structure management tasks. For example, you can insert, delete, or
rename an attribute in all instances of a particular element that is found in all documents within your project.

To access the tool, select the XML Refactoring action from one of the following locations:

• The Tools menu.
• The Refactoring submenu from the contextual menu in the Project view.

Note: The predefined refactoring operations are also available from the Refactoring submenu in the contextual
menu of Text mode. This is useful because by selecting the operations from the contextual menu, Oxygen XML
Developer considers the editing context to skip directly to the wizard page of the appropriate operation and to
help you by preconfiguring some of the parameter values. For your convenience, the last 5 operations that were
finished or previewed also appear in the Refactoring submenu of the contextual menu in the Project view.

XML Refactoring Wizard

The XML Refactoring tool includes the following wizard pages:
Refactoring operations

The first wizard page presents the available operations, grouped by category. To search for an operation, you
can use the filter text box at the top of the page.

Editing Documents 321

Figure 141: XML Refactoring Wizard

Configure Operation Parameters
The next wizard page allows you to specify the parameters for the refactoring operation. The parameters are
specific to the type of refactoring operation that is being performed. For example, to delete an attribute you
need to specify the parent element and the qualified name of the attribute to be removed.

Figure 142: XML Refactoring 2nd Wizard Page (Delete Attribute Operation)

Scope and Filters
The last wizard page allows you to select the set of files that represent the input of the operation.

Editing Documents 322

Figure 143: XML Refactoring - Scope and Filters Wizard Page

Scope section
In the Scope section, you can select from predefined resource sets (such as the current file, your whole
project, the current DITA map hierarchy for DITA projects, etc.) or you can define your own set of resources
by creating a working set.

Filters
The Filters section includes the following options:

• Include files - Allows you to filter the selected resources by using a file pattern. For example, to restrict
the operation to only analyze build files you could use build*.xml for the file pattern.

• Restrict only to known XML file types - When selected, only resources with a known XML file type will
be affected by the operation.

• Look inside archives - When selected, the resources inside archives will also be affected.

Preview
You can use the Preview button to open a comparison panel where you can review all the changes that will
be made by the refactoring operation before applying the changes.

Finish
After clicking the Finish button, the operation will be processed and Oxygen XML Developer provides no
automatic means for reverting the operations. Any Undo action will only revert changes on the current
document.

Tip: If an operation takes longer than expected you can use the Stop button in the progress bar to cancel the
operation.

Predefined Refactoring Operations

The XML Refactoring tool includes a variety of predefined operations that can be used for common refactoring
tasks. They are grouped by category in the Refactoring operations wizard page. You can also access the
operations from the Refactoring submenu in the contextual menu of Text mode. The operations are also grouped
by category in this submenu. When selecting the operations from the contextual menu, Oxygen XML Developer
considers the editing context to get the names and namespaces of the current element or attribute, and uses this
information to preconfigure some of the parameter values for the selected refactoring operation.

Tip: Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-FO-XQuery / XPath
preferences page where you can configure XPath options and declare namespace prefixes.

Editing Documents 323

The following predefined operations are available:

Refactoring Operations for Attributes

Add/Change attribute
Use this operation to change the value of an attribute or insert a new one. This operation allows you to
specify the following parameters:

• Parent element section

• Element - The parent element of the attribute to be changed, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute section

• Local name - The local name of the affected attribute.
• Namespace - The namespace of the affected attribute.
• Value - The value for the affected attribute.

• Options section

• You can choose between one of the following options for the Operation mode:

• Add the attribute in the parent elements where it is missing
• Change the value in the parent elements where the atrribute already exists
• Both

Delete attribute
Use this operation to remove one or more attributes. This operation requires you to specify the following
parameters:

• Element - The parent element of the attribute to be deleted, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be deleted.

Rename attribute
Use this operation to rename an attribute. This operation requires you to specify the following parameters:

• Element - The parent element of the attribute to be renamed, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be renamed.
• New local name - The new local name of the attribute.

Replace in attribute value
Use this operation to search for a text fragment inside an attribute value and change the fragment to a new
value. This operation allows you to specify the following parameters:

• Target attribute section

• Element - The parent element of the attribute to be modified, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be modified.
• Find / Replace section

• Find - The text fragments to find. You can use Perl-like regular expressions.
• Replace with - The text fragment to replace the target with. This parameter can bind regular expression

capturing groups ($1, $2, etc.) from the find pattern.

Refactoring Operations for Comments

Delete comments
Use this operation to delete comments from one or more elements. This operation requires you specify the
following parameter:

Editing Documents 324

• Element - The target element (or elements) for which comments will be deleted, in the form of a local
name from any namespace, a local name with a namespace prefix, or an XPath expression.

Note: Comments that are outside the root element will not be deleted because the serializer preserves the
content before and after the root.

Refactoring Operations for DITA

Change topic ID to file name
Use this operation to change the ID of a topic to be the same as its file name.

Convert conrefs to conkeyrefs
Use this operation to convert conref attributes to conkeyref attributes.

Convert simple tables to CALS tables
Use this operation to convert DITA simple tables to CALS tables.

Convert to Concept
Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to
Concept).

Convert to Reference
Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to
Reference).

Convert to Task
Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

Convert to Topic
Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting
Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example,
Topic to Troubleshooting).

All of these DITA refactoring actions allow you to choose a scope for the operation and some filters:

• Scope - Select from a variety of options to define the scope for which resources will be affected by the
operation. For example, you can choose to affect all resources in the Project, All opened files, Current DITA
map hierarchy, or just the Current file.

• Filters section

• Include files - Specifies files to be excluded from the operation. You can specify multiple files by separating
them with commas and the patterns can include wildcards (such as * or ?).

• Restrict to known XML file types only - Excludes non-XML file types from the operation.
• Look inside archives - If this option is selected, the scope of the operation will include files inside archives.

Refactoring Operations for Elements

Delete element
Use this operation to delete elements. This operation requires you to specify the following parameter:

• Element - The target element to be deleted, in the form of a local name from any namespace, a local name
with a namespace prefix, or an XPath expression.

Delete element content
Use this operation to delete the content of elements. This operation requires you to specify the following
parameter:

• Element - The target element whose content is to be deleted, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

Insert element
Use this operation to insert new elements. This operation allows you to specify the following parameters:

• Element section

Editing Documents 325

• Local name - The local name of the element to be inserted.
• Namespace - The namespace of the element to be inserted.

• Location section

• XPath- An XPath expression that identifies an existing element to which the new element is relative, in
the form of a local name from any namespace, a local name with a namespace prefix, or other XPath
expressions.

• Position - The position where the new element will be inserted, in relation to the specified existing
element. The possible selections in the drop-down menu are: After, Before, First child, or Last child.

Rename element
Use this operation to rename elements. This operation requires you to specify the following parameters:

• Target elements (XPath) - The target elements to be renamed, in the form of a local name from any
namespace, a local name with a namespace prefix, or other XPath expressions.

• New local name - The new local name of the element.

Unwrap element
Use this operation to remove the surrounding tags of elements, while keeping the content unchanged. This
operation requires you to specify the following parameter:

• Target elements (XPath) - The target elements whose surrounding tags will be removed, in the form of a
local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

Wrap element
Use this operation to surround elements with element tags. This operation allows you to specify the following
parameters:

• Target elements (XPath) - The target elements to be surrounded with tags, in the form of a local name
from any namespace, a local name with a namespace prefix, or other XPath expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element.
• Namespace - The namespace of the Wrapper element.

Wrap element content
Use this operation to surround the content of elements with element tags. This operation allows you to
specify the following parameters:

• Target elements (XPath) - The target elements whose content will be surrounded with tags, in the form of
a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element that will surround the content of the target.
• Namespace - The namespace of the Wrapper element that will surround the content of the target.

Refactoring Operations for Fragments

Insert XML fragment
Use this operation to insert an XML fragment. This operation allows you to specify the following:

• XML Fragment - The XML fragment to be inserted.
• Location section

• XPath - An XPath expression that identifies an existing element to which the inserted fragment is
relative, in the form of a local name from any namespace, a local name with a namespace prefix, or
other XPath expressions.

• Position - The position where the fragment will be inserted, in relation to the specified existing element.
The possible selections in the drop-down menu are: After, Before, First child, or Last child.

Editing Documents 326

Replace element content with XML fragment
Use this operation to replace the content of elements with an XML fragment. This operation allows you to
specify the following parameters:

• Target elements (XPath) - The target elements whose content will be replaced, in the form of a local name
from any namespace, a local name with a namespace prefix, or other XPath expressions.

• XML Fragment - The XML fragment with which to replace the content of the target element.

Replace element with XML fragment
Use this operation to replace elements with an XML fragment. This operation allows you to specify the
following parameters:

• Target elements (XPath) - The target elements to be replaced, in the form of a local name from any
namespace, a local name with a namespace prefix, or other XPath expressions.

• XML Fragment - The XML fragment with which to replace the target element.

Refactoring Operations for JATSKit

Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0
Use this operation to add an NLM 'BITS' 2.0 DOCTYPE declaration.

Add Blue DOCTYPE - NISO JATS Publishing 1.1
Use this operation to add a JATS 'Blue' 1.1 DOCTYPE declaration.

Normalize IDs
Use this operation to normalize assigned IDs and assigned IDs to elements that are missing them.

All of these JATSKit refactoring actions allow you to choose a scope for the operation and some filters:

• Scope - Select from a variety of options to define the scope for which resources will be affected by the
operation. For example, you can choose to affect all resources in the Project, All opened files, or just the
Current file.

• Filters section

• Include files - Specifies files to be excluded from the operation. You can specify multiple files by separating
them with commas and the patterns can include wildcards (such as * or ?).

• Restrict to known XML file types only - Excludes non-XML file types from the operation.
• Look inside archives - If this option is selected, the scope of the operation will include files inside archives.

Additional Notes

Note: There are some operations that allow <ANY> for the local name and namespace parameters. This
value can be used to select an element or attribute regardless of its local name or namespace. Also, the
<NO_NAMESPACE> value can be used to select nodes that do not belong to a namespace.

Note: Some operations have parameters that accept XPath expressions to match elements or attributes. In
these XPath expressions you can only use the prefixes declared in the Options > Preferences > XML > XSLT-FO-
XQUERY > XPath page. This preferences page can be easily opened by clicking the link in the note (Each prefix
used in an XPath expression must be declared in the Default prefix-namespace mappings section) at the bottom
of the Configure Operation Parameters wizard page.

Custom Refactoring Operations

While Oxygen XML Developer includes a variety of predefined XML refactoring operations to help you accomplish
particular tasks, you can also create custom operations according to your specific needs. For example, you could
create a custom refactoring operation to convert an attribute to an element and insert the element as the first
child of the parent element.

An XML Refactoring operation is defined as a pair of resources:

• An XQuery Update script or XSLT stylesheet that Oxygen XML Developer will run to refactor the XML files.
• An XML Operation Descriptor file that contains information about the operation (such as the name, description,

and parameters).

Editing Documents 327

Figure 144: Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring
Operations wizard page, along with the predefined built-in operations.

After the user chooses an operation and specifies its parameters, Oxygen XML Developer processes an XQuery
Update or XSLT transformation over the input file. This transformation is executed in a safe mode, which implies
the following:

• When loading the document:

• The XInclude mechanism is disabled. This means that the resources included by using XInclude will not be
visible in the transformation.

• The DTD entities will be processed without being expanded.
• The associated DTD will be not loaded, so the default attributes declared in the DTD will not be visible in

the transformation.

• When saving the updated XML document:

• The DOCTYPE will be preserved.

Note: This can be changed using Saxon extension functions in XSLT.
• The DTD entities will be preserved as they are in the original document when the document is saved.
• The attribute values will be kept in their original form without being normalized.
• The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML serialization

since they are not considered important.

The result of this transformation overrides the initial input file.

Note: To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes that are
interpreted internally. The attributes belong to the http://www.oxygenxml.com/ns/xmlRefactoring/
additional_attributes namespace. These attributes should not be taken into account when processing the
input XML document since they are discarded when the transformed document is serialized.

Restriction: Comments or processing instructions that are in any node before or after the root element cannot be
modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be applied on the
root element and the nodes inside it. However, as a work around to this limitation, you can use Saxon extension
functions and the XSLT stylesheet method to implement the new custom XML refactoring operation.

Editing Documents 328

Creating a Custom Refactoring Operation

To create a custom refactoring operation, follow these steps:

1. Create an XQuery Update script or XSLT stylesheet file.
2. Create an XML Refactoring Operation Descriptor file contains the path to the XQuery Update script or XSLT

stylesheet.
3. Store both files in one of the locations that Oxygen XML Developer scans when loading the custom operations.

Result: Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring
Operations wizard page.

Related Information:
Storing and Sharing Refactoring Operations on page 338

Custom Refactoring Script

The first step in creating a custom refactoring operation is to create an XQuery Update script or XSLT stylesheet
that is needed to process the refactoring operations. The easiest way to create this script file is to use the New
document wizard to create a new XQuery or XSLT file and you can use our XQuery method example or XSLT
method example to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script or XSLT stylesheet. For instance, if
you want to rename an element, you may want to declare an external parameter associated with the name of the
element to be renamed. To allow you to specify the value for these parameters, they need to be declared in the
refactoring operation descriptor file that is associated with this operation.

Note: The XQuery Update processing is disabled by default in Oxygen XML Developer. Thus, if you want to create
or edit an XQuery Update script you have to enable this mechanism by creating an XQuery transformation scenario
and choose Saxon EE as the transformation engine. Also, you need to make sure the Enable XQuery update option
is selected in the Saxon processor advanced options.

Note: If you are using an XSLT file, XPath expressions that are passed as parameters will automatically be
rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-FO-XQuery / XPath
preferences page.

The next step in creating a custom refactoring operation is to create an XML Refactoring Operation Descriptor
file contains the path to the XQuery Update script or XSLT stylesheet.

Related Information:
XQuery Update Script for Creating a Custom Operation on page 332
XSLT Stylesheet for Creating a Custom Operation on page 334

Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The easiest
way to do this is to use the New document wizard and choose the XML Refactoring Operation Descriptor
template.

Introduction to the Descriptor File

This file contains information (such as name, description, and id) that is necessarily when loading an XML
Refactoring operation . It also contains the path to the XQuery Update script or XSLT stylesheet that is associated
with the particular operation through the script element.

You can specify a category for your custom operations to logically group certain operations. The category
element is optional and if it is not included in the descriptor file, the default name of the category for the custom
operations is Other operations.

The descriptor file is edited and validated against the following schema: frameworks/xml_refactoring/
operation_descriptor.xsd.

Editing Documents 329

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters
section of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed in
the XML Refactoring tool within the Configure Operation Parameters wizard page for that particular operation.

The value of the first description element in the parameters section will be displayed at the top of the
Configure Operation Parameters wizard page.

To declare a parameter, specify the following information:

• label - This value is displayed in the user interface for the parameter.
• name - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the same as

the one declared in the script.
• type - Defines the type of the parameter and how it will be rendered. There are several types available:

• TEXT - Generic type used to specify a simple text fragment.
• XPATH - Type of parameter whose value is an XPATH expression. For this type of parameter, Oxygen XML

Developer will use a text input with corresponding content completion and syntax highlighting.

Note: The value of this parameter is transferred as plain text to the XQuery Update or XSLT transformation
without being evaluated. You should evaluate the XPath expression inside the XQuery Update script or
XSLT stylesheet. For example, you could use the saxon:evaluate Saxon extension function.

Note: A relative XPath expression is converted to an absolute XPath expression by adding // before it
(//XPathExp). This conversion is done before transferring the XPath expression to the XML refactoring
engine.

Note: When writing XPath expressions, you can only use prefixes declared in the Options > Preferences >
XML > XSLT-FO-XQUERY > XPath options page.

• NAMESPACE - Used for editing namespace values.
• REG_EXP_FIND - Used when you want to match a certain text by using Perl-like regular expressions.
• REG_EXP_REPLACE - Used along with REG_EXP_FIND to specify the replacement string.
• XML_FRAGMENT - This type is used when you want to specify an XML fragment. For this type, Oxygen XML

Developer will display a text area specialized for inserting XML documents.
• NC_NAME - The parameter for NC_NAME values. It is useful when you want to specify the local part of a

QName for an element or attribute.
• BOOLEAN - Used to edit boolean parameters.
• TEXT_CHOICE - It is useful for parameters whose value should be from a list of possible values. Oxygen

XML Developer renders each possible value as a radio button option.
• description - The description of the parameter. It is used by the application to display a tooltip when you

hover over the parameter.
• possibleValues - Contains the list with possible values for the parameter and you can specify the default

value, as in the following example:

<possibleValues onlyPossibleValuesAllowed="true">
 <value name="before">Before</value>
 <value name="after"default="true">After</value>
 <value name="firstChild">First child</value>
 <value name="lastChild">Last child</value>
</possibleValues>

Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen
XML Developer will propose all declared elements or attributes based on the schema associated with the
currently edited file. The following specialized parameters are supported:
elementLocation

This parameter is used to match elements. For this type of parameter, the application displays a text
field where you can enter the element name or an XPath expression. The text from the label attribute is
displayed in the application as the label of the text field. The name attribute is used to specify the name of
the parameter from the XQuery Update script or XSLT stylesheet. If the value of the useCurrentContext

Editing Documents 330

attribute is set to true, the element name from the cursor position is used as proposed values for this
parameter.

Example of an elementLocation:

<elementLocation name="elem_loc" useCurrentContext="false">
 <element label="Element location">
 <description>Element location description.</description>
 </element>
</ ElementLocation>

attributeLocation
This parameter is used to match attributes. For this type of parameter, the application displays two text
fields where you can enter the parent element name and the attribute name (both text fields accept XPath
expressions for a finer match). The text from the label attributes is displayed in the application as the
label of the associated text fields. The name attribute is used to specify the name of the parameter from
the XQuery Update script or XSLT stylesheet. The value of this parameter is an XPath expression that is
computed by using the values of the expression from the element and attribute text fields. For example,
if section is entered for the element and a title is entered for the attribute, the XPath expression would
be computed as //section/@title. If the value of the useCurrentContext attribute is set to true,
the element and attribute name from the cursor position is used as proposed values for the operation
parameters.

Example of an attributeLocation:

<attributeLocation name="attr_xpath" useCurrentContext="true">
 <element label="Element path">
 <description>Element path description.</description>
 </element>
 <attribute label="Attribute" >
 <description>Attribute path description.</description>
 </attribute>
</ AttributeLocation>

elementParameter
This parameter is used to specify elements by local name and namespace. For this type of parameter, the
application displays two combo boxes with elements and namespaces collected from the associated schema
of the currently edited file. The text from the label attribute is displayed in the application as label of the
associated combo. The name attribute is used to specify the name of the parameter from the XQuery Update
script or XSLT stylesheet. If you specify the allowsAny attribute, the application will propose <ANY> as a
possible value for the Name and Namespace combo boxes. You can also use the useCurrentContext
attribute and if its value is set to true, the element name and namespace from the cursor position is used as
proposed values for the operation parameters.

Example of an elementParameter:

<elementParameter id="elemID">
 <localName label="Name" name="element_localName" allowsAny="true"
 useCurrentContext="true">
 <description>Local name of the parent element.</description>
 </localName>
 <namespace label="Namespace" name="element_namespace" allowsAny="true">
 <description>Local name of the parent element</description>
 </namespace>
</elementParameter>

attributeParameter
This parameter is used to specify attributes by local name and namespace. For this type of parameter, the
application displays two combo boxes with attributes and their namespaces collected from the associated
schema of the currently edited file. The text from the label attribute is displayed in the application as the
label of the associated combo box. You can also use the useCurrentContext attribute and if its value is
set to true, the attribute name and namespace from the cursor position is used as proposed values for the
operation parameters.

Note: An attributeParameter is dependant upon an elementParameter. The list of attributes and
namespaces are computed based on the selection in the elementParameter combo boxes.

Editing Documents 331

Example of an attributeParameter:

<attributeParameter dependsOn="elemID">
 <localName label="Name" name="attribute_localName" useCurrentContext="true">
 <description>The name of the attribute to be converted.</description>
 </localName>
 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
 <description>Namespace of the attribute to be converted.</description>
 </namespace>
</attributeParameter>

Note: All predefined operations are loaded from the [OXYGEN_INSTALL_DIR]/refactoring folder.

Related Information:
Example of an Operation Descriptor File with an XSLT Stylesheet on page 336
Example of an Operation Descriptor File with an XQuery Update script on page 333

XQuery Update Script for Creating a Custom Operation

To demonstrate creating a custom operation, consider that we have a task where we need to convert an attribute
into an element and insert it inside another element. A specific example would be if you have a project with
a variety of image elements where a deprecated alt attribute was used for the description and you want to
convert all instances of that attribute into an element with the same name and insert it as the first child of the
image element.

Thus, our task is to convert this attribute into an element with the same name and insert it as the first child of the
image element.

Figure 145: Example: Custom XML Refactoring Operation

We can use an XQuery Update script to implement the new custom XML refactoring operation. The second
requirement is an XML Refactoring operation descriptor file that contains the path to the XQuery Update script.

Restriction: There is a limitation to using an XQuery script in that comments or processing instructions that are
in any node before or after the root element cannot be modified by an XML Refactoring operation. In other words,
XML Refactoring operations can only be performed on comments or processing instructions that are inside the
root element. However, as a work around to this limitation, you can use Saxon extension functions and the XSLT
stylesheet method to implement the new custom XML refactoring operation.

Example of an XQuery Update Script for Creating a Custom Operation to Convert an Attribute to an Element

The XQuery Update script does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.

Editing Documents 332

• Computes the QName of the new element to be inserted and inserts it as the first child of the parent element.

(:
 XQuery document used to implement 'Convert attribute to element'
 operation from XML Refactoring tool.
:)

declare namespace output = "http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method "xml";
declare option output:indent "no";

(: Local name of the attribute's parent element. :)
declare variable $element_localName as xs:string external;

(: Namespace of the attribute's parent element. :)
declare variable $element_namespace as xs:string external;

(: The local name of the attribute to be converted :)
declare variable $attribute_localName as xs:string external;

(: The namespace of the attribute to be converted :)
declare variable $attribute_namespace as xs:string external;

(: Local name of the new element. :)
declare variable $new_element_localName as xs:string external;

(: Namespace of the new element. :)
declare variable $new_element_namespace as xs:string external;

(: Convert attribute to element:)
for $node in //*
(: Find the attribute to convert :)
let $attribute :=
 $node/@*[local-name() = $attribute_localName and
 ($attribute_namespace = '<ANY>' or $attribute_namespace = namespace-uri())]

(: Compute the prefix for the new element to insert :)
let $prefix :=
 for $p in in-scope-prefixes($node)
 where $new_element_namespace = namespace-uri-for-prefix($p, $node)
return $p

(: Compute the qname for the new element to insert :)
let $new_element_qName :=
 if (empty($prefix) or $prefix[1] = '') then $new_element_localName
 else $prefix[1] || ':' || $new_element_localName

 where ('<ANY>' = $element_localName or local-name($node) = $element_localName)
 and
 ($element_namespace = '<ANY>' or $element_namespace = namespace-uri($node))

 return
 if (exists($attribute)) then
 (insert node element {QName($new_element_namespace, $new_element_qName)}
 {string($attribute)} as first into $node,
 delete node $attribute)
 else ()

Example of an Operation Descriptor File That References the XQuery Script for Creating a Custom Operation to
Convert an Attribute to an Element

After you have developed the XQuery script, you have to create an XML Refactoring operation descriptor. This
descriptor is used by the application to load the operation details such as name, description, or parameters.

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
 id="convert-attribute-to-element"
 name="Convert attribute to element">
 <description>Converts the specified attribute to an element.
 The new element will be inserted as first child of the attribute's
 parent element.</description>
 <!-- For the XSLT stylesheet option uncomment the following line and comment
 the line referring the XQuery Update script -->
 <!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
 <script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>
 <parameters>
 <description>Specify the attribute to be converted to element.</description>
 <section label="Parent element">
 <elementParameter id="elemID">
 <localName label="Name" name="element_localName" allowsAny="true">
 <description>Local name of the parent element.</description>
 </localName>
 <namespace label="Namespace" name="element_namespace" allowsAny="true">
 <description>Local name of the parent element</description>
 </namespace>
 </elementParameter>

Editing Documents 333

 </section>
 <section label="Attribute">
 <attributeParameter dependsOn="elemID">
 <localName label="Name" name="attribute_localName">
 <description>Name of the attribute to be converted.</description>
 </localName>
 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
 <description>Namespace of the attribute to be converted.</description>
 </namespace>
 </attributeParameter>
 </section>
 <section label="New element">
 <elementParameter>
 <localName label="Name" name="new_element_localName">
 <description>The name of the new element.</description>
 </localName>
 <namespace label="Namespace" name="new_element_namespace">
 <description>The namespace of the new element.</description>
 </namespace>
 </elementParameter>
 </section>
 </parameters>
</refactoringOperationDescriptor>

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Developer when it loads the
custom operation. When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The
following image shows the parameters that can be specified in our example of the custom operation to convert
an attribute to an element:

Figure 146: Example: XML Refactoring Wizard for a Custom Operation

XSLT Stylesheet for Creating a Custom Operation

To demonstrate creating a custom operation, consider that we have a task where we need to convert an attribute
into an element and insert it inside another element. A specific example would be if you have a project with
a variety of image elements where a deprecated alt attribute was used for the description and you want to
convert all instances of that attribute into an element with the same name and insert it as the first child of the
image element.

Thus, our task is to convert this attribute into an element with the same name and insert it as the first child of the
image element.

Editing Documents 334

Figure 147: Example: Custom XML Refactoring Operation

We can use an XSLT stylesheet to implement the new custom XML refactoring operation. The second
requirement is an XML Refactoring operation descriptor file that contains the path to the XSLT stylesheet.

Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element

The XSLT stylesheet does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.
• Adds the new element as the first child of the parent element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"
 version="2.0">

 <xsl:import
href="http://www.oxygenxml.com/ns/xmlRefactoring/resources/commons.xsl"/>

 <xsl:param name="element_localName" as="xs:string" required="yes"/>
 <xsl:param name="element_namespace" as="xs:string" required="yes"/>
 <xsl:param name="attribute_localName" as="xs:string" required="yes"/>
 <xsl:param name="attribute_namespace" as="xs:string" required="yes"/>
 <xsl:param name="new_element_localName" as="xs:string" required="yes"/>
 <xsl:param name="new_element_namespace" as="xs:string" required="yes"/>

 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="//*[xr:check-local-name($element_localName, ., true())
 and
 xr:check-namespace-uri($element_namespace, .)]">

 <xsl:variable name="attributeToConvert"
 select="@*[xr:check-local-name($attribute_localName, ., true())
 and
 xr:check-namespace-uri($attribute_namespace, .)]"/>

 <xsl:choose>
 <xsl:when test="empty($attributeToConvert)">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 <!-- The new element namespace -->

Editing Documents 335

 <xsl:variable name="nsURI" as="xs:string">
 <xsl:choose>
 <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">
 <xsl:value-of select="''"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$new_element_namespace"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:element name="{$new_element_localName}" namespace="{$nsURI}">
 <xsl:value-of select="$attributeToConvert"/>
 </xsl:element>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Note: The XSLT stylesheet imports a module library that contains utility functions and variables. The location of
this module is resolved via an XML Catalog set in the XML Refactoring framework.

Example of an Operation Descriptor File That References the XSLT Stylesheet for Creating a Custom Operation
to Convert an Attribute to an Element

After you have developed the XSLT stylesheet, you have to create an XML Refactoring operation descriptor. This
descriptor is used by the application to load the operation details such as name, description, or parameters.

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
 id="convert-attribute-to-element"
 name="Convert attribute to element">
 <description>Converts the specified attribute to an element.
 The new element will be inserted as first child of the attribute's
 parent element.</description>
 <!-- For the XSLT stylesheet option uncomment the following line and comment
 the line referring the XQuery Update script -->
 <!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
 <script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>
 <parameters>
 <description>Specify the attribute to be converted to element.</description>
 <section label="Parent element">
 <elementParameter id="elemID">
 <localName label="Name" name="element_localName" allowsAny="true">
 <description>Local name of the parent element.</description>
 </localName>
 <namespace label="Namespace" name="element_namespace" allowsAny="true">
 <description>Local name of the parent element</description>
 </namespace>
 </elementParameter>
 </section>
 <section label="Attribute">
 <attributeParameter dependsOn="elemID">
 <localName label="Name" name="attribute_localName">
 <description>Name of the attribute to be converted.</description>
 </localName>
 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
 <description>Namespace of the attribute to be converted.</description>
 </namespace>
 </attributeParameter>
 </section>
 <section label="New element">
 <elementParameter>
 <localName label="Name" name="new_element_localName">
 <description>The name of the new element.</description>
 </localName>
 <namespace label="Namespace" name="new_element_namespace">
 <description>The namespace of the new element.</description>
 </namespace>
 </elementParameter>
 </section>
 </parameters>
</refactoringOperationDescriptor>

Note: If you are using an XSLT file, the line with the script element would look like this:

 <script type="XSLT" href="convert-attribute-to-element.xsl"/>

Editing Documents 336

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Developer when it loads the
custom operation. When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The
following image shows the parameters that can be specified in our example of the custom operation to convert
an attribute to an element:

Figure 148: Example: XML Refactoring Wizard for a Custom Operation

Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and Modify Content Outside
the Root Node

One advantage to using an XSLT stylesheet is that there is limitation when using an XQuery Update script in that
refactoring operations can only be performed on comments or processing instructions that are inside the root
element. Thus, using the XQuery method, comments or processing instructions that are in any node before or after
the root element cannot be modified by an XML Refactoring operation.

The XSLT stylesheet method offers a work around to this limitation through the use of some Saxon extension
functions.

To illustrate the use of these functions, consider the following sample XML file:

<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
 <child></child>
</root>
<!-- comment after root -->
<?pi after root ?>

The following Saxon extension functions can be used to read and modify content outside the root node:

Note: They belong to the http://www.oxygenxml.com/ns/xmlRefactoring/functions namespace.

• get-content-after-root() - Returns the content after root as xs:string.

For the XML above, the call of this function will return the following string value:

<!-- comment after root -->
<?pi after root ?>

• set-content-after-root(xs:string) - Updates the content that will be serialized in the refactored document after
the root node.

Editing Documents 337

The function call set-content-after-root('<!-- Inserted comment -->') will result in
replacing the nodes after the root element with the comment passed as string argument. The XML document
will be modified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
 <child></child>
</root><!-- Inserted comment -->

• get-content-before-root() - Returns the content before root as xs:string.

For the XML above, the call of this function will return the following string value:

<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>

• set-content-before-root(xs:string) - Updates the content that will be serialized in the refactored document
after the root node.

The function call set-content-before-root('<!-- Inserted comment -->') will result
in replacing the nodes before the root element with the comment passed as string argument. The XML
document will be modified as follows:

<!-- Inserted comment --><root>
 <child></child>
</root>
<!-- comment after root -->
<?pi after root ?>

XSLT Example:

To process content after the root node, the XSLT would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs"
 xmlns:xrf="http://www.oxygenxml.com/ns/xmlRefactoring/functions" version="3.0">
 <xsl:template match="/">
 <!-- The comment content that will be inserted after the root element -->
 <xsl:variable name="commentAsText"><!-- COMMENT ADDED FROM XR OPERATION-->
 </xsl:variable>
 <!-- Retrieve the content after the root element as is -->
 <xsl:variable name="after-root-content" as="xs:string"
 select="xrf:get-content-after-root()"/>

 <xsl:variable name="processedContent"
 select="concat($after-root-content, $commentAsText)"/>

 <!-- Update the content after the root element -->
 <xsl:value-of select="xrf:set-content-after-root($processedContent)"/>

 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Note: The above XSLT retrieves the nodes after the root element as string, appends a new comment, and then
sets back the updated content into the XML document.

Storing and Sharing Refactoring Operations

Oxygen XML Developer scans the following locations when looking for XML Refactoring operations to provide
flexibility:

• A refactoring folder, created inside a directory that is associated to a framework you are customizing.
• A folder that you specify in the Load additional refactoring operations from text box in the XML Refactoring

preferences page.

Editing Documents 338

Note: If you share a project with your team, you can also share the custom operation by doing the following:
Then by doing the following:

1. Save the custom operation in a folder that is part of your project.
2. Switch the XML Refactoring option page to project level:

a. Open the Preferences dialog box (Options > Preferences) and go to XML > XML Refactoring.
b. Select Project Options at the bottom of the dialog box.

3. In the Load additional refactoring operations from text box, use the ${pd} editor variable so that the folder
path is declared relative to the project.

• A folder specified by the XML Refactoring Operations Plugin Extension.
• The refactoring folder from the Oxygen XML Developer installation directory ([OXYGEN_INSTALL_DIR]/

refactoring/).

Sharing Custom Refactoring Operations

The purpose of Oxygen XML Developer scanning multiple locations for the XML Refactoring operations is
to provide more flexibility for developers who want to share the refactoring operations with the other team
members. Depending on your particular use case, you can attach the custom refactoring operations to other
resources, such as framework or projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations

Oxygen XML Developer includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in [OXYGEN_INSTALL_DIR]/
refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be
translated:

• The operation name, description, and category.
• The description of the parameters element.
• The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

${i18n(translation_key)}

Oxygen XML Developer scans the following locations to find the translation.xml files that are used to load
the translation keys:

• A refactoring/i18n folder, created inside a directory that is associated to a customized framework.
• A i18n folder, created inside a directory that is associated to a customized framework.
• An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box (Options >

Preferences), go to XML > XML Refactoring, and specify the folder in the Load additional refactoring
operations from text box.

• An i18n folder located in directories specified through the XML Refactoring Operations Plugin Extension.
• The refactoring/i18n folder from the Oxygen XML Developer installation directory

([OXYGEN_INSTALL_DIR]/refactoring/i18n).

Example: Refactoring Operation Descriptor File with i18n Support

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove_text_content"
 name="${i18n(Remove_text_content)}">
 <description>${i18n(Remove_text_content_description)}</description>
 <script type="XQUERY_UPDATE" href="remove_text_content.xq"/>
 <parameters>
 <description>${i18n(parameters_description)}</description>
 <parameter label="${i18n(Element_name)}" name="element_localName"
 type="NC_NAME">
 <description>${i18n(Element_name_descriptor)}</description>
 <possibleValues>

Editing Documents 339

 <value default="true" name="value1">${i18n(value_1)}</value>
 <value name="value2">${i18n(value_2)}</value>
 </possibleValues>
 </parameter>
 </parameters>
</refactoringOperationDescriptor>

Editing XSLT Stylesheets
Oxygen XML Developer includes a built-in editor for XSLT stylesheets. This section presents the features of the
XSLT editor and how these features can be used. The features of the XSLT editor include:

• Create new XSLT files and templates - You can use the built-in new file wizards to create new XSLT documents
or templates.

• Open and Edit XSLT files - XSLT files can be opened and edited in the source editor (Text mode).
• Validation - Presents validation errors in XSLT files.
• Content completion - Offers proposals for properties and the values that are available for each property.
• Syntax highlighting - The syntax highlighting in Oxygen XML Developer makes XSLT files more readable.

To watch our video demonstration about basic XSLT editing and transformation scenarios in Oxygen XML
Developer, go to https://www.oxygenxml.com/demo/XSL_Editing.html.

Editing XSLT Stylesheets in the Master Files Context
Smaller interrelated modules that define a complex stylesheet cannot be correctly edited or validated individually,
due to their interdependency with other modules. For example, a function defined in a main stylesheet is not
visible when you edit an included or imported module. Oxygen XML Developer provides the support for defining
the main module (or modules), allowing you to edit any of the imported/included files in the context of the larger
stylesheet structure.

You cat set a main XSLT stylesheet either using the master files support from the Project view, or using a
validation scenario.

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen
XML Developer warns you if the current module is not part of the dependencies graph computed for the main
stylesheet. In this case, it considers the current module as the main stylesheet.

The advantages of editing in the context of master file include:

• Correct validation of a module in the context of a larger stylesheet structure.
• Content Completion Assistant displays all components valid in the current context.
• The Outline view displays the components collected from the entire stylesheet structure.

To watch our video demonstration about editing XSLT stylesheets in the master files context, go to https://
www.oxygenxml.com/demo/MasterFilesSupport.html.

Related Information:
XSLT Resource Hierarchy/Dependencies View on page 355
XSLT Component Dependencies View on page 358

Validating XSLT Stylesheets
Numerous XSLT code quality assurance checks are done during automatic validation to help you keep your
stylesheets valid and well formed. Oxygen XML Developer performs the validation of XSLT documents with the
help of an XSLT processor that you can configure in the preferences pages according to the XSLT version.

For XSLT 1.0, the options are: Xalan, Saxon 6.5.5, Saxon 9.7.0.15 and a JAXP transformer specified by the main
Java class. For XSLT 2.0, the options are: Saxon 9.7.0.15 and a JAXP transformer specified by the main Java class.
For XSLT 3.0, the options are Saxon 9.7.0.15 and a JAXP transformer specified by the main Java class.

To access the XSLT preferences quickly, use the Validation options action from the Document > Validate menu.

Editing Documents 340

https://www.oxygenxml.com/demo/XSL_Editing.html
https://www.oxygenxml.com/demo/MasterFilesSupport.html
https://www.oxygenxml.com/demo/MasterFilesSupport.html

Creating a Validation Scenario for XSLT Stylesheets

You can validate an XSLT document using the engine defined in the transformation scenario, or a custom
validation scenario. If you choose to validate using the engine from transformation scenario, and a
transformation scenario is not associated with the current document or the engine has no validation support, the
default engine is used. To set the default engine, open the Preferences dialog box (Options > Preferences) and go
to XML > XSLT/FO/XQuery > XSLT.

You can also create new validation scenarios or edit existing ones, and you can add JARS and classes that
contain extension functions. To create or edit a validation scenario for an XSLT stylesheet, follow these steps:

1. With the XSLT file opened in Oxygen XML Developer, select the Configure Validation Scenario(s) from the
Document > Validate menu, or the Validation toolbar drop-down menu, or from the Validate submenu
when invoking the contextual menu on the XSLT file in the Project view.
The Configure Validation Scenario(s) dialog box is displayed. It contains the existing scenarios, organized in
categories depending on the type of file they apply to. You can use the options in the Settings drop-down
menu to filter which scenarios are shown.

2. To edit an existing scenario, select the scenario and press the Edit button. If you try to edit one of the read-
only predefined scenarios, Oxygen XML Developer creates a customizable duplicate (you can also use the
Duplicate button).

3. To add a new scenario, press the New button.
The New scenarios dialog box is displayed. It lists all validation units of the scenario.

Figure 149: Add / Edit a Validation Unit

4. Configure the following information in this dialog box:
a) Name - The name of the validation scenario.
b) Storage - You can choose between storing the scenario in the Project Options or Global Options.
c) URL of the file to validate - In most cases, leave this field as the default selection (the URL of the current

file). If you want to specify a different URL, double-click its cell and enter the URL in the text field, select it
from the drop-down list, or use the Browse drop-down menu or Insert Editor Variable button.

d) File type - The file type should be XSLT Document.
e) Validation engine - Click the cell to select a validation engine. You must select an engine to be able to add

or edit extensions.
f) Automatic validation - If this option is selected, the validation operation defined by this row is also used by

the automatic validation feature.
5. To add or edit extensions, click the Edit extensions button. This button is only available if the File type is set

as XSLT Document and a Validation engine is chosen.
The Libraries dialog box is opened. It is used to specify the JARS and classes that contain extension functions
called from the XSLT file of the current validation scenario. They will be searched, in the specified extensions,

Editing Documents 341

in the order displayed in this dialog box. To change the order of the items, select the item and press the
Move up or Move down buttons.

6. Press OK to close the New scenario dialog box.
The newly created validation scenario is now included in the list of scenarios in the Configure Validation
Scenario(s) dialog box. You can select the scenario in this dialog box to associate it with the current XSLT
document and press the Apply associated button to run the validation scenario.

Validating XSLT Stylesheets with Custom Engines

If you need to validate an XSLT stylesheet with a validation engine that is different from the built-in engine, you
can configure external engines as custom XSLT validation engines in the Oxygen XML Developer preferences.
After a custom validation engine is properly configured, it can be applied on the current document by selecting
it from the list of custom validation engines in the Validation toolbar drop-down menu. The document is
validated against the schema declared in the document.

By default, there are two validators that are configured for XSLT stylesheets:

• MSXML 4.0 - included in Oxygen XML Developer (Windows edition). It is associated to the XSL Editor type in
Preferences page.

• MSXML.NET - included in Oxygen XML Developer (Windows edition). It is associated to the XSL Editor type in
Preferences page.

XSLT Quick Fix Support
The Oxygen XML Developer Quick Fix support helps you resolve various errors that appear in a stylesheet by
proposing Quick Fixes to problems such as missing templates, misspelled template names, missing functions, or
references to an undeclared variable or parameter.

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error
or warning occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix
proposals with any of the following methods:

• When hovering over the error or warning, the proposals are presented in a tooltip pop-up window.
• If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon ()

is displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Developer displays the
list of available fixes.

• With the cursor placed in the highlighted area of the error or warning, you can also invoke the Quick Fix menu
by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Note: The Quick Fixes are available only when validating an XSLT file with Saxon HE/PE/EE.

Figure 150: Example of an Undefined XSLT Functions Quick Fix

Editing Documents 342

Figure 151: Example of an Undeclared XSLT Variables/Parameters Quick Fix

Oxygen XML Developer provides XSLT Quick Fixes for the following types of instances:

• Template does not exist, when the template name referenced in a call-template element does not exist.
The following fixes are available:

• Create template "templateName" - creates a template and generates its corresponding parameters. The
template name and parameter names and types are collected from the call-template element.

• Change reference to "newTemplateName" - changes the name of the missing template referenced in the
call-template element. The proposed new names are the existing templates with names similar with
the missing one.

• Variable/Parameter not declared, when a parameter or variable reference cannot be found. The following fixes
are available:

• Create global variable "varName" - creates a global variable with the specified name in the current
stylesheet. The new variable is added at the beginning of the stylesheet after the last global variable or
parameter declaration.

• Create global parameter "paramName" - creates a global parameter with the specified name in the current
stylesheet. The new parameter is added at the beginning of the stylesheet after the last global parameter
or variable declaration.

• Create local variable "varName" - creates a local variable with the specified name before the current
element.

• Create template parameter "paramName" - creates a new parameter with the specified name in the current
template. This fix is available if the error is located inside a template.

• Create function parameter "paramName" - creates a new parameter with the specified name in the current
function. This fix is available if the error is located inside a function.

• Change reference to "varName" - changes the name of the referenced variable/parameter to an existing
local or global variable/parameter, that has a similar name with the current one.

• Parameter from a called template is not declared, when a parameter referenced from a call-template
element is not declared. The following fixes are available:

• Create parameter "paramName" in the template "templateName" - creates a new parameter with the
specified name in the referenced template.

• Change "paramName" parameter reference to "newParamName" - changes the parameter reference from
the call-template element to a parameter that is declared in the called template.

• Remove parameter "paramName" from call-template - removes the parameter with the specified name
from the call-template element.

• No value supplied for required parameter, when a required parameter from a template is not referenced in a
call-template element. The following quick-fix is available::

• Add parameter "paramName" in call-template - creates a new parameter with the specified name in call-
template element.

• Function "prefix:functionName()" has not been defined, when a function declaration is not found. The
following Quick Fixes are available:

• Create function "prefix:functionName(param1, param2)" - creates a new function with the specified
signature, after the current top level element from stylesheet.

Editing Documents 343

• Change function to "newFunctionName(..)" - changes the referenced function name to an already defined
function. The proposed names are collected from functions with similar names and the same number of
parameters.

• Attribute-set "attrSetName" does not exist, when the referenced attribute set does not exist. The following
Quick Fixes are available:

• Create attribute-set "attrSetName" - creates a new attribute set with the specified name, after the current
top level element from stylesheet.

• Change reference to "attrSetName" - changes the referenced attribute set to an already defined one.
• Character-map "chacterMap" has not been defined, when the referenced character map declaration is not

found. The following Quick Fixes are available:

• Create character-map "characterMapName" - creates a new character map with the specified name, after
the current top level element from stylesheet.

• Change reference to "characterMapName" - changes the referenced character map to an already defined
one.

Content Completion in XSLT Stylesheets
The list of proposals offered by the Content Completion Assistant in XSLT are context-sensitive and includes
proposals that are valid at the current cursor position. It can be manually activated with the Ctrl + Space
(Command + Space on OS X) shortcut.

You can enhance the list of proposals by specifying an additional schema. This schema is defined in the Content
Completion / XSLT preferences page and can be any of the following: XML Schema, DTD, RELAX NG schema, or
NVDL schema.

Figure 152: XSLT Content Completion Assistant

The feature is activated in Text mode in the following situations:

• After you press the < character when inserting an element, it is automatically activated after a short delay. You
can adjust the activation delay with the Activation delay of the proposals window (ms) option from the Content
Completion preferences page.

• After typing a partial element or attribute name, you can manually activate it by pressing Ctrl + Space
(Command + Space on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only
one valid proposal at the current location, it is inserted without displaying the list of proposals.

The Content Completion Assistant proposes numerous item types (such as templates, variables, parameters,
keys, etc.) that are defined in the current stylesheet, and in the imported and included XSLT stylesheets. The
Content Completion Assistant also includes code templates that can be used to quickly insert code fragments into
stylesheets.

Note: For XSL and XSD resources, the Content Completion Assistant collects its components starting from the
master files. The master files can be defined in the project or in the associated validation scenario. For further
details about the Master Files support go to Defining Master Files at Project Level.

Editing Documents 344

The extension functions included in the Saxon 6.5.5 and 9.7.0.15 transformation engines are presented in the
content completion list only if the Saxon namespace (http://saxon.sf.net for XSLT version 2.0 / 3.0 or http://
icl.com/saxon for XSLT version 1.0) is declared and one of the following conditions is true:

• The edited file has a transformation scenario that uses as transformation engine Saxon 6.5.5 (for XSLT
version 1.0), Saxon 9.7.0.15 PE or Saxon 9.7.0.15 EE (for XSLT version 2.0 / 3.0).

• The edited file has a validation scenario that uses as validation engine Saxon 6.5.5 (for version 1.0), Saxon
9.7.0.15 PE or Saxon 9.7.0.15 EE (for version 2.0 / 3.0).

• The validation engine specified in Options page is Saxon 6.5.5 (for version 1.0), Saxon 9.7.0.15 PE or Saxon
9.7.0.15 EE (for version 2.0 / 3.0).

Additionally. the Saxon-CE-specific extension functions and instructions are presented in the list of content
completion assistance proposals only if the http://saxonica.com/ns/interactiveXSLT namespace is
declared.

Namespace prefixes in the scope of the current context are presented at the top of the content completion
assistance window to speed up the insertion into the document of prefixed elements.

Figure 153: Namespace Prefixes in the Content Completion Assistant

For the common namespaces such as XSL namespace (http://www.w3.org/1999/XSL/Transform), XML
Schema namespace (http://www.w3.org/2001/XMLSchema), or Saxon namespace (http://icl.com/
saxon for version 1.0, http://saxon.sf.net/ for version 2.0 / 3.0), Oxygen XML Developer provides an easy
mode to declare them by proposing a prefix for these namespaces.

Content Completion in XPath Expressions

In XSLT stylesheets, the Content Completion Assistant provides all the features available in the XML editor and
also adds some enhancements. In XPath expressions used in attributes of XSLT stylesheets (elements such as
match, select, and test), the Content Completion Assistant offers the names of XPath and XSLT functions,
XSLT axes, and user-defined functions (the name of the function and its parameters). If a transformation scenario
was defined and associated to the edited stylesheet, the Content Completion Assistant computes and presents
elements and attributes based on:

• The input XML document selected in the scenario.
• The current context in the stylesheet.

The associated document is displayed in the XSLT/XQuery Input view.

Content completion for XPath expressions is started:

• On XPath operators detected in one of the match, select and test attributes of XSLT elements: ", ', /, //, (, [, |,
:, ::, $

• For attribute value templates of non-XSLT elements, that is the { character when detected as the first
character of the attribute value.

• On request, if the combination Ctrl + Space (Command + Space on OS X) is pressed inside an edited XPath
expression.

The proposals presented in the Content Completion Assistant are dependent on:

• The context of the current XSLT element.
• The XML document associated with the edited stylesheet in the stylesheet transformation scenario.
• The XSLT version of the stylesheet (1.0, 2.0, or 3.0).

Editing Documents 345

Note: The XSLT 3.0 content completion list of proposals includes specific elements and attributes for the 3.0
version.

For example, if the document associated with the edited stylesheet is:

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

If you enter an xsl:template element using the Content Completion Assistant, the following actions are
triggered:

• The match attribute is inserted automatically.
• The cursor is placed between the quotes.
• The XPath Content Completion Assistant automatically displays a pop-up window with all the XSLT axes,

XPath functions and elements and attributes from the XML input document that can be inserted in the current
context.

The set of XPath functions depends on the XSLT version declared in the root element xsl:stylesheet: 1.0, 2.0,
or 3.0.

Figure 154: Content Completion in the match Attribute

If the cursor is inside the select attribute of an xsl:for-each, xsl:apply-templates, xsl:value-of
or xsl:copy-of element the content completion proposals depend on the path obtained by concatenating the
XPath expressions of the parent XSLT elements xsl:template and xsl:for-each as shown in the following
figure:

Figure 155: Content Completion in the select Attribute

Editing Documents 346

Also XPath expressions typed in the test attribute of an xsl:if or xsl:when element benefit of the assistance
of the content completion.

Figure 156: Content Completion in the test Attribute

XSLT variable references are easier to insert in XPath expressions with the help of the content completion pop-up
triggered by the $ character, which signals the start of such a reference in an XPath expression.

Figure 157: Content Completion in the test Attribute

If the { character is the first one in the value of the attribute, the same Content Completion Assistant is available
also in attribute value templates of non-XSLT elements.

Figure 158: Content Completion in Attribute Value Templates

The time delay (configured in the Content Completion preferences page) for all content completion assistance
windows is also applied for the content completion in XPath expressions.

Related Information:
Working with XPath Expressions on page 838

Editing Documents 347

Tooltip Helper for the XPath Functions Arguments

When editing the arguments of an XPath/XSLT function, Oxygen XML Developer tracks the current entered
argument by displaying a tooltip containing the function signature. The currently edited argument is highlighted
with a bolder font.

When moving the cursor through the expression, the tooltip is updated to reflect the argument found at the cursor
position.

Examples:

If you want to concatenate the absolute values of two variables, named v1 and v2:

<xsl:template match="/">
 <xsl:value-of select="concat(abs($v1), abs($v2))"></xsl:value-of>
</xsl:template>

When moving the cursor before the first abs function, Oxygen XML Developer identifies it as the first argument of
the concat function. The tooltip shows in bold font the following information about the first argument:

• Its name is $arg1.
• Its type is xdt:anyAtomicType.
• It is optional (note the ? sign after the argument type).

The function also takes other arguments that have the same type and returns a xs:string.

Figure 159: XPath Tooltip Helper - Identify the concat Function's First Argument

Moving the cursor on the first variable $v1, the editor identifies the abs as context function and shows its
signature:

Figure 160: XPath Tooltip Helper - Identify the abs Function's Argument

Further, clicking the second abs function name, the editor detects that it represents the second argument of the
concat function. The tooltip is repainted to display the second argument in bold font.

Figure 161: XPath Tooltip Helper - Identify the concat Function's Second Argument

Note: The tooltip helper is also available in the XPath Builder view and XPath toolbar.

Related Information:
Working with XPath Expressions on page 838

Syntax Highlighting in XSLT
Oxygen XML Developer supports syntax highlighting in XSLT documents to improve the readability of the content
and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for XSLT files, follow these steps:

Editing Documents 348

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XSL tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Customize Syntax Highlight colors on page 82

XSLT Outline View
The Outline view for XSLT stylesheets displays the list of all the components (templates, attribute-sets, character-
maps, variables, functions, keys, outputs) from both the edited stylesheet and its imports or includes. For XSL and
XSD resources, the Outline view collects its components starting from the master files. The master files can be
defined in the project or in the associated validation scenario. For further details about the Master Files support
go to Defining Master Files at Project Level.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Figure 162: XSLT Outline View

The following actions are available in the Settings menu on the Outline view toolbar:
Filter returns exact matches

The text filter of the Outline view returns only exact matches;

Selection update on cursor move
Controls the synchronization between Outline view and source document. The selection in the Outline
view can be synchronized with the cursor moves or the changes in the XSLT editor. Selecting one of the
components from the Outline view also selects the corresponding item in the source document.

When the Show components option is selected, the following actions are available:

Editing Documents 349

Show XML structure
Displays the XML document structure in a tree-like structure.

Show all components
Displays all components that were collected starting from the master file. This option is set by default.

Show only local components
Displays the components defined in the current file only.

Group by location/type
The stylesheet components can be grouped by location and type.

When the Show XML structure option is selected, the following actions are available:

Show components
Switches the Outline view to the components display mode.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Configure displayed attributes
Displays the XML Structured Outline preferences page.

The following contextual menu actions are also available when the Show components option is selected in the
Settings menu:

Edit Attributes
Opens a small in-place editor that allow you to edit the attributes of the selected node.

Cut
Cuts the currently selected node.

Copy
Copies the currently selected node.

Delete
Deletes the currently selected node.

Search References Ctrl + Shift + R (Command + Shift + R on OS X)
Searches all references of the item found at current cursor position in the defined scope, if any. See Finding
XSLT References and Declarations for more details.

Search References in
Searches all references of the item found at current cursor position in the specified scope. See Finding XSLT
References and Declarations for more details.

Editing Documents 350

Component Dependencies
Opens the Component Dependencies view that allows you to see the dependencies for the current selected
component.

Resource Hierarchy
Opens the Resource Hierarchy/Dependencies view that displays the hierarchy for the currently selected
resource.

Resource Dependencies
Opens the Resource Hierarchy/Dependencies view that displays the dependencies of the currently selected
resource.

Rename Component in
Renames the selected component. See XSLT Refactoring Actions for more details.

The following contextual menu actions are available in the Outline view when the Show XML structure option
is selected in the Settings menu:

Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes
Opens a small in-place editor that allow you to edit the attributes of the selected node.

Toggle Comment
Comments/uncomments the currently selected element.

Search references
Searches for the references of the currently selected component.

Search references in
Searches for the references of the currently selected component in the context of a scope that you define.

Component dependencies
Opens the Component Dependencies view that displays the dependencies of the currently selected
component.

Rename Component in
Renames the currently selected component in the context of a scope that you define.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

The stylesheet components information is presented on two columns: the first column presents the name and
match attributes, the second column the mode attribute. If you know the component name, match or mode, you

Editing Documents 351

can search it in the Outline view by typing one of these pieces of information in the filter text field from the top of
the view or directly on the tree structure. When you type de component name, match or mode in the text field, you
can switch to the tree structure using:

• Keyboard arrow keys
• Enter key
• Tab key
• Shift-Tab key combination

To switch from tree structure to the filter text field, you can use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the
Outline view, its definition is highlighted in the editing area.

Oxygen XML Developer allows you to sort the components of the tree in the Outline view.

Note: Sorting groups in the Outline view is not supported.

Oxygen XML Developer has a predefined order of the groups in the Outline view:

• For location, the names of the files are sorted alphabetically. The file you are editing is located at the top of the
list.

• For type, the order is: parameters, variables, templates, functions, set attributes, character-map.

Note: When no grouping is available and the table is not sorted, Oxygen XML Developer sorts the components
depending on their order in the document. Oxygen XML Developer also takes into account the name of the file
that the components are part of.

XSLT/XQuery Input View
The structure of the XML document associated to the edited XSLT stylesheet, or the structure of the source
documents of the edited XQuery is displayed in a tree form in a view called the XSLT/XQuery Input view. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu. The tree nodes
represent the elements of the documents.

XSLT

If you click a node in the XSLT/XQuery Input view, the corresponding template from the stylesheet is highlighted.
A node can be dragged from this view and dropped in the editor area for quickly inserting xsl:template,
xsl:for-each, or other XSLT elements that have the match/select/test attribute already completed. The
value of the attribute is the correct XPath expression that refers to the dragged tree node. This value is based on
the current editing context of the drop spot.

Editing Documents 352

Figure 163: XSLT Input View

XSLT Example:

For the following XML document:

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">
 <xsl:template match="personnel">
 <xsl:for-each select="*">

 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element, the following pop-up menu is
displayed:

Figure 164: XSLT Input Drag and Drop Pop-up Menu

If you select Insert xsl:copy-of (for example), the resulting document will look like this:

Editing Documents 353

Figure 165: XSLT Input Drag and Drop Result

XQuery

You can also use the XSLT/XQuery Input view to drag and drop a node into the editing area to quickly insert
XQuery expressions.

Figure 166: XQuery Input View

XQuery Example:

For the following XML documents:

 <movies>
 <movie id="1">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 <movie id="2">
 <title>Taxi Driver</title>
 <year>1976</year>
 </movie>
 </movies>

 <reviews>
 <review id="100" movie-id="1">
 <rating>5</rating>
 <comment>It is made after a great Stephen King book.
 </comment>
 <author>Paul</author>
 </review>
 <review id="101" movie-id="1">
 <rating>3</rating>
 <comment>Tom Hanks does a really nice acting.</comment>
 <author>Beatrice</author>
 </review>
 <review id="104" movie-id="2">
 <rating>4</rating>
 <comment>Robert De Niro is my favorite actor.</comment>
 <author>Maria</author>
 </review>
 </reviews>

and the following XQuery:

 let $review := doc("reviews.xml")
 for $movie in doc("movies.xml")/movies/movie
 let $movie-id := $movie/@id
 return

Editing Documents 354

 <movie id="{$movie/@id}">
 {$movie/title}
 {$movie/year}
 <maxRating>
 {

 }
 </maxRating>
 </movie>

If you drag the review element and drop it between the braces, the following pop-up menu is displayed:

Figure 167: XQuery Input Drag and Drop Pop-up Menu

Select FLWOR review, the resulting document will look like this:

Figure 168: XQuery Input Drag and Drop Result

XSLT Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a stylesheet. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the hierarchy of a stylesheet, select the desired stylesheet in the Project view and choose
Resource Hierarchy from the contextual menu.

Editing Documents 355

Figure 169: Resource Hierarchy/Dependencies View - Hierarchy for docbook.xsl

If you want to see the dependencies of a stylesheet, select the desired stylesheet in the Project view and choose
Resource Dependencies from the contextual menu.

Figure 170: Resource Hierarchy/Dependencies View - Dependencies for common.xsl

The following actions are available in the Resource Hierarchy/Dependencies view:

Editing Documents 356

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.
Show Resource Hierarchy

Shows the hierarchy for the selected resource.
Show Resource Dependencies

Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Related Information:
Working with Modular XML Files in the Master Files Context on page 311
Search and Refactor Operations Scope on page 310

Moving/Renaming XSLT Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the
Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.

Editing Documents 357

• Update references - Select this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the
Move resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is selected, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are
updated.

XSLT Component Dependencies View
The Component Dependencies view allows you to see the dependencies for a selected XSLT component. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the dependencies of an XSLT component, select the desired component in the editor and
choose the Component Dependencies action from the contextual menu. The action is available for all named
components (templates, variables, parameters, attribute sets, keys, functions, outputs).

Figure 171: Component Dependencies View - Hierarchy for table.xsl

In the Component Dependencies view you have several actions in the toolbar:

Refresh
Refreshes the dependencies structure.

Editing Documents 358

Stop
Stops the dependencies computing.

Configure
Allows you to configure a search scope to compute the dependencies structure. You can decide to use
automatically the defined scope for future operations by selecting the corresponding checkbox.

History
Allows you to repeat a previous dependencies computation.

The following actions are available on the contextual menu:
Go to First Reference

Selects the first reference of the referenced component from the current selected component in the
dependencies tree.

Go to Component
Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another, a small table is displayed that contains all
references. When a recursive reference is encountered, it is marked with a special icon .

Related Information:
Search and Refactor Operations Scope on page 310

Highlight Component Occurrences
When a component (for example variable or named template) is found at current cursor position, Oxygen XML
Developer performs a search over the entire document to find the component declaration and all its references.
When found, they are highlighted both in the document and in the stripe bar, at the right side of the document.

Note: Oxygen XML Developer also supports occurrences highlight for template modes.

Customizable colors are used: one for the component definition and another one for component references.
Occurrences are displayed until another component is selected and a new search is performed. All occurrences
are removed when you start to edit the document.

This feature is enabled by default. To configure it, open the Preferences dialog box (Options > Preferences) and go
to Editor > Mark Occurrences. A search can also be triggered with the Search > Search Occurrences in File (Ctrl +
Shift + U (Command + Shift + U on OS X)) contextual menu action. Matches are displayed in separate tabs of the
Results view.

Finding XSLT References and Declarations
The following search actions related with XSLT references and declarations are available from the Search
submenu of the contextual menu and from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined but the currently edited resource is not part of the range of determined
resources, a warning dialog box is displayed that allows you to define another search scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when a scope is defined.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope, if any. If a scope is defined but the current edited resource is not part of the range of resources
determined by this scope, a warning dialog box is displayed that allows you to define another search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when a scope is defined.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

The following action is available from the contextual menu and the Document > Schema menu:

Editing Documents 359

• Show Definition - Moves the cursor to the location of the definition of the current item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to
display its definition.

Related Information:
Search and Refactor Operations Scope on page 310

XSLT Stylesheet Component Documentation Support
Oxygen XML Developer offers built-in support for documenting XSLT stylesheets. If the expanded QName of the
element has a non-null namespace URI, the xsl:stylesheet element may contain any element not from the
XSLT namespace. Such elements are referenced as user-defined data elements. Such elements can contain the
documentation for the stylesheet and its elements (top-level elements whose names are in the XSLT namespace).
Oxygen XML Developer offers its own XML schema that defines such documentation elements. The schema is
named stylesheet_documentation.xsd and can be found in [OXYGEN_INSTALL_DIR]/frameworks/
stylesheet_documentation. The user can also specify a custom schema in XSL Content Completion options.

When content completion is invoked inside an XSLT editor by pressing Ctrl + Space (Command + Space on OS X),
it offers elements from the XSLT documentation schema (either the built-in one or one specified by user).

In Text mode, to add documentation blocks, press Ctrl + Alt + D (Command + Alt + D on OS X) or select Add
component documentation from the contextual menu.

If the cursor is positioned inside the xsl:stylesheet element context, documentation blocks are generated for
all XSLT elements. If the cursor is positioned inside a specific XSLT element (such as a template or function), a
documentation block is generated for that element only.

Example: A documentation block using Oxygen XML Developer built-in schema

<xd:doc>
 <xd:desc>
 <xd:p>Search inside parameter <xd:i>string</xd:i>
 for the last occurrence of parameter
 <xd:i>searched</xd:i>. The substring starting from the 0 position
 to the identified last occurrence will be returned.
 <xd:ref name="f:substring-after-last" type="function"
 xmlns:f="http://www.oxygenxml.com/doc/xsl/functions">See also
 </xd:ref>
 </xd:p>
 </xd:desc>
 <xd:param name="string">
 <xd:p>String to be analyzed</xd:p>
 </xd:param>
 <xd:param name="searched">
 <xd:p>Marker string. Its last occurrence will be identified</xd:p>
 </xd:param>
 <xd:return>
 <xd:p>A substring starting from the beginning of <xd:i>string</xd:i>
 to the last occurrence of <xd:i>searched</xd:i>.
 If no occurrence is found an empty string will be returned.
 </xd:p>
 </xd:return>
</xd:doc>

Related Information:
Generating Documentation for an XSLT Stylesheet on page 366

XSLT Refactoring Actions
Oxygen XML Developer offers a set of actions that allow you to change the structure of an XSLT stylesheet
without changing the results of running it in an XSLT transformation. Depending on the selected text, the
following XSLT refactoring actions are available from the Refactoring submenu of the contextual menu (or from
the Document > Refactoring menu):

• Extract template (Active only when the selection contains well-formed elements) - Extracts the selected
XSLT instructions sequence into a new template. It opens a dialog box that allows you to specify the name
of the new template to be created. The possible changes to perform on the document can be previewed
before altering the document. After pressing OK, the template is created and the selection is replaced with a
<xsl:call-template> instruction referencing the newly created template.

Editing Documents 360

Note: The newly created template is indented and its name is highlighted in the <xsl:call-template>
element.

• Extract function - Extracts the selected XSLT instructions sequence into a new function. It opens a dialog
box that allows you to specify the name of the new function. It then moves the selected lines to a newly
created XSLT function and inserts a function call in the place of the selected lines. You can also use parts of
an XPath expression to create the new functions.

• Create local variable - Creates an XSLT variable, wrapped around the selection. It opens a dialog box that
allows you to specify the name of the new variable. It then wraps the selection in the variable and you can
reference it at anytime in the code.

• Move to another stylesheet (Active only when entire components are selected) - Allows you to move one or
more XSLT global components (templates, functions, or parameters) to another stylesheet. It opens a dialog
box that allows you to specify where the selected components will be moved to. Follow these steps when
using the dialog box:

1. Choose whether you want to move the selected components to a new stylesheet or an existing one.
2. If you choose to move the components to an existing one, select the destination stylesheet. Press the

Choose button to select the destination stylesheet file. Oxygen XML Developer will automatically check
if the destination stylesheet is already contained by the hierarchy of the current stylesheet. If it is not
contained, choose whether or not the destination stylesheet will be referenced (imported or included) from
the current stylesheet. The following options are available:

• Include - The current stylesheet will use an xsl:include instruction to reference the destination
stylesheet.

• Import - The current stylesheet will use an xsl:import instruction to reference the destination
stylesheet.

• None - There will be created no relation between the current and destination stylesheets.
3. Press the Move button to move the components to the destination. The moved components are

highlighted in the destination stylesheet.
• Convert attributes to xsl:attributes - Converts the attributes from the selected element and represents each of

them with an <xsl:attribute> instruction. For example, the following element:

<person id="Big{test}Boss"/>

is converted to:

<person>
 <xsl:attribute name="id">
 <xsl:text>Big</xsl:text>
 <xsl:value-of select="test"/>
 <xsl:text>Boss</xsl:text>
 </xsl:attribute>
</person>

• Convert xsl:if into xsl:choose/xsl:when - Converts one or more xsl:if element blocks into one or more
xsl:when blocks surrounded by an xsl:choose element. If it is invoked on a selection, the selection must
contain a well-formed fragment. If there is no selection, the xsl:if element that surrounds the content at the
current cursor position is converted.

For example, the following block:

<xsl:if test="a">
 <!-- XSLT code -->
</xsl:if>

is converted to:

<xsl:choose>
 <xsl:when test="a">
 <!-- XSLT code -->
 </xsl:when>
 <xsl:otherwise>
 |
 </xsl:otherwise>
</xsl:choose>

Editing Documents 361

(where the | character is the current cursor position)
• Convert xsl:choose/xsl:when into xsl:if - Converts each xsl:when block into an xsl:if block. For the

otherwise branch, it also adds an and statement to each negated form of the conditions. For example, the
following block:

<xsl:choose>
 <xsl:when test="c1">
 <!-- XSLT statement 1 -->
 </xsl:when>
 <xsl:when test="c2">
 <!-- XSLT statement 2 -->
 </xsl:when>
 <xsl:when test="c3">
 <!-- XSLT statement 3 -->
 </xsl:when>
 <xsl:otherwise>
 <!-- XSLT "otherwise" statement-->
 </xsl:otherwise>
</xsl:choose>

is converted to:

<xsl:if test="c1">
 <!-- XSLT statement 1 -->
</xsl:if>
<xsl:if test="c2">
 <!-- XSLT statement 2 -->
</xsl:if>
<xsl:if test="c3">
 <!-- XSLT statement 3 -->
</xsl:if>
<xsl:if test="not(c1) and not(c2) and not(c3)">
 <!-- XSLT "otherwise" statement-->
</xsl:if>

• Extract local variable (Active on a selection made inside an attribute that contains an XPath expression) -
Allows you to create a new local variable by extracting the selected XPath expression. After creating the new
local variable before the current element, Oxygen XML Developer allows you to edit the name of the variable.

• Extract global variable (Active on a selection made inside an attribute that contains an XPath expression) -
Allows you to create a new global variable by extracting the selected XPath expression. After creating the new
global variable, Oxygen XML Developer allows you to edit the name of the variable.

Note: Oxygen XML Developer checks if the selected expression depends on local variables or parameters that
are not available in the global context where the new variable is created.

• Extract template parameter (Active on a selection made inside an attribute that contains an XPath
expression) - Allows you to create a new template parameter by extracting the selected XPath expression.
After creating the new parameter, Oxygen XML Developer allows you to edit the name of the parameter.

• Extract global parameter (Active on a selection made inside an attribute that contains an XPath expression)
- Allows you to create a new global parameter by extracting the selected XPath expression. After creating the
new parameter, Oxygen XML Developer allows you to edit the name of the parameter.

Note: Oxygen XML Developer checks if the selected expression depends on local variables or parameters that
are not available in the global context where the new parameter is created.

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Editing Documents 362

Figure 172: Rename Identity Constraint Dialog Box

Note: Many of these refactoring actions are also proposed by the Quick Assist support.

To watch our video demonstration about XSLT refactoring, go to https://www.oxygenxml.com/demo/
XSL_Refactoring.html.

XSLT Quick Assist Support
The Quick Assist support helps you to rapidly access search and refactoring actions. If one or more actions are
available in the current context, they are accessible via a yellow bulb help () placed at the current line in the
stripe on the left side of the editor. Also, you can invoke the Quick Assist menu by using the Alt + 1 (Meta + Alt + 1
on Mac OS X) keyboard shortcuts.

Two categories of actions are available in the Quick Assist menu:

• Actions available on a selection made inside an attribute that contains an XPath expression:

Extract template
Extracts the selected XSLT instructions sequence into a new template.

Move to another stylesheet
Allows you to move one or more XSLT global components (templates, functions, or parameters) to another
stylesheet.

Extract local variable
Allows you to create a new local variable by extracting the selected XPath expression.

Extract global variable
Allows you to create a new global variable by extracting the selected XPath expression.

Extract template parameter
Allows you to create a new template parameter by extracting the selected XPath expression.

Extract global parameter
Allows you to create a new global parameter by extracting the selected XPath expression.

Editing Documents 363

https://www.oxygenxml.com/demo/XSL_Refactoring.html
https://www.oxygenxml.com/demo/XSL_Refactoring.html

Figure 173: XSLT Quick Assist Support - Refactoring Actions

• Actions available when the cursor is positioned over the name of a component:

Rename Component in
Renames the component and all its dependencies.

Search Declarations
Searches the declaration of the component in a predefined scope. It is available only when the context
represents a component name reference.

Search References
Searches all references of the component in a predefined scope.

Component Dependencies
Searches the component dependencies in a predefined scope.

Change Scope
Configures the scope that will be used for future search or refactor operations.

Rename Component
Allows you to rename the current component in-place.

Search Occurrences
Searches all occurrences of the component within the current file.

Figure 174: XSLT Quick Assist Support - Component Actions

Related Information:
Component Dependencies View on page 358
XSLT Hierarchy View on page 355
XSLT Refactoring Actions on page 360
Search and Refactor Operations Scope on page 310

Editing Documents 364

XSLT Unit Test (XSpec)
XSpec is a behavior driven development (BDD) framework for XSLT and XQuery. XSpec consists of a syntax for
describing the behavior of your XSLT or XQuery code, and some code that enables you to test your code against
those descriptions.

Creating an XSLT Unit Test

To create an XSLT Unit Test, go to File > New > XSLT Unit Test. You can also create an XSLT Unit Test from the
contextual menu of an XSL file in the Project view. Oxygen XML Developer allows you to customize the XSpec
document when you create it. In the customization dialog box, you can enter the path to an XSL document or to a
master XSL document.

When you create an XSpec document based on an XSL document, Oxygen XML Developer uses information
from the validation and transformation scenarios associated with the XSL file. From the transformation scenario
Oxygen XML Developer uses extensions and properties of Saxon 9.7.0.15, improving the Ant scenario associated
with the XSpec document.

Figure 175: New XSLT Unit Test Wizard

Running an XSLT Unit Test

To run an XSLT Unit Test, open the XSpec file in an editor and click Apply Transformation Scenario(s) on
the main toolbar. This will run the built-in XSpec for XSLT transformation scenario that is defined in the XSpec
framework.

Testing a Stylesheet

An XSpec file contains one or more test scenarios. You can test a stylesheet in one of the following ways:

Editing Documents 365

• Test an entire stylesheet.

Testing is performed in a certain context. You can define a context as follows:

• Inline context, building the test based on a string.

<x:scenario label="when processing a para element">
 <x:context>
 <para>...</para>
 </x:context>
 ...
</x:scenario>

• Based on an external file, or on a part of an external file extracted with an XPath expression.

<x:scenario label="when processing a para element">
 <x:context href="source/test.xml" select="/doc/body/p[1]" />
 ...
</x:scenario>

• Test a function.

<x:scenario label="when capitalising a string">
 <x:call function="eg:capital-case">
 <x:param select="'an example string'" />
 <x:param select="true()" />
 </x:call>
 ...
</x:scenario>

• Test a template with a name.

<x:scenario label="when creating a table">
 <x:call template="createTable">
 <x:param name="nodes">
 <value>A</value>
 <value>B</value>
 </x:param>
 <x:param name="cols" select="2" />
 </x:call>
</x:scenario>

You can reference test files between each other, which allows you to define a suite of tests. For further details
about test scenarios, go to https://github.com/expath/xspec/wiki/Writing-Scenarios.

Adding a Catalog to an XSpec Transformation

If your XSLT needs a catalog, you can add one to the XSpec transformation by doing one of the following:

• If you are using a project in Oxygen XML Developer, create a catalog.xml file in the project directory. This
catalog will then be loaded automatically.

• Edit the XSpec for XSLT transformation scenario, go to the Parameters tab, and set the value of the catalog
parameter to the location of your catalog file.

Generating Documentation for an XSLT Stylesheet
You can use Oxygen XML Developer to generate detailed documentation in HTML format for the elements (top-
level elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT
elements to include in the generated documentation and also the level of details to present for each of them. The
elements are hyperlinked. To generate documentation in a custom output format, you can edit the XSLT stylesheet
used to generate the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the Tools >
Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the
Project view.

Editing Documents 366

https://github.com/expath/xspec/wiki/Writing-Scenarios

Figure 176: XSLT Stylesheet Documentation Dialog Box

The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to generate
documentation for. The stylesheet may be a local or a remote file. You can specify the path to the stylesheet by
entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-
down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output.

Click the Options button to open a Custom format options dialog box where you can specify a custom
stylesheet for creating the output. There is also an option to Copy additional resources to the output folder
and you can select the path to the additional Resources that you want to copy. You can also choose to
keep the intermediate XML files created during the documentation process by deselecting the Delete
intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large XSLT
stylesheets, choosing another split criterion may generate smaller output files, providing faster documentation
browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output
file type.

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

Settings Tab

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include
in the output (templates, functions, global parameters, global variables, attribute sets, character maps, keys,
decimal formats, output formats, XSLT elements from referenced stylesheets) and the details to include in the
documentation.

Editing Documents 367

Figure 177: Settings Tab of the XSLT Stylesheet Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Templates,
Functions, Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats, Output
formats, Referenced stylesheets.

You can choose whether or not to include the following other details:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede,
are the ones from the following schemas:

• Oxygen XML Developer built-in XSLT documentation schema.
• A subset of DocBook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis,

title, ulink, programlisting, para, orderedlist, itemizedlist.
• A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul,

ol, pre, sl, sli, step, steps, li, title, xref.
• Full XHTML 1.0 support.
• XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own user-

defined data elements. The supported DocBook and DITA elements are the ones mentioned above.
• DOXSL documentation framework. Supported elements are : codefrag, description, para,

docContent, documentation, parameter, function, docSchema, link, list, listitem, module,
parameter, template, attribute-set;

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre
element. You can change this behavior by using a custom format instead of the built-in HTML format and
providing your own XSLT stylesheets.

• Use comments - Controls whether or not the comments that precede an XSLT element is treated as
documentation for the element they precede. Comments that precede or succeed the xsl:stylesheet
element, are treated as documentation for the whole stylesheet. Note that comments that precede an import
or include directive are not collected as documentation for the imported/included module. Also, comments
from within the body of the XSLT elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.
• Location - Shows the stylesheet location for each XSLT element.
• Parameters - Shows parameters of templates and functions.
• References - Shows the named XSLT elements that are referenced from within an element.
• Used by - Shows the list of all the XSLT elements that reference the current named element.
• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.

Editing Documents 368

• Overriding - Shows the list of all the XSLT elements that override the current element.
• Return type - Shows the return type of the function.
• Source - Shows the text stylesheet source for each XSLT element.
• Import precedence - Shows the computed import precedence as declared in the XSL transformation

specifications.
• Generate index - Creates an index with all the XSLT elements included in the documentation.

Export settings - Save the current settings in a settings file for further use (for example, with the exported
settings file you can generate the same documentation from the command-line interface.)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XSLT documentation.

Related Information:
XSLT Stylesheet Component Documentation Support on page 360

Generate XSLT Documentation in HTML Format

The XSLT documentation generated in HTML format is presented in a visual diagram style with various sections,
hyperlinks, and options.

Figure 178: XSLT Stylesheet Documentation Example

The generated documentation includes the following:

• Table of Contents - You can group the contents by namespace, location, or component type. The XSLT
elements from each group are sorted alphabetically (named templates are presented first and the match ones
second).

• Information about main, imported, and included stylesheets. This information consists of:

• XSLT modules included or imported by the current stylesheet.

Editing Documents 369

• The XSLT stylesheets where the current stylesheet is imported or included.
• The stylesheet location.

Figure 179: Information About an XSLT Stylesheet

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The
contents are grouped using the same criteria as the split.

After the documentation is generated, you can collapse or expand details for some stylesheet XSLT elements by
using the Showing options or the Collapse or Expand buttons.

Figure 180: Showing Options

For each element included in the documentation, the section presents the element type followed by the element
name (value of the name or match attribute for match templates).

Editing Documents 370

Figure 181: Documentation for an XSLT Element

Generate XSLT Documentation in a Custom Format

XSLT stylesheet documentation can be also generated in a custom format. You can choose the format from
the XSLT Stylesheet Documentation dialog box. Specify your own stylesheet to transform the intermediary
XML generated in the documentation process. You must write your stylesheet based on the schema
xslDocSchema.xsd from [OXYGEN_INSTALL_DIR]/frameworks/stylesheet_documentation.
You can create a custom format starting from one of the stylesheets used in the predefined HTML, PDF,
and DocBook formats. These stylesheets are available in [OXYGEN_INSTALL_DIR]/frameworks/
stylesheet_documentation/xsl.

Figure 182: Custom Format Options Dialog Box

Editing Documents 371

When using a custom format, you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating XSLT Documentation From the Command-Line Interface

You can export the settings of the XSLT Stylesheet Documentation dialog box to an XML file by pressing
the Export settings button. With the exported settings file, you can generate the same documentation
from the command line by running the script stylesheetDocumentation.bat (on Windows) /
stylesheetDocumentation.sh (on OS X / Unix / Linux) located in the Oxygen XML Developer installation
folder. The script can be integrated in an external batch process launched from the command-line interface.

The command-line parameter of the script is the relative path to the exported XML settings file. The files that are
specified with relative paths in the exported XML settings are resolved relative to the script directory.

Example:

<serialized>
 <map>
 <entry>
 <String xml:space="preserve">xsd.documentation.options</String>
 <xsdDocumentationOptions>
 <field name="outputFile">
 <String xml:space="preserve">${cfn}.html</String>
 </field>
 <field name="splitMethod">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="openOutputInBrowser">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="format">
 <Integer xml:space="preserve">1</Integer>
 </field>
 <field name="customXSL">
 <null/>
 </field>
 <field name="deleteXMLFiles">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeIndex">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGlobalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalElements">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeLocalAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeSimpleTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeComplexTypes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeAttributesGroups">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeRedefines">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="includeReferencedSchemas">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsDiagram">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsNamespace">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsLocation">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsType">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsTypeHierarchy">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsModel">

Editing Documents 372

 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsChildren">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsInstance">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsUsedby">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsProperties">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsFacets">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAttributes">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsIdentityConstr">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsEscapeAnn">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsSource">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 <field name="detailsAnnotations">
 <Boolean xml:space="preserve">true</Boolean>
 </field>
 </xsdDocumentationOptions>
 </entry>
 </map>
</serialized>

Compiling an XSL Stylesheet for Saxon
As of Saxon 9.7, it is possible to export a compiled form of a stylesheet as an XML file (called a stylesheet export
file). Oxygen XML Developer includes a simple tool called Compile XSL Stylesheet for Saxon that does this for
you. A stylesheet export file is also needed if you want to use the Saxon-JS product to run transformations in a
browser, as in the following example:

<script type="text/javascript" src="SaxonJS/SaxonJS.min.js"></script>
<script>
 window.onload = function() {
 SaxonJS.transform({
 stylesheetLocation: "books.sef",
 sourceLocation: "books.xml"
 });
 }
</script>

The Compile XSL Stylesheet for Saxon tool can be found in the Tools menu and it compiles a specified
stylesheet as an XML file (stylesheet export file with a file extension of .sef).

Selecting this tool opens the Compile XSL Stylesheet for Saxon dialog box that allows you to configure some
options for conversion.

Figure 183: Compile XSL Stylesheet for Saxon Dialog Box

This dialog box includes the following options:

Editing Documents 373

XSL URL
Allows you to select URL of the source XSL stylesheet. You can specify the URL by using the text field, the
history drop-down, or the browsing tools in the Browse drop-down list.

Target
Allows you to select the type of Saxon product that the export file will be used with. You can choose Saxon-
JS, Saxon-EE, Saxon-PE, or Saxon-HE.

Output file

You can specify the path where the output file will be saved by entering it in the text field, using the Insert
Editor Variables button, or using the browsing tool button.

Open in Editor
Select this option to open the resulting stylesheet export file in the main Oxygen XML Developer editing
pane.

Convert
Use this button to generate the stylesheet export file according the options selected in this dialog box.

Editing Ant Build Files
Oxygen XML Developer includes an Ant editor that provides a variety of specialized features to assist you with
creating and editing Ant build files. The editor includes some specialized views, content completion assistance,
automatic validation, syntax highlighting, Quick Assist and Quick Fix support, as well as numerous common
editing and search features.

Related Information:
Editing XML Documents in Text Mode on page 237

Editing Ant Build Files in the Context of Master Files
Smaller interrelated modules that define a complex Ant build file cannot be correctly edited or validated
individually due to their interdependency with other modules. For example, a target defined in a main build file is
not visible when you edit an included or imported module. Oxygen XML Developer provides support for defining
the main module (or modules), allowing you to edit any of the imported/included files in the context of the larger
Ant build structure.

You cat set a main Ant build file either by using the master files support from the Project view, or a validation
scenario.

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen XML
Developer warns you if the current module is not part of the dependencies graph computed for the main build file.
In this case, it considers the current module as the main build file.

The advantages of editing in the context of master file include:

• Correct validation of a module in the context of a larger build structure.
• Content Completion Assistant displays all components valid in the current context.
• The Outline view displays the components collected from the entire build file structure.

Validating Ant Build Files
Oxygen XML Developer performs the validation of Ant build files with the help of a built-in processor, which is
largely based on the Apache Ant libraries. The path to these libraries can be configured in the Ant preferences
page. The validation processor accesses the parameters set in the associated Ant transformation scenario and
uses them as Ant properties when validating the current build script.

Oxygen XML Developer automatically validates Ant build files as you type. You can also validate the currently
edited file by selecting the Validate action from the Validation toolbar drop-down menu or the Document >
Validate menu.

Editing Documents 374

Tip: To make a custom task available in the Ant validation engine, add a JAR file that contains the task
implementation to the library directory of the built-in Ant distribution that comes bundled with Oxygen XML
Developer (for example, [OXYGEN_INSTALL_DIR]/tools/ant/lib folder).

Create a Validation Scenario for Ant Build Files

If you want to customize the validation process for Ant build files, you can create a new validation scenario (or
configure an existing one). For example, if you want to validate interrelated modules that define a complex Ant
build file, you can specify the main Ant file by configuring a validation scenario. To create or configure a validation
scenario, select Configure Validation Scenario(s) from the Validation toolbar drop-down menu or the
Document > Validate menu.

Passing parameters to the Ant validation engine

Ant validation scenarios cannot be configured to accept custom Ant parameters. However, you can specify values
for the parameters in your Ant document using an Ant transformation scenario:

1. Create a new Ant transformation scenario.
2. Edit the transformation scenario and set all parameters you need to pass to your Ant document.
3. Associate the new scenario with your Ant document (in the Configure Transformation Scenarios(s) dialog

box). You do not need to run the transformation scenario. Every time a validation operation is triggered, the
built-in validation engine uses the parameters set in the transformation scenario.

Note: This behavior is available only for the validation scenarios that use the built-in validation engine. The
custom defined validation engines do not benefit from this functionality.

Ant Quick Fix Support
The Oxygen XML Developer Quick Fix support helps you resolve missing target reference errors that may occur
when developing Ant build documents.

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error
or warning occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix
proposals with any of the following methods:

• When hovering over the error or warning, the proposals are presented in a tooltip pop-up window.
• If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon ()

is displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Developer displays the
list of available fixes.

• With the cursor placed in the highlighted area of the error or warning, you can also invoke the Quick Fix menu
by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Oxygen XML Developer provides the following types of Quick Fixes for Ant build files:

• Create new target - Creates a new target with the specified name.
• Change reference to "targetName" - Corrects the reference to point to an already defined target.
• Remove target reference - Removes the erroneous reference.

Content Completion in Ant Build Files
The list of proposals offered by the Content Completion Assistant in Ant build files are context-sensitive and
includes proposals that are valid at the current cursor position. It can be manually activated with the Ctrl + Space
(Command + Space on OS X) shortcut.

The Content Completion Assistant proposes various item types that are defined in the current Ant build and in the
imported and included builds. The proposals include:

• Element names
• Attribute names
• Property names

Note: In addition to the user-defined properties, the Content Completion Assistant offers the following values:

Editing Documents 375

• The system properties set in the Java Virtual Machine.
• The built-in properties that Ant provides.

• Target names
• Task and type reference IDs

Tip: To make a custom task available in the Content Completion Assistant, add a JAR file that contains the
task implementation to the library directory of the built-in Ant distribution that comes bundled with Oxygen
XML Developer (for example, [OXYGEN_INSTALL_DIR]/tools/ant/lib folder).

Note: For Ant resources, the proposals are collected starting from the master files. The master files can be
defined in the project or in the associated validation scenario. For further details about the Master Files support
go to Defining Master Files at Project Level.

Related Information:

Syntax Highlighting in Ant Files
Oxygen XML Developer supports syntax highlighting in Ant files to improve the readability of the content and
reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for Ant build files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the Ant Property section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Syntax Highlight Preferences on page 82

Ant Outline View
The Outline view for Ant files displays the list of all the components (properties, targets, extension points, task/
type definitions and references) from both the edited Ant build file and its imported and included modules. For
Ant resources, the Outline view collects its components starting from the master files. The master files can
be defined in the project and the main build file can be specified in a validation scenario. For more details, see
Defining Master Files at Project Level.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Figure 184: Ant Outline View

Editing Documents 376

The following actions are available in the Settings menu on the Outline view toolbar:
Filter returns exact matches

The text filter of the Outline view returns only exact matches. By default, this filter is not selected.

Selection update on cursor move
Controls the synchronization between Outline view and source document. The selection in the Outline view
can be synchronized with the cursor moves or the changes in the Ant editor. Selecting one of the components
from the outline view also selects the corresponding item in the source document.

When the Show components option is selected, the following actions are available:

Show XML structure
Displays the XML document structure in a tree-like manner.

Sort
Sorts the components in the Outline view alphabetically.

Show all components
Displays all components that were collected starting from the master file. This option is set by default.

Show only local components
Displays the components defined in the current file only.

Group by location/type
The build file components can be grouped by location and type.

When the Show XML structure option is selected, the following actions are available:

Show components
Switches the Outline view to the components display mode.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Configure displayed attributes
Displays the XML Structured Outline preferences page.

The following actions are available in the contextual menu of the Outline view (when the Show XML structure
option is selected in the Settings menu:

Append Child
Displays a list of elements that can be inserted as children of the current element.

Insert Before
Displays a list of elements that can be inserted as siblings of the current element, before the current element.

Insert After
Displays a list of elements that can be inserted as siblings of the current element, after the current element.

Editing Documents 377

Edit Attributes
Displays an in-place attribute editing window.

Toggle Comment
Comments/uncomments the currently selected element.

Search References Ctrl + Shift + R (Command + Shift + R on OS X)
Searches all references of the item found at current cursor position in the defined scope. See Find References
and Declarations of Ant Components for more details.

Search References in
Searches all references of the item found at current cursor position in the specified scope. See Find
References and Declarations of Ant Components for more details.

Component Dependencies
Opens the Ant Component Dependencies view that allows you to see the dependencies for the current
selected component.

Rename Component in
Renames the selected component. See Ant Refactoring Actions for more details.

Cut, Copy, Delete
Executes the typical editing actions on the currently selected component.

Expand More
Expands recursively all sub-components of the selected component.

Collapse All
Collapses recursively all sub-components of the selected component.

You can search a component in the Outline view by typing its name in the filter text field at the top of the view
or directly on the tree structure. When you type the component name in the text field, you can switch to the tree
structure using the following:

• Down arrow key
• Tab key
• Shift-Tab key combination

To switch from tree structure to the filter text field, you can use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match (such as *textToFind*).

The content of the Outline view and the editing area are synchronized. When you select a component in the
Outline view, its definition is highlighted in the editing area.

Oxygen XML Developer has a predefined order for the groups in the Outline view:

• For location, the names of the files are sorted alphabetically. The file you are editing is located at the top of the
list.

• For type, the order is: properties, targets, references.

Note: When no grouping is available Oxygen XML Developer sorts the components depending on their order
in the document. Oxygen XML Developer also takes into account the name of the file that the components are
part of.

Editing Documents 378

Ant Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for an Ant build file
by analyzing imported or included build files. If the view is not displayed, it can be opened by selecting it from the
Window > Show View menu.

If you want to see the hierarchy of a build file, select it in the Project view and choose Resource Hierarchy from
the contextual menu.

If you want to see the dependencies of a build file, select it in the Project view and choose Resource
Dependencies from the contextual menu.

The following actions are available in the Resource Hierarchy/Dependencies view:

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.
Show Resource Hierarchy

Shows the hierarchy for the selected resource.
Show Resource Dependencies

Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Editing Documents 379

Ant Component Dependencies View
The Component Dependencies view allows you to see the dependencies for a selected Ant component. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the dependencies of an Ant component, select the desired component in the editor or Outline
view and choose the Component Dependencies action from the contextual menu. The action is available for the
following components: properties, targets, extension-points, and references (those that have an ID set).

The following toolbar actions are available in the Component Dependencies view:

Refresh
Refreshes the dependencies structure.

Stop
Stops the dependencies computing.

Configure
Allows you to configure a search scope to compute the dependencies structure. You can decide to use
automatically the defined scope for future operations by selecting the corresponding checkbox.

History
Allows you to repeat a previous dependencies computation.

The following actions are available from the contextual menu:
Go to First Reference

Selects the first reference of the referenced component from the current selected component in the
dependencies tree.

Go to Component
Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another, these references are listed in a table displayed at the
bottom of Component Dependencies view. When a recursive reference is encountered, it is marked with a special
icon .

Related Information:
Search and Refactor Operations Scope on page 310

Highlight Component Occurrences
When a component (for example property or target) is found at the current cursor position, they are highlighted in
both the document and in the stripe bar at the right side of the document. Oxygen XML Developer also supports
occurrences highlight for type and task references.

Customizable colors are used (one for the component definition and another one for component references).
Occurrences are displayed until another component is selected and a new search is performed. All highlights are
removed when you start to edit the document.

This feature is enabled by default. To configured it, open the Preferences dialog box (Options > Preferences) and
go to Editor > Mark Occurrences. If your particular type of file is not selected, you can perform this search by
going to Search > Search Occurrences in File Ctrl + Shift + U (Command + Shift + U on OS X) in the contextual
menu. Matches are displayed in separate tabs of the Results view.

Related Information:
Mark Occurrences Preferences on page 89

Find References and Declarations of Ant Components
The following search actions related to references and declarations of Ant components are available from the
Search submenu of the contextual menu and from the Document > References menu::

• Search References - Searches all references of the item found at current cursor position in the defined
scope.

Editing Documents 380

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify after selecting a scope for the search operation.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when defining a new scope.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently edited
file.

The following action is available from the contextual menu and the Document > Schema menu:

• Show Definition - Moves the cursor to the location of the definition of the current item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to
display its definition.

Related Information:
Search and Refactor Operations Scope on page 310

Ant Refactoring Actions
The following refactoring actions can be applied on targets, extension-points, properties, and references and
allow you to consistently rename a component in the entire Ant build file structure. They are available from the
Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring menu:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Figure 185: Rename Identity Constraint Dialog Box

Editing Documents 381

Ant Quick Assist Support
The Quick Assist support helps you to rapidly access search and refactoring actions. If one or more actions are
available in the current context, they are accessible via a yellow bulb icon () placed at the current line in the
stripe on the left side of the editor. Also, you can invoke the Quick Assist menu by using the Alt + 1 (Meta + Alt + 1
on Mac OS X) keyboard shortcuts.

The Quick Assist support offers direct access to the following actions:

Rename Component in
Renames the component and all its dependencies.

Search Declarations
Searches the declaration of the component in a predefined scope. It is available only when the context
represents a component name reference.

Search References
Searches all references of the component in a predefined scope.

Component Dependencies
Searches the component dependencies in a predefined scope.

Change Scope
Configures the scope that will be used for future search or refactor operations.

Rename Component
Allows you to rename the current component in-place.

Search Occurrences
Searches all occurrences of the component within the current file.

Related Information:
Ant Component Dependencies View on page 380
Ant resource Hierarchy/Dependencies View on page 379
Ant Refactoring Actions on page 381
Search and Refactor Operations Scope on page 310

Editing XML Schemas
An XML Schema describes the structure of an XML document and is used to validate XML document instances
against it, to check that the XML instances conform to the specified requirements. If an XML instance conforms
to the schema then it is said to be valid. Otherwise, it is invalid.

Oxygen XML Developer offers support for both XML Schema 1.0 and 1.1 and you can edit XML Schema files in
the following editing modes:

• Text editing mode - Allows you to edit XML Schema files in a source editing mode.
• Grid editing mode - Displays XML Schema files in a structured spreadsheet-like grid.
• Design editing mode - Visual schema designer that helps you understand the structure and develop complex

schemas.

For information about applying and detecting schemas, see Associating a Schema to XML Documents on page
294.

Related Information:
Associating a Schema to XML Documents on page 294

Design Editing Mode (XML Schema Diagram Editor)
XML Schemas allow document designers to specify the allowed structure and content of an XML document and
to check if an XML document is valid.

Editing Documents 382

Oxygen XML Developer provides a simple and expressive XML Schema diagram editor (Design mode) for editing
XML Schemas. The schema diagram helps both the content authors who want to understand a schema and
schema designers who develop complex schemas.

The diagram font can be increased using the usual Oxygen XML Developer shortcuts: (Ctrl (Meta on Mac OS) +
"+") , (Ctrl (Meta on Mac OS)+"-") , (Ctrl (Meta on Mac OS) + 0) or (Ctrl (Meta on Mac OS) - mouse wheel). The
whole diagram can also be zoomed with one of the predefined factors available in the Schema preferences panel.
The same zoom factor is applied for the print and save actions.

To switch to this mode, select Design at the bottom of the editing area.

Figure 186: XML Schema Diagram

To watch our video demonstration about the basic aspects of designing an XML Schema using the new Schema
Editor, go to https://www.oxygenxml.com/demo/XML_Schema_Editing.html.

Navigation in the XML Schema Design Mode

The following editing and navigation features work for all types of schema components in the XML Schema
Design mode:

Editing Documents 383

https://www.oxygenxml.com/demo/XML_Schema_Editing.html

• Move/reference components in the diagram using drag-and-drop actions.
• Select consecutive components on the diagram (components from the same level) using the Shift key. You

can also make discontinuous selections in the schema diagram using the Ctrl (Meta on Mac OS) key. To
deselect one of the components, use Ctrl + Single-Click (Command + Single-Click on OS X).

• Use the arrow keys to navigate the diagram vertically and horizontally.
• Use Home/End keys to jump to the first/last component from the same level. Use Ctrl + Home (Command +

Home on OS X) key combination to go to the diagram root and Ctrl + End (Command + End on OS X) to go to
the last child of the selected component.

• You can easily go back to a previously visited component while moving from left to right. The path will be
preserved only if you use the left arrow key or right arrow key. For example, if the current selection is on the
second attribute from an attribute group and you press the left arrow key to jump to the attribute group, when
you press the right arrow key, then the selection will be moved to the second attribute.

• Go back and forward between components viewed or edited in the diagram by selecting them in the Outline
view:

•
Back (go to previous schema component).

•
Forward (go to next schema component).

•
Go to Last Modification (go to last modified schema component).

• Copy, reference, or move global components, attributes, and identity constraints to another position and from
one schema to another using the Cut/Copy and Paste/Paste as Reference actions.

• Go to the definition of an element or attribute with the Show Definition action.
• Search in the diagram using the Find/Replace dialog box or the Quick find toolbar. You can find/replace

components only in the current file scope.
• You can expand and see the contents of the imports/includes/redefines in the diagram. In order to edit

components from other schemas the schema for each component will be opened as a separate file in Oxygen
XML Developer.

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will be
detected and you will be asked to refresh the current schema contents.

•
Recursive references are marked with a recurse symbol (). Click this symbol to navigate between the
element declaration and its reference.

Figure 187: Recursive Reference

Schema Editing Actions

You can edit an XML schema using drag and drop operations or contextual menu actions.

Drag and drop is the easiest way to move the existing components to other locations in an XML schema. For
example, you can quickly insert an element reference in the diagram with a drag and drop from the Outline view to
a compositor in the diagram. Also, the components order in an xs:sequence can be easily changed using drag
and drop.

If this property has not been set, you can easily set the attribute/element type by dragging over it a simple type or
complex type from the diagram. If the type property for a simple type or complex type is not already set, you can
set it by dragging over it a simple or complex type.

Depending on the drop area, various actions are available:

• move - Context dependent, the selected component is moved to the destination.
• reference - Context dependent, the selected component is referenced from the parent.
• copy - If (Ctrl (Meta on Mac OS)) key is pressed, a copy of the selected component is inserted to the

destination.

Editing Documents 384

Visual clues about the operation type are indicated by the mouse pointer shape:

•
 - When moving a component.

•
 - When referencing a component.

•
 - When copying a component.

You can edit some schema components directly in the diagram. For these components, you can edit the name
and the additional properties presented in the diagram by double clicking the value you want to edit. If you want
to edit the name of a selected component, you can also press (Enter). The list of properties that can be displayed
for each component can be customized in the Preferences.

When editing references, you can choose from a list of available components. Components from an imported
schema for which the target namespace does not have an associated prefix is displayed in the list as
componentName#targetNamespace. If the reference is from a target namespace that was not yet mapped,
you are prompted to add prefix mappings for the inserted component namespace in the current edited schema.

You can also change the compositor by double-clicking it and choose the compositor you want from the
proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The
editing action can be performed if you double-click or press (Enter) on an import/include/redefine component. An
edit dialog box is displayed, allowing you to customize the directives.

Related Information:
Searching and Refactoring Actions in XML Schemas
Component Dependencies View for XML Schema
XML Schema Resource Hierarchy / Dependencies View
Generating Sample XML Files
Schema Design Preferences on page 70

Contextual Menu Actions in the Design Mode

The contextual menu of the Design mode includes the following actions:

Show Definition (Ctrl + Shift + Enter)
Shows the definition for the current selected component. For references, this action is available by clicking
the arrow displayed in its bottom right corner.

Open Schema (Ctrl + Shift + Enter)
Opens the selected schema. This action is available for xsd:import, xsd:include and xsd:redefine
elements. If the file you try to open does not exist, a warning message is displayed and you have the
possibility to create the file.

Edit Attributes ()
Allows you to edit the attributes of the selected component in a small in-place editor that presents the same
attributes as in the Attributes view and the Facets view. The actions that can be performed on attributes in
this dialog box are the same actions presented in the two views.

Append child
Offers a list of valid components, depending on the context, and appends your selection as a child of the
currently selected component. You can set a name for a named component after it has been added in the
diagram.

Insert before
Offers a list of valid components, depending on the context, and inserts your selection before the selected
component, as a sibling. You can set a name for a named component after it has been added in the diagram.

Editing Documents 385

Insert after
Offers a list of valid components, depending on the context, and inserts your selection after the selected
component, as a sibling. You can set a name for a named component after it has been added in the diagram.

New global
Inserts a global component in the schema diagram. This action does not depend on the current context. If
you choose to insert an import you have to specify the URL of the imported file, the target namespace and
the import ID. The same information, excluding the target namespace, is requested for an xsd:include or
xsd:redefine element.

Note: If the imported file has declared a target namespace, the field Namespace is completed automatically.

Edit Schema Namespaces
When performed on the schema root, it allows you to edit the schema target namespace and namespace
mappings. You can also invoke the action by double-clicking the target namespace property from Attributes
view for the schema or by double-clicking the schema component.

Edit Annotations
Allows you to edit the annotation for the selected schema component in the Edit Annotations dialog box. You
can perform the following operations in the dialog box:

• Edit all appinfo/documentation items for a specific annotation - All appinfo/documentation
items for a specific annotation are presented in a table and can be easily edited. Information about an
annotation item includes: type (documentation/appinfo), content, source (optional, specify the source of
the documentation/appinfo element) and xml:lang. The content of a documentation/appinfo
item can be edited in the Content area below the table.

• Insert/Insert before/Remove documentation/appinfo. The Add button allows you to insert a new
annotation item (documentation/appinfo). You can add a new item before the item selected in table
by pressing the Insert Before button. Also, you can delete the selected item using the Remove button.

• Move items up/down - to do this use the Move up and Move down buttons.
• Insert/Insert before/Remove annotation - Available for components that allow multiple annotations such

as schemas or redefines.
• Specify an ID for the component annotation. An optional identifier for the annotation.

Annotations are rendered by default under the graphical representation of the component. When you have a
reference to a component with annotations, these annotations are presented in the diagram also below the
reference component. The Edit Annotations action invoked from the contextual menu edit the annotations
for the reference. If the reference component does not have annotations, you can edit the annotations of
the referenced component by double-clicking the annotations area. Otherwise, you can edit the referenced
component annotations only if you go to the definition of the component.

Note: For imported/included components that do not belong to the currently edited schema, the Edit
Annotations dialog box presents the annotation as read-only. To edit its annotation, open the schema where
the component is defined.

Extract Global Element

Action that is available for local elements. A local element is made global and is replaced with a reference
to the global element. The local element properties that are also valid for the global element declaration are
kept.

Figure 188: Extracting a Global Element

If you use the Extract Global Element action on a name element , the result is:

Editing Documents 386

Figure 189: Extracting a Global Element on a name Element

Extract Global Attribute
Action available for local attributes. A local attribute is made global and replaced with a reference to the
global attribute. The properties of local attribute that are also valid in the global attribute declaration are kept.

Figure 190: Extracting a Global Attribute

If you use the Extract Global Attribute action on a note attribute, the result is:

Editing Documents 387

Figure 191: Extracting a Global Attribute on a note Attribute

Extract Global Group
Action available for compositors (sequence, choice, all). This action extracts a global group and makes a
reference to it. The action is available only if the parent of the compositor is not a group.

If you use the Extract Global Group action on the sequence element, the Extract Global Component dialog
box is displayed and you can choose a name for the group. If you type personGroup, the result is:

Figure 192: Extracting a Global Group

Figure 193: Extracting a Global Gropu on a sequence Element

Extract Global Type
Action used to extract an anonymous simple type or an anonymous complex type as global. For anonymous
complex types, the action is available on the parent element.

Editing Documents 388

Figure 194: Extracting a Global Simple Type

If you use the action on the union component and choose numericST for the new global simple type name,
the result is:

Figure 195: Extracting a Global Simple Type on a union Component

Figure 196: Extracting a Global Complex Type

If you use the action on a person element and choose person_type for the new complex type name, the
result is:

Figure 197: Extracting a Global Complex Type on a person Element

Editing Documents 389

Rename Component in
Rename the selected component.

Cut Ctrl + X (Command + X on OS X)
Cut the selected component(s).

Copy Ctrl + C (Command + C on OS X)
Copy the selected component(s).

Copy XPath

This action copies an XPath expression that identifies the selected element or attribute in an instance XML
document of the edited schema and places it in the clipboard.

Paste Ctrl + V (Command + V on OS X)
Paste the component(s) from the clipboard as children of the selected component.

Paste as Reference
Create references to the copied component(s). If not possible a warning message is displayed.

Remove (Delete)
Remove the selected component(s).

Override component
Copies the overridden component in the current XML Schema. This option is available for xs:override
components.

Redefine component
The referenced component is added in the current XML Schema. This option is available for xs:redefine
components.

Optional
Can be performed on element/attribute/group references, local attributes, elements, compositors, and
element wildcards. The minOccurs property is set to 0 and the use property for attributes is set to
optional.

Unbounded
Can be performed on element/attribute/group references, local attributes, elements, compositors, and
element wildcards. The maxOccurs property is set to unbounded and the use property for attributes is set
to required.

Search
Can be performed on local elements or attributes. This action makes a reference to a global element or
attribute.

Search References
Searches all references of the item found at current cursor position in the defined scope if any.

Search References in
Searches all references of the item found at current cursor position in the specified scope.

Search Occurrences in File
Searches all occurrences of the item found at current cursor position in the current file.

Component Dependencies
Opens the Component Dependencies view that allows you to see the dependencies for the current selected
component.

Resource Hierarchy
Opens the Resource Hierarchy / Dependencies view that allows you to see the hierarchy for the current
selected resource.

Editing Documents 390

Flatten Schema
Recursively adds the components of included Schema files to the main one. It also flattens every imported
XML Schema from the hierarchy.

Resource Dependencies
Allows you to see the dependencies for the current selected resource.

Expand All
Recursively expands all sub-components of the selected component.

Collapse All
Recursively collapses all sub-components of the selected component.

Save as Image
Save the diagram as image, in JPEG, BMP, SVG or PNG format.

Generate Sample XML Files
Generate XML files using the current opened schema. The selected component is the XML document root.
See more in the Generate Sample XML Files section.

Options
Show the Schema preferences panel.

XML Schema Components

A schema diagram contains a series of interconnected components. To quickly identify the relation between two
connected components, the connection is represented as:

• A thick line to identify a connection with a required component (in the following image, family is a required
element).

Figure 198: Example: Required Component
• A thin line to identify a connection with an optional component (in the following image, email is an optional

element).

Figure 199: Example: Optional Component

The following topics explain in detail all available components and their symbols as they appear in an XML
schema diagram.

xs:schema

Figure 200: The xs:schema Component

Defines the root element of a schema. A schema document contains representations for a collection of schema
components, such as type definitions and element declarations, that have a common target namespace. See
more info at http://www.w3.org/TR/xmlschema11-1/#element-schema.

By default, it displays the targetNamespace property when rendered.

Editing Documents 391

http://www.w3.org/TR/xmlschema11-1/#element-schema

Table 7: xs:schema Properties

Property Name Description Possible Values

Target Namespace The schema target namespace. Any URI

Element Form Default Determining whether or not local
element declarations will be
namespace-qualified by default.

qualified, unqualified, [Empty].
Default value is unqualified.

Attribute Form Default Determining whether or not local
attribute declarations will be
namespace-qualified by default.

qualified, unqualified, [Empty].
Default value is unqualified.

Block Default Default value of the block
attribute of xs:element and
xs:complexType.

#all, extension, restriction,
substitution, restriction extension,
restriction substitution, extension
substitution, restriction extension
substitution, [Empty].

Final Default Default value of the final
attribute of xs:element and
xs:complexType.

#all, restriction, extension,
restriction extension, [Empty].

Default Attributes Specifies a set of attributes that
apply to every complex Type in a
schema document.

Any.

Xpath Default Namespace The default namespace used
when the XPath expression is
evaluated.

##defaultNamespace,
##targetNamespace, ##local.

Version Schema version Any token.

ID The schema ID Any ID.

Component The edited component name. Not editable property.

SystemID The schema system ID Not editable property.

xs:element

Figure 201: The xs:element Component

Defines an element. An element declaration is an association of a name with a type definition, either simple or
complex, an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-element.

An element by default displays the following properties when rendered in the diagram: default, fixed, abstract and
type. When referenced or declared locally, the element graphical representation also contains the value for the
minOccurs and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and
the connectors to the element are drawn using dotted lines if the element is optional.

Editing Documents 392

http://www.w3.org/TR/xmlschema11-1/#element-element

Table 8: xs:element Properties

Property Name Description Possible Values Mentions

Name The element name.
Always required.

Any NCName for global
or local elements, any
QName for element
references.

If missing, will be
displayed as '[element]'
in diagram.

Is Reference When set, the local
element is a reference to
a global element.

true/false Appears only for local
elements.

Type The element type. All declared or built-in
types. In addition, the
following anonymous
types are available: [ST-
restriction], [ST-union],
[ST-list], [CT-anonymous],
[CT-extension SC], [CT-
restriction SC], [CT-
restriction CC], [CT-
extension CC].

For all elements. For
references, the value
is set in the referenced
element.

Base Type The extended/restricted
base type.

All declared or built-in
types

For elements with
complex type, with
simple or complex
content.

Mixed Defines if the complex
type content model will
be mixed.

true/false For elements with
complex type.

Content The content of the
complex type.

simple/complex For elements with
complex type that
extends/restricts a base
type. It is automatically
detected.

Content Mixed Defines if the complex
content model will be
mixed.

true/false For elements with
complex type that has a
complex content.

Default Default value of the
element. A default
value is automatically
assigned to the element
when no other value is
specified.

Any string The fixed and default
attributes are mutually
exclusive.

Fixed A simple content
element may be fixed
to a specific value
using this attribute.
A fixed value is also
automatically assigned
to the element and you
cannot specify another
value.

Any string The fixed and default
attributes are mutually
exclusive.

Editing Documents 393

Property Name Description Possible Values Mentions

Min Occurs Minimum number of
occurrences of the
element.

A numeric positive value.
Default value is 1

Only for references/local
elements

Max Occurs Maximum number of
occurrences of the
element.

A numeric positive value.
Default value is 1

Only for references/local
elements

Substitution Group Qualified name of the
head of the substitution
group that this element
belongs to.

All declared elements.
For XML Schema 1.1
this property supports
multiple values.

For global and reference
elements

Abstract Controls whether or not
the element may be used
directly in instance XML
documents. When set
to true, the element may
still be used to define
content models, but it
must be substituted
through a substitution
group in the instance
document.

true/false For global elements and
element references

Form Defines if the element is
"qualified" (belongs to
the target namespace)
or "unqualified" (doesn't
belong to any
namespace).

unqualified/qualified Only for local elements

Nillable When this attribute is set
to true, the element can
be declared as nil using
an xsi:nil attribute in the
instance documents.

true/false For global elements and
element references

Target Namespace Specifies the target
namespace for local
element and attribute
declarations. The
namespace URI may
be different from
the schema target
namespace. This
property is available for
local elements only.

Not editable property. For all elements.

Editing Documents 394

Property Name Description Possible Values Mentions

Block Controls if the element
can be subject to a
type or substitution
group substitution. '#all'
blocks any substitution,
'substitution' blocks any
substitution through
substitution groups and
'extension'/'restriction'
block any substitution
(both through xsi:type
and substitution groups)
by elements or types,
derived respectively by
extension or restriction
from the type of the
element. Its default
value is defined by the
blockDefault attribute of
the parent xs:schema.

#all, restriction,
extension,substitution,
extension restriction,
extension substitution,
restriction substitution,
restriction extension
substitution

For global elements and
element references

Final Controls whether
the element can be
used as the head of a
substitution group for
elements whose types
are derived by extension
or restriction from the
type of the element. Its
default value is defined
by the finalDefault
attribute of the parent
xs:schema.

#all, restriction,
extension, restriction
extension, [Empty]

For global elements and
element references

ID The component ID. Any ID For all elements.

Component The edited component
name.

Not editable property. For all elements.

Namespace The component
namespace.

Not editable property. For all elements.

System ID The component system
ID.

Not editable property. For all elements.

xs:attribute

Figure 202: The xs:attribute Component

Defines an attribute. See more info at http://www.w3.org/TR/xmlschema11-1/#element-attribute.

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and
type. Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is
stroked out if prohibited.

Editing Documents 395

http://www.w3.org/TR/xmlschema11-1/#element-attribute

Table 9: xs:attribute Properties

Property Name Description Possible Value Mentions

Name Attribute name. Always
required.

Any NCName for global/
local attributes, all
declared attributes'
QName for references.

For all local or global
attributes. If missing,
will be displayed as
'[attribute]' in the
diagram.

Is Reference When set, the local
attribute is a reference.

true/false For local attributes.

Type Qualified name of a
simple type.

All global simple types
and built-in simple types.
In addition another 3
proposals are present:
[anonymous restriction],
[anonymous list],
[anonymous union] for
creating anonymous
simple types more easily.

For all attributes. For
references, the type is
set to the referenced
attribute.

Default Default value. When
specified, an attribute
is added by the schema
processor (if it is missing
from the instance XML
document) and it is given
this value. The default
and fixed attributes are
mutually exclusive.

Any string For all local or global
attributes. For references
the value is from the
referenced attribute.

Fixed When specified, the
value of the attribute is
fixed and must be equal
to this value. The default
and fixed attributes are
mutually exclusive.

Any string For all local or global
attributes. For references
the value is from the
referenced attribute.

Use Possible usage of the
attribute. Marking an
attribute "prohibited"
is useful to exclude
attributes during
derivations by restriction.

optional, required,
prohibited

For local attributes

Form Specifies whether or not
the attribute is qualified
(must have a namespace
prefix in the instance
XML document). The
default value for this
attribute is specified by
the attributeFormDefault
attribute of the
xs:schema document
element.

unqualified/qualified For local attributes.

Editing Documents 396

Property Name Description Possible Value Mentions

Inheritable Specifies if the attribute
is inheritable. Inheritable
attributes can be used by
<alternative> element on
descendant elements.

true/false For all local or global
attributes. The default
value is false. This
property is available for
XML Schema 1.1.

Target Namespace Specifies the target
namespace for local
attribute declarations.
The namespace URI
may be different from
the schema target
namespace.

Any URI Setting a target
namespace for local
attribute is useful only
when restricts attributes
of a complex type that
is declared in other
schema with a different
target namespace. This
property is available for
XML Schema 1.1.

ID The component ID. Any ID For all attributes.

Component The edited component
name.

Not editable property. For all attributes.

Namespace The component
namespace.

Not editable property. For all attributes.

System ID The component system
ID.

Not editable property. For all attributes.

xs:attributeGroup

Figure 203: The xs:attributeGroup Component

Defines an attribute group to be used in complex type definitions. See more info at http://www.w3.org/TR/
xmlschema11-1/#element-attributeGroup.

Table 10: xs:attributeGroup Properties

Property Name Description Possible Values Mentions

Name Attribute group name.
Always required.

Any NCName for global
attribute groups, all
declared attribute groups
for reference.

For all global or
referenced attribute
groups. If missing,
will be displayed as
'[attributeGroup]' in
diagram.

ID The component ID. Any ID For all attribute groups.

Component The edited component
name.

Not editable property. For all attribute groups.

Namespace The component
namespace.

Not editable property. For all attribute groups.

System ID The component system
ID.

Not editable property. For all attribute groups.

Editing Documents 397

http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup
http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup

xs:complexType

Figure 204: The xs:complexType Component

Defines a top level complex type. Complex Type Definitions provide for: See more data at http://www.w3.org/TR/
xmlschema11-1/#element-complexType.

• Constraining element information items by providing Attribute Declarations governing the appearance and
content of attributes.

• Constraining element information item children to be empty, or to conform to a specified element-only or
mixed content model, or else constraining the character information item children to conform to a specified
simple type definition.

• Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex
type.

• Specifying post-schema-validation infoset contributions for elements.
• Limiting the ability to derive additional types from a given complex type.
• Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a

content model to be of a given complex type.

Tip: A complex type that is a base type to another type will be rendered with yellow background.

Table 11: xs:complexType Properties

Property Name Description Possible Values Mentions

Name The name of the
complex type. Always
required.

Any NCName Only for global complex
types. If missing,
will be displayed as
'[complexType]' in
diagram.

Base Type Definition The name of the
extended/restricted
types.

Any from the declared
simple or complex types.

For complex types with
simple or complex
content.

Derivation Method The derivation method. restriction/ extension Only when base type
is set. If the base type
is a simple type, the
derivation method is
always extension.

Content The content of the
complex type.

simple/ complex For complex types that
extend/restrict a base
type. It is automatically
detected.

Content Mixed Specifies if the complex
content model will be
mixed.

true/false For complex contents.

Mixed Specifies if the complex
type content model will
be mixed.

true/false For global and
anonymous complex
types.

Editing Documents 398

http://www.w3.org/TR/xmlschema11-1/#element-complexType
http://www.w3.org/TR/xmlschema11-1/#element-complexType

Property Name Description Possible Values Mentions

Abstract When set to true, this
complex type cannot
be used directly in the
instance documents and
needs to be substituted
using an xsi:type
attribute.

true/false For global and
anonymous complex
types.

Block Controls if a substitution
(either through a xsi:type
or substitution groups)
can be performed for
a complex type, which
is an extension or a
restriction of the current
complex type. This
attribute can only block
such substitutions
(it cannot "unblock"
them), which can also be
blocked in the element
definition. The default
value is defined by the
blockDefault attribute of
xs:schema.

all, extension, restriction,
extension restriction,
[Empty]

For global complex
types.

Final Controls whether the
complex type can
be further derived by
extension or restriction
to create new complex
types.

all, extension, restriction,
extension restriction,
[Empty]

For global complex
types.

Default Attributes Apply The schema element can
carry a defaultAttributes
attribute, which identifies
an attribute group. Each
complexType defined in
the schema document
then automatically
includes that attribute
group, unless this
is overridden by the
defaultAttributesApply
attribute on the
complexType element.

true/false This property is available
only for XML Schema
1.1.

ID The component ID. Any ID For all complex types.

Component The edited component
name.

Not editable property. For all complex types.

Namespace The component
namespace.

Not editable property. For all complex types.

System ID The component system
ID.

Not editable property. For all complex types.

Editing Documents 399

xs:simpleType

Figure 205: The xs:simpleType Component

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values
they encode, applicable to the normalized value of an attribute information item or of an element information item
with no element children. Informally, it applies to the values of attributes and the text-only content of elements.
See more info at http://www.w3.org/TR/xmlschema11-1/#element-simpleType.

Tip: A simple type that is a base type to another type will be rendered with yellow background.

Table 12: xs:simpleType Properties

Name Description Possible Values Scope

Name Simple type name.
Always required.

Any NCName. Only for global simple
types. If missing,
will be displayed as
'[simpleType]' in diagram.

Derivation The simple type
category: restriction, list
or union.

restriction,list or union For all simple types.

Base Type A simple type definition
component. Required if
derivation method is set
to restriction.

All global simple types
and built-in simple types.
In addition another 3
proposals are present:
[anonymous restriction],
[anonymous list],
[anonymous union] for
easily create anonymous
simple types.

For global and
anonymous simple
types with the derivation
method set to restriction.

Item Type A simple type definition
component. Required if
derivation method is set
to list.

All global simple types
and built-in simple
types(from schema for
schema). In addition
another 3 proposals are
present: [anonymous
restriction], [anonymous
list], [anonymous
union] for easily create
anonymous simple
types.

For global and
anonymous simple
types with the derivation
method set to list.
Derivation by list is the
process of transforming
a simple datatype
(named the item type)
into a whitespace-
separated list of values
from this datatype.
The item type can be
defined inline by adding
a simpleType definition
as a child element of
the list element, or by
reference, using the
itemType attribute (it is
an error to use both).

Member Types Category for grouping
union members.

Not editable property. For global and
anonymous simple
types with the derivation
method set to union.

Editing Documents 400

http://www.w3.org/TR/xmlschema11-1/#element-simpleType

Name Description Possible Values Scope

Member A simple type definition
component. Required if
derivation method is set
to union.

All global simple types
and built-in simple
types(from schema for
schema). In addition
another 3 proposals are
present: [anonymous
restriction], [anonymous
list], [anonymous
union] for easily create
anonymous simple
types.

For global and
anonymous simple
types with the derivation
method set to union.
Deriving a simple
datatype by union
merges the lexical
spaces of several
simple datatypes (called
member types) to create
a new simple datatype.
The member types can
be defined either by
reference (through the
memberTypes attribute)
or embedded as simple
datatype local definitions
in the xs:union element.
Both styles can be
mixed.

Final Blocks any further
derivations of this
datatype (by list, union,
derivation or all).

#all, list, restriction,
union, list restriction, list
union, restriction union.
In addition, [Empty]
proposal is present
for set empty string as
value.

Only for global simple
types.

ID The component ID. Any ID. For all simple types

Component The name of the edited
component.

Not editable property. Only for global and local
simple types

Namespace The component
namespace.

Not editable property. For global simple types.

System ID The component system
ID.

Not editable property. Not present for built-in
simple types..

xs:alternative

The type alternatives mechanism allows you to specify type substitutions on an element declaration.

Note: xs:alternative is available for XML Schema 1.1.

Figure 206: The xs:alternative Component

Editing Documents 401

Table 13: xs:alternative Properties

Name Description Possible Values

Type Specifies type substitutions for an
element, depending on the value
of the attributes.

All declared or built-in types.
In addition, the following
anonymous types are available:
[ST-restriction], [ST-union], [ST-list],
[CT-anonymous], [CT-extension
SC], [CT-restriction SC], [CT-
restriction CC], [CT-extension CC].

Test Specifies an XPath expression. If
the XPath condition is valid, the
specified type is selected as the
element type. The expressions
allowed are limited to a subset
of XPath 2.0. Only the attributes
of the current element and
inheritable attributes from
ancestor elements are accessible
in the XPath expression. When
you edit this property, the content
completion list of proposals
offers XPath expressions.

An XPath expression.

XPath Default Namespace The default namespace used
when the XPath expression is
evaluated.

##defaultNamespace,
##targetNamespace, ##local.

ID Specifies the component ID. Any ID.

Component Specifies the type of XML schema
component.

Not editable property.

System ID Points to the document location
of the schema.

Not editable property.

xs:group

Figure 207: The xs:group Component

Defines a group of elements to be used in complex type definitions. See more info at http://www.w3.org/TR/
xmlschema11-1/#element-group.

When referenced, the graphical representation also contains the value for the minOccurs and maxOccurs
properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group
are drawn using dotted lines if the group is optional.

Table 14: xs:group Properties

Property Name Description Possible Values Mentions

Name The group name. Always
required.

Any NCName for global
groups, all declared
groups for reference.

If missing, will be
displayed as '[group]' in
diagram.

Min Occurs Minimum number of
occurrences of the
group.

A numeric positive value.
Default value is 1.

Appears only for
reference groups.

Editing Documents 402

http://www.w3.org/TR/xmlschema11-1/#element-group
http://www.w3.org/TR/xmlschema11-1/#element-group

Property Name Description Possible Values Mentions

Max Occurs Maximum number of
occurrences of the
group.

A numeric positive value.
Default value is 1.

Appears only for
reference groups.

ID The component ID. Any ID For all groups.

Component The edited component
name.

Not editable property. For all groups.

Namespace The component
namespace.

Not editable property For all groups.

System ID The component system
ID.

Not editable property. For all groups.

xs:include

Figure 208: The xs:include Component

Adds multiple schemas with the same target namespace to a document. See more info at http://www.w3.org/TR/
xmlschema11-1/#element-include.

Table 15: xs:include properties

Property Name Description Possible Values

Schema Location Included schema location. Any URI

ID Include ID. Any ID

Component The component name. Not editable property.

xs:import

Figure 209: The xs:import Component

Adds multiple schemas with a different target namespace to a document. See more info at http://www.w3.org/
TR/xmlschema11-1/#element-import.

Table 16: xs:import Properties

Property Name Description Possible Values

Schema Location Imported schema location Any URI

Namespace Imported schema namespace Any URI

ID Import ID Any ID

Component The component name Not editable property.

xs:redefine

Figure 210: The xs:redefine Component

Editing Documents 403

http://www.w3.org/TR/xmlschema11-1/#element-include
http://www.w3.org/TR/xmlschema11-1/#element-include
http://www.w3.org/TR/xmlschema11-1/#element-import
http://www.w3.org/TR/xmlschema11-1/#element-import

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-redefine.

Table 17: xs:redefine Properties

Property Name Description Possible Values

Schema Location Redefine schema location. Any URI

ID Redefine ID Any ID

Component The component name. Not editable property.

xs:override

Figure 211: The xs:override Component

The override construct allows replacements of old components with new ones without any constraint. See more
info at http://www.w3.org/TR/xmlschema11-1/#element-override.

Table 18: xs:override Properties

Property Name Description Possible Values

Schema Location Redefine schema location. Any URI

ID Redefine ID Any ID

xs:notation

Figure 212: The xs:notation Component

Describes the format of non-XML data within an XML document. See more info at http://www.w3.org/TR/
xmlschema11-1/#element-notation.

Table 19: xs:notation Properties

Property Name Description Possible values Mentions

Name The notation name.
Always required.

Any NCName. If missing, will be
displayed as '[notation]'
in diagram.

System Identifier The notation system
identifier.

Any URI Required if public
identifier is absent
(otherwise, optional).

Public Identifier The notation public
identifier.

A Public ID value Required if system
identifier is absent
(otherwise, optional).

ID The component ID. Any ID For all notations.

Component The edited component
name.

Not editable property. For all notations.

Namespace The component
namespace.

Not editable property. For all notations.

Editing Documents 404

http://www.w3.org/TR/xmlschema11-1/#element-redefine
http://www.w3.org/TR/xmlschema11-1/#element-override
http://www.w3.org/TR/xmlschema11-1/#element-notation
http://www.w3.org/TR/xmlschema11-1/#element-notation

Property Name Description Possible values Mentions

System ID The component system
ID.

Not editable property. For all notations.

xs:sequence / xs:choice / xs:all

Figure 213: xs:sequence

xs:sequence specifies that the child elements must appear in a sequence. Each child element can occur from 0 to
any number of times. See more info at http://www.w3.org/TR/xmlschema11-1/#element-sequence.

Figure 214: xs:choice

xs:choice allows only one of the elements contained in the declaration to be present within the containing
element. See more info at http://www.w3.org/TR/xmlschema11-1/#element-choice.

Figure 215: xs:all

xs:all specifies that the child elements can appear in any order. See more info at http://www.w3.org/TR/
xmlschema11-1/#element-all.

The compositor graphical representation also contains the value for the minOccurs and maxOccurs properties
(for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are
drawn using dotted lines if the compositor is optional.

Table 20: xs:sequence, xs:choice, xs:all Properties

Property Name Description Possible Values Mentions

Compositor Compositor type. sequence, choice, all. 'all' is only available as
a child of a group or
complex type.

Min Occurs Minimum occurrences of
compositor.

A numeric positive value.
Default is 1.

The property is not
present if compositor
is 'all' and is child of a
group.

Max Occurs Maximum occurrences
of compositor.

A numeric positive value.
Default is 1.

The property is not
present if compositor
is 'all' and is child of a
group.

ID The component ID. Any ID For all compositors.

Component The edited component
name.

Not editable property. For all compositors.

System ID The component system
ID.

Not editable property. For all compositors.

Editing Documents 405

http://www.w3.org/TR/xmlschema11-1/#element-sequence
http://www.w3.org/TR/xmlschema11-1/#element-choice
http://www.w3.org/TR/xmlschema11-1/#element-all
http://www.w3.org/TR/xmlschema11-1/#element-all

xs:any

Figure 216: The xs:any Component

Enables the author to extend the XML document with elements not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-any.

The graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and
1..1 occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using
dotted lines if the wildcard is optional.

Table 21: xs:any Properties

Property Name Description Possible Values

Namespace The list of allowed namespaces.
The namespace attribute expects
a list of namespace URIs. In this
list, two values have a specific
meaning: '##targetNamespace'
stands for the target namespace,
and '##local' stands for local
attributes (without namespaces).

##any, ##other,
##targetNamespace, ##local or
anyURI

notNamespace Specifies the namespace that
extension elements or attributes
cannot come from.

##local, ##targetNamespace

notQName Specifies an element or attribute
that is not allowed.

##defined

Process Contents Type of validation required on
the elements allowed for this
wildcard.

skip, lax, strict

Min Occurs Minimum occurrences of any A numeric positive value. Default
is 1.

Max Occurs Maximum occurrences of any A numeric positive value. Default
is 1.

ID The component ID. Any ID.

Component The name of the edited
component.

Not editable property.

System ID The component system ID. Not editable property.

xs:anyAttribute

Figure 217: The xs:anyAttribute Component

Enables the author to extend the XML document with attributes not specified by the schema. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute.

Editing Documents 406

http://www.w3.org/TR/xmlschema11-1/#element-any
http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute

Table 22: xs:anyAttribute Properties

Property Name Description Possible Value

Namespace The list of allowed namespaces.
The namespace attribute expects
a list of namespace URIs. In this
list, two values have a specific
meaning: '##targetNamespace'
stands for the target namespace,
and '##local' stands for local
attributes (without namespaces).

##any, ##other,
##targetNamespace, ##local or
anyURI

Process Contents Type of validation required on
the elements allowed for this
wildcard.

skip, lax, strict

ID The component ID. Any ID.

Component The name of the edited
component.

Not editable property.

System ID The component system ID. Not editable property.

xs:unique

Figure 218: The xs:unique Component

Defines that an element or an attribute value must be unique within the scope. See more info at http://
www.w3.org/TR/xmlschema11-1/#element-unique.

Table 23: xs:unique Properties

Property Name Description Possible Values

Name The unique name. Always
required.

Any NCName.

ID The component ID. Any ID.

Component The edited component name. Not editable property.

Namespace The component namespace. Not editable property.

System ID The component system ID. Not editable property.

Editing Documents 407

http://www.w3.org/TR/xmlschema11-1/#element-unique
http://www.w3.org/TR/xmlschema11-1/#element-unique

xs:key

Figure 219: The xs:key Component

Specifies an attribute or element value as a key (unique, non-nullable and always present) within the containing
element in an instance document. See more info at http://www.w3.org/TR/xmlschema11-1/#element-key.

Table 24: xs:key Properties

Property Name Description Possible Value

Name The key name. Always required. Any NCName.

ID The component ID. Any ID.

Component The edited component name. Not editable property.

Namespace The component namespace. Not editable property.

System ID The component system ID. Not editable property.

xs:keyRef

Figure 220: The xs:keyRef Component

Specifies that an attribute or element value corresponds to that of the specified key or unique element. See more
info at http://www.w3.org/TR/xmlschema11-1/#element-keyref.

A keyref by default displays the Referenced Key property when rendered.

Table 25: xs:keyRef Properties

Property Name Description Possible Values

Name The keyref name. Always required. Any NCName.

Referenced Key The name of referenced key. any declared element constraints.

ID The component ID. Any ID.

Component The edited component name. Not editable property.

Namespace The component namespace. Not editable property.

System ID The component system ID. Not editable property.

xs:selector

Figure 221: The xs:selector Component

Editing Documents 408

http://www.w3.org/TR/xmlschema11-1/#element-key
http://www.w3.org/TR/xmlschema11-1/#element-keyref

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at http://
www.w3.org/TR/xmlschema11-1/#element-selector.

Table 26: xs:selector Properties

Property Name Description Possible Values

XPath Relative XPath expression
identifying the element that the
constraint applies to.

An XPath expression.

ID The component ID. Any ID.

Component The edited component name. Not editable property.

System ID The component system ID. Not editable property.

xs:field

Figure 222: The xs:field Component

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at
http://www.w3.org/TR/xmlschema11-1/#element-field.

Table 27: xs:field Properties

Property Name Description Possible Values

XPath Relative XPath expression
identifying the field(s) composing
the key, key reference, or unique
constraint.

An XPath expression.

ID The component ID. Any ID.

Component The edited component name. Not editable property.

System ID The component system ID. Not editable property.

xs:assert

Assertions provide a flexible way to control the occurrence and values of elements and attributes available in an
XML Schema.

Note: xs:assert is available for XML Schema 1.1.

Figure 223: The xs:assert Component

Editing Documents 409

http://www.w3.org/TR/xmlschema11-1/#element-selector
http://www.w3.org/TR/xmlschema11-1/#element-selector
http://www.w3.org/TR/xmlschema11-1/#element-field

Table 28: xs:assert Properties

Property Name Description Possible Values

Test Specifies an XPath expression. If
the XPath condition is valid, the
specified type is selected as the
element type. The expressions
allowed are limited to a subset
of XPath 2.0. Only the attributes
of the current element and
inheritable attributes from
ancestor elements are accessible
in the XPath expression. When
you edit this property, the content
completion list of proposals
offers XPath expressions.

An XPath expression.

XPath Default Namespace The default namespace used
when the XPath expression is
evaluated.

##defaultNamespace,
##targetNamespace, ##local.

ID Specifies the component ID. Any ID.

Component The edited component name. Not editable property.

System ID The component system ID. Not editable property.

xs:openContent

Figure 224: The xs:openContent Component

The openContent element enables instance documents to contain extension elements to be inserted amongst
the elements declared by the schema. You can declare open content for your elements at one place (within the
complexType definition) or at the schema level.

For further details about the openContent component, go to http://www.w3.org/TR/xmlschema11-1/#element-
openContent.

Table 29: xs:openContent Properties

Property Name Description Possible Value

Mode Specifies where the extension
elements can be inserted.

The value can be: "interleave",
"suffix" or "none". The default
value is "interleave".

ID The component ID. Any ID.

Component The edited component name. Not editable property.

System ID The component system ID. Not editable property.

Note: This component is available for XML Schema 1.1 only. To change the version of the XML Schema, open the
Preferences dialog box (Options > Preferences) and go to XML > XML Parser > XML Schema.

Constructs Used to Group Schema Components

This section explains the components that can be used for grouping other schema components:

• Attributes

Editing Documents 410

http://www.w3.org/TR/xmlschema11-1/#element-openContent
http://www.w3.org/TR/xmlschema11-1/#element-openContent

• Constraints
• Substitutions

 Attributes

Figure 225: Attributes Construct

Groups all attributes and attribute groups belonging to a complex type.

Table 30: attributes Properties

Property Name Description Possible Values

Component The element for which the
attributes are displayed.

Not editable property.

System ID The component system ID. Not editable property.

 Constraints

Figure 226: Constraints Construct

Groups all constraints (xs:key, xs:keyRef or xs:unique) belonging to an element.

Table 31: constraints Properties

Property Name Description Possible Values

Component The element for which the
constraints are displayed.

Not editable property.

System ID The component system ID. Not editable property.

Editing Documents 411

 Substitutions

Figure 227: Substitutions Construct

Groups all elements that can substitute the current element.

Table 32: substitutions Properties

Property Name Description Possible Values

Component The element for which the
substitutions are displayed.

Not editable property.

System ID The component system ID. Not editable property.

Schema Validation

Validation for the Design mode is seamlessly integrated in the Oxygen XML Developer XML documents validation
capability.

Figure 228: XML Schema Validation

A schema validation error is presented by highlighting the invalid component:

• In the Attributes View.
• In the diagram by surrounding the component that has the error with a red border.
• A marker on the errors stripe at the right of the diagram view.
• A status label with a red icon () below the diagram view.

Editing Documents 412

Invalid facets for a component are highlighted in the Facets View.

Components with invalid properties are rendered with a red border. This is a default color, but you can customize
it in the Document checking user preferences. When hovering an invalid component, the tooltip will present the
validation errors associated with that component.

When editing a value that is supposed to be a qualified or unqualified XML name, the application provides
automatic validation of the entered value. This proves to be very useful in avoiding setting invalid XML names for
the given property.

If you validate the entire schema using the Validate action from the Document > Validate menu or from the
Validation toolbar drop-down menu, all validation errors will be presented in the Errors tab. To resolve an

error, just click it (or double-click for errors located in other schemas) and the corresponding schema component
will be displayed as the diagram root so that you can easily correct the error.

Important: If the schema imports only the namespace of other schema without specifying the schema location
and a catalog is set-up that maps the namespace to a certain location both the validation and the diagram will
correctly identify the imported schema.

Tip: If the validation action finds that the schema contains unresolved references, the application will suggest
the use of validation scenarios, but only if the current edited schema is an XML Schema module.

Edit Schema Namespaces

You can use the XML Schema Namespaces dialog box to easily set a target namespace and define namespace
mappings for a newly created XML Schema. In the Design mode these namespaces can be modified anytime
by choosing Edit Schema Namespaces from the contextual menu. You can also do this by double-clicking the
schema root in the diagram.

The XML Schema Namespaces dialog box allows you to edit the following information:

• Target namespace - The target namespace of the schema.
• Prefixes - The dialog box displays a table with namespaces and the mapped prefixes. You can add a new

prefix mapping or remove an already existing one.

Editing XML Schema in Text Editing Mode
The Oxygen XML Developer Text editing mode can be used for editing XML Schema in a source editing mode. It
offers powerful content completion support, a synchronized Outline view, and multiple refactoring actions. The
Outline view has two display modes: the standard outline mode and the components mode.

A diagram of the XML Schema can be presented side by side with the text. To activate the diagram presentation,
select the Show Full Model XML Schema diagram option in the Diagram preferences page.

Editing XML Schema in the Master Files Context
Smaller interrelated modules that define a complex XML Schema cannot be correctly edited or validated
individually, due to their interdependency with other modules. For example, an element defined in a main schema
document is not visible when you edit an included module. Oxygen XML Developer provides the support for
defining the main module (or modules), thus allowing you to edit any of the imported/included schema files in the
context of the larger schema structure.

You can set a main XML document either using the master files support from the Project view, or using a
validation scenario.

To set a master file using a validation scenario, add validation units that point to the main schemas. Oxygen XML
Developer warns you if the current module is not part of the dependencies graph computed for the main schema.
In this case, it considers the current module as the main schema.

The advantages of editing in the context of a master file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant displays all the referable components valid in the current context. This include

components defined in modules other than the currently edited one.
• The Outline view displays the components collected from the entire schema structure.

Editing Documents 413

Validating XML Schema Documents
By default, XML Schema files are validated as you type. To change this, open the Preferences dialog box
(Options > Preferences), go to Editor > Document Checking, and deselect the Enable automatic validation option.

To validate an XML Schema document manually, select the Validate action from the Validation toolbar
drop-down menu or the Document > Validate menu. When Oxygen XML Developer validates an XML Schema
file, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are
highlighted directly in the editor, making it easy to locate and fix any issues.

Related Information:
Validating XML Documents Against a Schema on page 277
Validation Scenario on page 281
Associating a Schema to XML Documents on page 294
Presenting Validation Errors in Text Mode on page 183

References to XML Schema Specification

The same as in editing XML documents, the message of an error obtained by validation of an XML Schema
document includes a reference to the W3C specification for XML Schema. An error message contains an Info
field that will open the browser on the "XML Schema Part 1:Structures" specification at exactly the point where
the error is described, thus allowing you to understand the reason for that error.

Figure 229: Link to Specification for XML Schema Errors

Validation of an XML Schema containing a type definition with a minOccurs or maxOccurs attribute having a
value larger than 256 limits the value to 256 and issues a warning about this restriction in the Message panel at
the bottom of the Oxygen XML Developer window. Otherwise, for large values of the minOccurs and maxOccurs
attributes, the validator fails with an OutOfMemory error that might make Oxygen XML Developer unusable
without restarting the entire application.

Important: If the schema imports only a namespace without specifying the schema location and a catalog is set
up to map the namespace to a certain location, both validation and the schema components will correctly identify
the imported schema.

Quick Fixes for DTD, XSD, and Relax NG Errors
Oxygen XML Developer offers Quick Fixes for common errors that appear in XML documents that are validated
against DTD, XSD, or Relax NG schemas.

Note: For XML documents validated against XSD schemas, the Quick Fixes are only available if you use the
default Xerces validation engine.

Quick Fixes are available in Text mode .

Oxygen XML Developer provides Quick Fixes for numerous types of problems, including the following:

Editing Documents 414

Problem Type Available Quick Fixes

A specific element is required in the current
context

Insert the required element

An element is invalid in the current context Remove the invalid element

The content of the element should be empty Remove the element content

An element is not allowed to have child elements Remove all child elements

Text is not allowed in the current element Remove the text content

A required attribute is missing Insert the required attribute

An attribute is not allowed to be set for the current
element

Remove the attribute

The attribute value is invalid Propose the correct attribute values

ID value is already defined Generate a unique ID value

References to an invalid ID Change the reference to an already defined ID

Related Information:
Schematron Quick Fixes (SQF) on page 293

Content Completion in XML Schema
The intelligent Content Completion Assistant allows you to quickly identify and insert elements, attributes, and
attribute values that are valid in the current editing context. All available proposals are listed in a pop-up menu
displayed at the current cursor position.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options >
Preferences), go to Editor > Content Completion, and deselect the Enable content completion option.

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current
cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut. You
can navigate through the list of proposals by using the Up and Down keys on your keyboard. For each selected
item in the list, the Content Completion Assistant displays a documentation window. You can customize the size
of the documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Text mode, do one of the following:

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a
position suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor
between the tags in a position where you can start typing content.

Depending on the selected schema version, Oxygen XML Developer populates the proposals list with information
taken either from XML Schema 1.0 or 1.1.

Oxygen XML Developer helps you to easily reference a component by providing the list of proposals (complex
types, simple types, elements, attributes, groups, attribute groups, or notations) valid in the current context. The
components are collected from the current file or from the imported/included schemas.

When editing xs:annotation/xs:appinfo elements of an XML Schema, the Content Completion Assistant
proposes elements and attributes from a custom schema (by default ISO Schematron). This feature can be
configured from the XSD Content Completion preferences page.

Syntax Highlighting in XML Schema
Oxygen XML Developer supports syntax highlighting when editing XML Schema in Text mode to improve the
readability of the content and reduce the time it takes to internalize the semantics of the structured content.

Editing Documents 415

To customize the colors or styles used for the syntax highlighting colors for XML Schema files, follow these
steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XSD tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Customize Syntax Highlight colors on page 82

XML Schema Outline View
The Outline view for XML Schemas presents all the global components grouped by their location, namespace,
or type. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Figure 230: Outline View for XML Schema

The Outline view provides the following options in the Settings menu on the Outline view toolbar:

Filter returns exact matches
The text filter of the Outline view returns only exact matches;

Selection update on cursor move
Allows a synchronization between Outline view and schema diagram. The selected view from the diagram is
also selected in the Outline view.

Editing Documents 416

Sort
Allows you to sort alphabetically the schema components.

Show all components
Displays all components that were collected starting from the master files. Components that are not referable
from the current file are marked with an orange underline. To reference them, add an import directive with the
componentNS namespace.

Show referable components
Displays all components (collected starting from the master files) that can be referenced from the current file.
This option is set by default.

Show only local components
Displays the components defined in the current file only.

Group by location/namespace/type
These three operations allow you to group the components by location, namespace, or type. When grouping
by namespace, the main schema target namespace is the first presented in the Outline view.

The following contextual menu actions are available in the Outline view:

Remove (Delete)
Removes the selected item from the diagram.

Search References (Ctrl (Meta on Mac OS)+Shift+R)
Searches all references of the item found at current cursor position in the defined scope, if any.

Search References in
Searches all references of the item found at current cursor position in the specified scope.

Component Dependencies (Ctrl (Meta on Mac OS)+Shift+F4)
Opens the Component Dependencies view that allows you to see the dependencies for the current selected
component.

Resource Hierarchy (F4)
Opens the Resource Hierarchy / Dependencies view that allows you to see the hierarchy for the current
selected resource.

Resource Dependencies (Shift + F4)
Opens the Resource Hierarchy / Dependencies view that allows you to see the dependencies for the current
selected resource.

Rename Component in
Renames the selected component.

Generate Sample XML Files
Generate XML files using the current opened schema. The selected component is the XML document root.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the
Outline view, its definition is highlighted in the editing area.

Related Information:
Searching and Refactoring Actions in XML Schemas

Editing Documents 417

Component Dependencies View for XML Schema
XML Schema Resource Hierarchy / Dependencies View
Generating Sample XML Files
Editing Relax NG Schema in the Master Files Context on page 484

XML Schema Attributes View
The Attributes view for XML Schemas presents the properties for the selected component in the schema
diagram. By default, it is displayed on the right side of the editor. If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Figure 231: Attributes View

The default value of a property is presented in the Attributes view with blue foreground. The properties that
can not be edited are rendered with gray foreground. A non-editable category that contains at least one child is
rendered with bold. Bold properties are properties with values set explicitly to them.

Properties for components that do not belong to the current edited schema are read-only but if you double-click
them you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking by pressing Enter. For most properties you can choose valid values
from a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted
in the table with the corresponding foreground color. By default, properties with errors are highlighted with red
and the properties with warnings are highlighted with yellow. You can customize these colors from the Document
checking user preferences.

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog box will
open that allows you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit
Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces
section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

Add
Allows you to add a new member type to an union's member types category.

Remove
Allows you to remove the value of a property.

Move Up
Allows you to move up the current member to an union's member types category.

Editing Documents 418

Move Down
Allows you to move down the current member to an union's member types category.

Copy
Copy the attribute value.

Show DefinitionCtrl (Meta on MAC OS) + Click
Shows the definition for the selected type.

Show Facets
Allows you to edit the facets for a simple type.

XML Schema Palette View
The Palette view is designed to offer quick access to XML Schema components and to improve the usability of
the XML Schema diagram builder. You can use the Palette to drag and drop components in the Design mode. The
components offered in the Palette view depend on the XML schema version set in the XML Schema preferences
page. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 232: Palette View

Components are organized functionally into 4 collapsible categories:

• Basic components: elements, group, attribute, attribute group, complex type, simple type, type alternative.
• Compositors and Wildcards: sequence, choice, all, any, any attribute, open content.
• Directives: import, include, redefine, override.
• Identity constraints: key, keyref, unique, selector, field, assert.

Note: The type alternative, open content, override, and assert components are available for XML Schema 1.1.

To add a component to the edited schema:

• Click and hold a graphic symbol from the Palette view, then drag the component into the Design view.
• A line dynamically connects the component with the XML schema structure.
• Release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid

position, the mouse cursor changes its shape into . Also, the connector line changes its color from the
usual dark gray to the color defined in the Validation error highlight color option (default color is red).

To watch our video demonstration about the Schema palette and developing XML Schemas, go to
https://www.oxygenxml.com/demo/Schema_Palette.html and https://www.oxygenxml.com/demo/
Developing_XML_Schemas.html respectively.

Editing Documents 419

https://www.oxygenxml.com/demo/Schema_Palette.html
https://www.oxygenxml.com/demo/Developing_XML_Schemas.html
https://www.oxygenxml.com/demo/Developing_XML_Schemas.html

XML Schema Facets View
The Facets view for XML Schemas presents the facets for the selected component, if available. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 233: Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can not be edited are
rendered with a gray color. The grouping categories (for example: Enumerations and Patterns) are not editable.
If these categories contain at least one child they are rendered with bold. Bold facets are facets with values set
explicitly to them.

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited from a
base type and also specified in the current simple type only the current specified patterns will be presented. You
can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip on
the Patterns category.

Facets for components that do not belong to the current edited schema are read-only but if you double-click them
you can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking it or by pressing Enter, when that facet is selected. For some facets
you can choose valid values from a list or you can specify another value. If a facet has an invalid value or a
warning, it will be highlighted in the table with the corresponding foreground color. By default, facets with errors
are presented with red and the facets with warnings with yellow. You can customize the error colors from the
Document Checking user preferences.

The Facets view provides the following actions in its toolbar and contextual menu:

Add
Allows you to add a new enumeration or a new pattern.

Remove
Allows you to remove the value of a facet.

Edit Annotations
Allows you to edit an annotation for the selected facet.

Move Up
Allows you to move up the current enumeration/pattern in Enumerations/Patterns category.

Move Down
Allows you to move down the current enumeration/pattern in Enumerations/Patterns category.

Copy
Copy the attribute value.

Editing Documents 420

Open in Regular Expressions Builder
Rather than editing regular expressions manually, this action allows you to open the pattern in the XML
Schema Regular Expressions Builder that guides you through the process of testing and constructing the
pattern..

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the Pin
button.

XML Schema Resource Hierarchy / Dependencies View
The Resource Hierarchy / Dependencies view allows you to easily see the hierarchy / dependencies for an XML
Schema, a Relax NG schema or an XSLT stylesheet. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

The Resource Hierarchy / Dependencies is useful when you want to start from an XML Schema (XSD) file and
build and review the hierarchy of all the other XSD files that are imported, included or redefined in the given XSD
file. The view is also able to build the tree structure, that is the structure of all other XSD files that import, include
or redefine the given XSD file. The scope of the search is configurable (the current project, a set of local folders,
etc.)

The build process for the hierarchy view is started with the Resource Hierarchy action available on the contextual
menu of the editor panel.

Figure 234: Resource Hierarchy/Dependencies View - Hierarchy for xhtml11.xsd

The build process for the dependencies view is started with the Resource Dependencies action available on the
contextual menu.

Editing Documents 421

Figure 235: Resource Hierarchy/Dependencies View - Dependencies for xhtml-param-1.xsd

The following actions are available in the Resource Hierarchy/Dependencies view:

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.
Show Resource Hierarchy

Shows the hierarchy for the selected resource.

Editing Documents 422

Show Resource Dependencies
Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Related Information:
Working with Modular XML Files in the Master Files Context on page 311
Search and Refactor Operations Scope on page 310

Moving/Renaming XML Schema Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the
Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Select this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the
Move resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is selected, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are
updated.

Component Dependencies View for XML Schema
The Component Dependencies view allows you to spot the dependencies for the selected component of an XML
Schema, a Relax NG schema, a NVDL schema or an XSLT stylesheet. If the view is not displayed, it can be opened
by selecting it from the Window > Show View menu.

If you want to see the dependencies of a schema component:

• Select the desired schema component in the editor.
• Choose the Component Dependencies action from the contextual menu.

The action is available for all named components (for example, elements or attributes).

Editing Documents 423

Figure 236: Component Dependencies View - Hierarchy for xhtml11.xsd

In the Component Dependencies view the following actions are available in the toolbar:

Refresh
Refreshes the dependencies structure.

Stop
Stop the dependencies computing.

Configure
Allows you to configure a search scope to compute the dependencies structure.

History
Contains a list of previously executed dependencies computations.

The contextual menu contains the following actions:

Go to First Reference
Selects the first reference of the referenced component from the current selected component in the
dependencies tree.

Go to Component
Shows the definition of the currently selected component in the dependencies tree.

Tip: If a component contains multiple references to another components, a small table is displayed that contains
all these references. When a recursive reference is encountered, it is marked with a special icon .

Editing Documents 424

Related Information:
Search and Refactor Operations Scope on page 310

Highlight Component Occurrences
When a component (for example types, elements, attributes) is found at current cursor position, Oxygen XML
Developer performs a search over the entire document to find the component declaration and all its references.
When found, they are highlighted both in the document and in the stripe bar, at the right side of the document.
Customizable colors are used: one for the component definition and another one for component references.
Occurrences are displayed until another component is selected and a new search is performed. All occurrences
are removed when you start to edit the document.

This feature is on by default. To configured it, open the Preferences dialog box (Options > Preferences) and go
to Editor > Mark Occurrences. A search can also be triggered with the Search > Search Occurrences in File ()
contextual menu action. All matches are displayed in a separate tab of the Results view.

Searching and Refactoring Actions in XML Schemas

Search Actions

The following search actions can be applied on attribute, attributeGroup, element, group, key, unique,
keyref, notation, simple, or complex types and are available from the Search submenu in the contextual
menu of the current editor or from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box is displayed and you have the possibility to define another search
scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box will be displayed and you have the possibility to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently
edited file.

The following action is available from the contextual menu and the Document > Schema menu:

• Show Definition - Moves the cursor to the definition of the referenced XML Schema item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to
display its definition.

Refactoring Actions

The following refactoring actions can be applied on attribute, attributeGroup, element, group, key,
unique, keyref, notation, simple, or complex types and are available from the Refactoring submenu in the
contextual menu of the current editor or from the Document > Refactoring menu:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Editing Documents 425

Figure 237: Rename Identity Constraint Dialog Box

Related Information:
Search and Refactor Operations Scope on page 310

XML Schema Quick Assist Support
The Quick Assist support improves the development work flow, offering fast access to the most commonly used
actions when you edit schema documents.

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component.
It is accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also,
you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 238: Quick Assist Support

The Quick Assist support offers direct access to the following actions:

Rename Component in
Renames the component and all its dependencies.

Editing Documents 426

Search Declarations
Searches the declaration of the component in a predefined scope. It is available only when the context
represents a component name reference.

Search References
Searches all references of the component in a predefined scope.

Component Dependencies
Searches the component dependencies in a predefined scope.

Change Scope
Configures the scope that will be used for future search or refactor operations.

Rename Component
Allows you to rename the current component in-place.

Search Occurrences
Searches all occurrences of the component within the current file.

To watch our video demonstration about improving schema development using the Quick Assist action set, go to
https://www.oxygenxml.com/demo/Quick_Assist.html.

Related Information:
Resource Hierarchy / Dependencies View on page 421
Component Dependencies View on page 423
Searching and Refactoring Actions on page 425

Generating Sample XML Files
Oxygen XML Developer offers support to generate sample XML files both from XML schema 1.0 and XML
schema 1.1, depending on the XML schema version set in XML Schema preferences page.

To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the
Tools menu. This action is also available in the contextual menu of the schema Design mode. The action opens
the Generate Sample XML Files dialog box that allows you to configure a variety of options for generating the
files.

For more information about this tool, watch our video demonstration about generating sample XML files at
https://www.oxygenxml.com/demo/Generate_Sample_XML_Files.html.

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default values
for these options can be set in the Sample XML Files Generator preferences page. You can also run the tool from
the command line using exported options.

Schema Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The first set of options are found in the Schema tab.

Editing Documents 427

https://www.oxygenxml.com/demo/Quick_Assist.html
https://www.oxygenxml.com/demo/Generate_Sample_XML_Files.html

Figure 239: Generate Sample XML Files Dialog Box (Schema Tab)

This tab includes the following options:
URL

Specifies the URL of the Schema location. You can specify the path by using the text field, the history drop-
down menu, or the browsing tools in the Browse drop-down list.

Namespace
Displays the namespace of the selected schema.

Root Element
After the schema is selected, this drop-down menu is populated with all root candidates gathered from the
schema. Choose the root of the output XML documents.

Output folder
Path to the folder where the generated XML instances will be saved.

Filename prefix and Extension
You can specify the prefix and extension for the file name that will be generated. Generated file names have
the following format: prefixN.extension, where N represents an incremental number from 0 up to the
specified Number of instances.

Number of instances
The number of XML files to be generated.

Open first instance in editor
When selected, the first generated XML file is opened in the editor.

Namespaces section
You can specify the Default Namespace, as well as the prefixes for the namespaces.

Export settings
Use this button to save the current settings for future use.

Import settings
Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Editing Documents 428

Options Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The Options tab allows you to set specific options for namespaces and elements.

Figure 240: Generate Sample XML Files Dialog Box (Options Tab)

This tab includes the following options:
Namespace / Element table

Allows you to set a namespace for each element name that appears in an XML document instance. The
following prefix-to-namespace associations are available:

• All elements from all namespaces (<ANY> - <ANY>). This is the default setting.
• All elements from a specific namespace.
• A specific element from a specific namespace.

Settings subtab

Namespace
Displays the namespace specified in the table at the top of the dialog box.

Element
Displays the element specified in the table at the top of the dialog box.

Generate optional elements
When selected, all elements are generated, including the optional ones (having the minOccurs attribute
set to 0 in the schema).

Generate optional attributes
When selected, all attributes are generated, including the optional ones (having the use attribute set to
optional in the schema).

Editing Documents 429

Values of elements and attributes
Controls the content of generated attribute and element values. The following choices are available:

• None - No content is inserted.
• Default - Inserts a default value depending of data type descriptor of the particular element or attribute.

The default value can be either the data type name or an incremental name of the attribute or element
(according to the global option from the Sample XML Files Generator preferences page). Note that
type restrictions are ignored when this option is selected. For example, if an element is of a type that
restricts an xs:string with the xs:maxLength facet to allow strings with a maximum length of 3, the
XML instance generator tool may generate string element values longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of the particular element or
attribute.

Important: If all of the following are true, the Generate Sample XML Files tool outputs invalid values:

• At least one of the restrictions is a regexp.
• The value generated after applying the regexp does not match the restrictions imposed by one of

the facets.

Preferred number of repetitions
Allows you to set the preferred number of repeating elements related to minOccurs and maxOccurs
facets defined in the XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value is used.
• If the value set here is less than minOccurs, then the minOccurs value is used.
• If the value set here is greater than maxOccurs, then maxOccurs is used.

Maximum recursion level
If a recursion is found, this option controls the maximum allowed depth of the same element.

Type alternative strategy
Used for the xs:alternative element from XML Schema 1.1. The possible strategies are:

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Choice strategy
Used for xs:choice or substitutionGroup elements. The possible strategies are:

• First - The first branch of xs:choice or the head element of substitutionGroup is always used.
• Random - A random branch of xs:choice or a substitute element or the head element of a

substitutionGroup is used.

Generate the other options as comments
If selected, generates the other possible choices or substitutions (for xs:choice and
substitutionGroup). These alternatives are generated inside comments groups so you can
uncomment and use them later. Use this option with care (for example, on a restricted namespace and
element) as it may generate large result files.

Element values subtab
Allows you to add values that are used to generate the content of elements. If there are multiple values, then
the values are used in a random order.

Attribute values subtab
Allows you to add values that are used to generate the content of attributes. If there are multiple values, then
the values are used in a random order.

Export settings
Use this button to save the current settings for future use.

Import settings
Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Editing Documents 430

Advanced Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options
for generating the XML files. The Advanced tab allows you to set some options in regards to output values and
performance.

Figure 241: Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:
Use incremental attribute / element names as default

If selected, the value of an element or attribute starts with the name of that element or attribute. For example,
for an a element the generated values are: a1, a2, a3, and so on. If not selected, the value is the name of the
type of that element / attribute (for example: string, decimal, etc.)

Maximum length
The maximum length of string values generated for elements and attributes.

Discard optional elements after nested level
The optional elements that exceed the specified nested level are discarded. This option is useful for limiting
deeply nested element definitions that can quickly result in very large XML documents.

Export settings
Use this button to save the current settings for future use.

Import settings
Use this button to load previously exported settings.

Running the Generate Sample XML Files Tool from the Command Line

The Generate Sample XML Files tool can be also used from command line by running the script called
xmlGenerator.bat (on Windows) / xmlGenerator.sh (on Mac OS X / Unix / Linux) located in the Oxygen
XML Developer installation folder. The parameters can be set in the dialog box, exported to an XML file on disk
with the Export settings button, and then reused from command line. With the exported settings file, you can
generate the same XML instances from the command line as from the dialog box. For example:

xmlGenerator.bat path_of_CFG_file

The script can be integrated in an external batch process launched from the command line. The command line
parameter of the script is the relative path to the exported XML settings file. The files specified with relative paths
in the exported XML settings will be made absolute relative to the folder where the script is run.

The following example shows such an XML configuration file:

<settings>
 <schemaSystemId>http://www.w3.org/2001/XMLSchema.xsd</schemaSystemId>
 <documentRoot>schema</documentRoot>
 <outputFolder>D:\projects\output</outputFolder>
 <filenamePrefix>instance</filenamePrefix>
 <filenameExtension>xml</filenameExtension>
 <noOfInstances>1</noOfInstances>
 <openFirstInstance>true</openFirstInstance>
 <defaultNamespace><NO_NAMESPACE></defaultNamespace>
 <element namespace="<ANY>" name="<ANY>">
 <generateOptionalElements>false</generateOptionalElements>
 <generateOptionalAttributes>false</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>
 <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>

Editing Documents 431

 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="false"/>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
 <element namespace="<NO_NAMESPACE>"
 name="<ANY>">
 <generateOptionalElements>true</generateOptionalElements>
 <generateOptionalAttributes>true</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>
 <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="true"/>
 <elementValue>value1</elementValue>
 <elementValue>value2</elementValue>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
</settings>

Generating Documentation for an XML Schema
Oxygen XML Developer can generate detailed documentation for the components of an XML Schema in HTML,
PDF, DocBook, or other custom formats. You can select the components and the level of detail. The components
are hyperlinked in both HTML and DocBook documents.

Note: You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select XML Schema Documentation from the Tools >
Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the
Project view.

Figure 242: XML Schema Documentation Dialog Box

Editing Documents 432

The Schema URL field of the dialog box must contain the full path to the XML Schema (XSD) file for which
you want to generate documentation. The schema may be a local or a remote file. You can specify the path to
the schema by entering it in the text field, or by using the Insert Editor Variables button or the options in the

Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• PDF - The documentation is generated in PDF output format.
• DocBook - The documentation is generated in DocBook output format.
• DITA - The documentation is generated in DITA output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output.

Click the Options button to open a Custom format options dialog box where you can specify a custom
stylesheet for creating the output. There is also an option to Copy additional resources to the output folder
and you can select the path to the additional Resources that you want to copy. You can also choose to
keep the intermediate XML files created during the documentation process by deselecting the Delete
intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. You can choose
to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output
file type. For DITA and DocBook documents, this option appears as Open in Editor and the result will be
opened in Oxygen XML Developer (in the current editor).

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with
the xml:lang attribute set to the selected language. If you choose a primary language code (for example, en
for English), this includes all its possible variations (en-us, en-uk, etc.).

Settings Tab

When you generate documentation for an XML schema you can choose what components to include in the
output and the details to be included in the documentation.

Editing Documents 433

Figure 243: Settings Tab of the XML Schema Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Global elements,
Global attributes, Local elements, Local attributes, Simple Types, Complex Types, Groups, Attribute Groups,
Redefines, Referenced schemas, Include notations.

You can choose whether or not to include the following other details:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG, GIF,
SVG) to use for the diagram section. The generated diagrams are dependent on the options from the Schema
Design Properties page.

• Diagram annotations - This option controls whether or not the annotations of the components presented in
the diagram sections are included.

• Namespace - Displays the namespace for each component.
• Location - Displays the schema location for each component.
• Type - Displays the component type if it is not an anonymous one.
• Type hierarchy - Displays the types hierarchy.
• Model - Displays the model (sequence, choice, all) presented in BNF form. The separator characters that are

used depend upon the information item used:

• xs:all - Its children will be separated by space characters.
• xs:sequence - Its children will be separated by comma characters.
• xs:choice - Its children will be separated by | characters.

• Children - Displays the list of component's children.
• Instance - Displays an XML instance generated based on each schema element.
• Used by - Displays the list of all the components that reference the current one. The list is sorted by

component type and name.
• Properties - Displays some of the component's properties.
• Facets - Displays the facets for each simple type

Editing Documents 434

• Identity constraints - Displays the identity constraints for each element. For each constraint there are
presented the name, type (unique, key, keyref), reference attribute, selector and field(s).

• Attributes - Displays the attributes for the component. For each attribute there are presented the name, type,
fixed or default value, usage and annotation.

• Asserts - Displays the assert elements defined in a complex type. The test, XPath default namespace, and
annotation are presented for each assert.

• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the XML tags
are present in the annotations.

• Source - Displays the text schema source for each component.
• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If selected, local elements and attributes are included in the
documentation index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema
documentation is generated. It is deselected by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported
settings file you can generate the same documentation from the command line interface.)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XML Schema documentation.

Related Information:
Customizing the PDF Output of Generated XML Schema Documentation on page 438

Output Formats for Generating XML Schema Documentation

XML Schema documentation can be generated in HTML, PDF, DocBook, or a custom format. You can choose the
format from the Schema Documentation dialog box. For the PDF and DocBook formats, the option to split the
output in multiple files is not available.

HTML Output Format

The XML Schema documentation generated in HTML format contains images corresponding to the same
schema definitions as the ones displayed by the schema diagram editor. These images are divided in clickable
areas that are linked to the definitions of the names of types or elements. The documentation of a definition
includes a Used By section with links to the other definitions that reference it. If the Escape XML Content option
is unchecked, the HTML or XHTML tags used inside the xs:documentation elements of the input XML
Schema for formatting the documentation text (for example, , <i>, <u>, , , etc.) are rendered in the
generated HTML documentation.

The generated images format is PNG. The image of an XML Schema component contains the graphical
representation of that component as it is rendered in the schema diagram panel of the Oxygen XML Developer XSD
editor panel.

Editing Documents 435

Figure 244: XML Schema Documentation Example

The generated documentation includes a table of contents. You can group the contents by namespace, location,
or component type. After the table of contents there is some information about the main, imported, included, and
redefined schemas. This information contains the schema target namespace, schema properties (attribute form
default, element form default, version), and schema location.

Figure 245: Information About a Schema

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The
contents are grouped in the same mode. If you split the output by location, each file contains a schema
description and the components that you have chosen to include. If you split the output by namespace, each
file contains information about schemas from that namespace and the list with all included components. If you
choose to split the output by component, each file contains information about a schema component.

After the documentation is generated, you can collapse or expand details for some schema components by using
the Showing options or the Collapse or Expand buttons.

Editing Documents 436

Figure 246: Showing Options

For each component included in the documentation, the section presents the component type follow by the
component name. For local elements and attributes, the name of the component is specified as parent name/
component name. You can easily go to the parent documentation by clicking the parent name.

Figure 247: Documentation for a Schema Component

If the schema contains imported or included modules, their dependencies tree is generated in the documentation.

Editing Documents 437

Figure 248: Example: Generated Documentation

PDF Output Format

For the PDF output format, the documentation is generated in DocBook format and a transformation using
the FOP processor is applied to obtain the PDF file. To configure the FOP processor, see the FO Processors
preferences page.

For information about customizing the PDF output, see Customizing the PDF Output of Generated XML Schema
Documentation on page 438.

DocBook Output Format

If you generate the documentation in DocBook output format, the documentation is generated as a DocBook XML
file. You can then apply a predefined DocBook transformation scenario (such as, DocBook PDF or DocBook HTML)
on the output file, or configure your own transformation scenario to convert it into whatever format you desire.

DITA Output Format

If you generate the documentation in DITA output format, each element of the schema is converted to a
DITA Topic and all the generated topics are referenced in a DITA map file. You can then apply a predefined
DITA transformation scenario (such as, DITA Map PDF or DITA Map XHTML), or configure your own DITA OT
transformation scenario to convert it into whatever format you desire.

Custom Output Format

For the custom format, you can specify a stylesheet to transform the intermediary XML file generated in the
documentation process. You have to edit your stylesheet based on the schema xsdDocSchema.xsd from
[OXYGEN_INSTALL_DIR]/frameworks/schema_documentation. You can create a custom format starting
from one of the stylesheets used in the predefined HTML, PDF, DocBook, and DITA formats. These stylesheets
are available in [OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl.

When using a custom format you can also copy additional resources into the output folder and choose to keep
the intermediate XML files created during the documentation process.

Important: If you create a custom format for DITA, you must select the Split output into multiple files option in
the Output tab and choose Split by component.

Customizing the PDF Output of Generated XML Schema Documentation

To customize the PDF output of the generated XML Schema documentation, use the following procedure:

1. Customize the [OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/
xsdDocDocbook.xsl stylesheet to include the content that you want to add in the PDF output. Add the

Editing Documents 438

content in the XSLT template with the match="schemaDoc" attribute between the info and xsl:apply-
templates elements, as commented in the following example:

<info>
 <pubdate><xsl:value-of select="format-date(current-date(),
 '[Mn] [D], [Y]', 'en', (), ())"/></pubdate>
</info>
 <!-- Add the XSLT template content with match="schemaDoc" attribute here -->
<xsl:apply-templates select="schemaHierarchy"/>

Note: The content that you insert here has to be wrapped in DocBook markup. For details about
working with DocBook see the following video demonstration: https://www.oxygenxml.com/demo/
DocBook_Editing_Support.html.

2. Create an intermediary file that holds the content of your XML Schema documentation.

a. Go to Tools > Generate Documentation > XML Schema Documentation.
b. Select Custom for the output format and click the Options button.
c. In the Custom format options dialog box, do the following:

a. Enter the customized stylesheet in the Custom XSL field ([OXYGEN_INSTALL_DIR]/frameworks/
schema_documentation/xsl/xsdDocDocbook.xsl).

b. Select the Copy additional resources to the output folder option and leave the default selection in the
Resources field.

c. Click OK.
d. When you return to the XML Schema Documentation dialog box, just press the Generate button to generate

a DocBook XML file with an intermediary form of the Schema documentation.
3. Create the final PDF document.

a. Use the Configure Transformation Scenario(s) action from the toolbar or the Document >
Transformation menu, click New, and select XML transformation with XSLT.

b. In the New Scenario dialog box, go to the XSL URL field and choose the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/oxygen/xsdDocDocbookCustomizationFO.xsl file.

c. Go to the FO Processor tab and select the Perform FO Processing and XSLT result as input options.
d. Go to the Output tab and select the directory where you want to store the XML Schema documentation

output and click OK.
e. Click Apply Associated.

Tip: If you want your modifications to be permanent so that you can simply select the PDF output format in the
XML Schema Documentation dialog box, rather than configuring a custom format each time you generate this
documentation, follow this procedure:

1. Create a JAR or ZIP file that includes the modified stylesheet (customized in step 1 above), placed
in the following directory structure: builtin/documentation/schema_documentation/
xsdDocDocbook.xsl.

2. Create a new directory named endorsed inside the [OXYGEN_INSTALL_DIR]/lib directory and place the
created JAR or ZIP file inside it.

3. Restart Oxygen XML Developer and the PDF output format will now use your customized stylesheet.

Generating XML Schema Documentation From the Command-Line Interface

You can export the settings of the XML Schema Documentation dialog box to an XML file by pressing the Export
settings button. With the exported configuration file, you can generate the same documentation from the
command-line interface by running the following script:

• schemaDocumentation.bat on Windows.
• schemaDocumentation.sh on OS X / Unix / Linux.

The script is located in the Oxygen XML Developer installation folder. The script can be integrated in an external
batch process launched from the command-line interface. The script accepts a variety command line arguments
that allow you to configure the documentation.

The accepted syntax and arguments are as follows:

Editing Documents 439

https://www.oxygenxml.com/demo/DocBook_Editing_Support.html
https://www.oxygenxml.com/demo/DocBook_Editing_Support.html

schemaDocumentation schemaFile [[-cfg:configFile] | [[-out:outputFile] [-
format:<value>] [-xsl:<xslFile>] [-split:<value>] [-openInBrowser:<value>]] | --help |
-help | --h | -h]

schemaFile
The XML Schema file.

-cfg:configfile
The exported configuration file. It contains the output file, output format options, split method, and some
advanced options regarding the included components and components details. If an external configuration
file is specified, all other supplied arguments except for the XML Schema file will be ignored.

-out:outputFile
The file where the generated documentation will be saved. By default, it is the name of the schema file with
an html extension.

-format:<value>
The output format type used when generating the documentation. Possible values are as follows:

• html - To generate documentation in HTML format.
• pdf - To generate documentation in PDF format.
• docbook - To generate documentation in DocBook format.
• custom - To generate documentation in a custom format.

-xsl:<xslFile>
The XSL file to be applied on the intermediate XML format. If there is no XSL file provided, the result will be in
the HTML format.

-split:<value>
The split method used when generating the documentation. Splitting is recommended for large schemas.
Possible values are as follows:

• none (default value) - To generate one single output file.
• namespace - To generate an output file for every namespace in the schema.
• component - To generate an output file for every component in the schema.
• location - To generate an output file for every schema location.

-openInBrowser:<value>
Opens the result of the transformation in a browser or system application. Possible values are true or
false (default value).

--help | -help | --h | -h
Displays the available options.

Example:

Example of the script in a Windows command line:

schemaDocumentation example.xsd -out:schemaDocumentation.html
 -format:custom -xsl:example.xsl -split:namespace

Converting Schema to Another Schema Language

The Generate/Convert Schema tool allows you to convert a DTD or Relax NG (full or compact syntax) schema
or a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where
perfect equivalence is not possible due to limitations of the target language, Oxygen XML Developer generates an
approximation of the source schema. Oxygen XML Developer uses Trang multiple format converter to perform the
actual schema conversions.

To use this tool, select the Generate/Convert Schema (Alt + Shift + C (Command + Alt + C on OS X)) action
from the Tools menu or from the Open with submenu when invoking the contextual menu in the Project view.
This action opens the Generate/Convert Schema dialog box that allows you to configure various options for
conversion.

Editing Documents 440

http://www.thaiopensource.com/relaxng/trang.html

Figure 249: Generate/Convert Schema Dialog Box

The Generate/Convert Schema dialog box includes the following options:
Input section

Allows you to select the language of the source schema. If the conversion is based on a set of XML files,
rather than just a single XML file, select the XML Documents option and use the file selector to add the XML
files involved in the conversion.

Output section
Allows you to select the language of the target schema.

Options
You can choose the Encoding, the maximum Line width, and the Indent size (in number of spaces) for one
level of indentation.

Output file
Specifies the path for the output file that will be generated.

Close dialog when finished
If you deselect this option, the dialog box will remain opened after the conversion so that you can easily
continue to convert more files.

Advanced options
If you select XML 1.0 DTD for the input, you can click this button to access more advance options to further
fine-tune the conversion. The following advanced options are available:

XML 1.0 DTD Input section
These options apply to the source DTD:

• xmlns - Specifies the default namespace, that is the namespace used for unqualified element names.
• attlist-define - Specifies how to construct the name of the definition representing an attribute list

declaration from the name of the element. The specified value must contain exactly one percent
character. This percent character is replaced by the name of element (after colon replacement) and the
result is used as the name of the definition.

• colon-replacement - Replaces colons in element names with the specified chars when constructing the
names of definitions used to represent the element declarations and attribute list declarations in the
DTD.

Editing Documents 441

• any-name - Specifies the name of the definition generated for the content of elements declared in the
DTD as having a content model of ANY.

• element-define - Specifies how to construct the name of the definition representing an element
declaration from the name of the element. The specified value must contain exactly one percent
character. This percent character is replaced by the name of element (after colon replacement) and the
result is used as the name of the definition.

• annotation-prefix - Default values are represented using an annotation attribute
prefix:defaultValue where prefix is the specified value and is bound to http://relaxng.org/
ns/compatibility/annotations/1.0 as defined by the RELAX NG DTD Compatibility Committee
Specification. By default, the conversion engine will use a for prefix unless that conflicts with a prefix
used in the DTD.

• inline-attlist - Instructs the application not to generate definitions for attribute list declarations, but
instead move attributes declared in attribute list declarations into the definitions generated for element
declarations. This is the default behavior when the output language is XSD.

• strict-any - Preserves the exact semantics of ANY content models by using an explicit choice of
references to all declared elements. By default, the conversion engine uses a wildcard that allows any
element

• generate-start - Specifies whether or not the conversion engine should generate a start element. DTD's
do not indicate what elements are allowed as document elements. The conversion engine assumes
that all elements that are defined but never referenced are allowed as document elements.

• xmlns mappings table - Each row specifies the prefix used for a namespace in the input schema.

W3C XML Schema Output section
This section is available if you select W3C XML Schema for the output.

• disable-abstract-elements - Disables the use of abstract elements and substitution groups in the
generated XML Schema. This can also be controlled using an annotation attribute.

• any-process-contents - One of the values: strict, lax, skip. Specifies the value for the
processContents attribute of any elements. The default is skip (corresponding to RELAX NG
semantics) unless the input format is DTD, in which case the default is strict (corresponding to DTD
semantics).

• any-attribute-process-contents - Specifies the value for the processContents attribute of
anyAttribute elements. The default is skip (corresponding to RELAX NG semantics).

Converting Database to XML Schema
Oxygen XML Developer includes a tool that allows you to create an XML Schema from the structure of a
database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the Convert DB Structure to XML Schema action from the Tools menu.

Result: The Convert DB Structure to XML Schema dialog box is opened and your current database
connections are displayed in the Connections section.

2. If the database source is not listed, click the Configure Database Sources button to open the Data Sources
preferences page where you can configure data sources and connections.

3. In the Format for generated schema section, select one of the following formats:

• Flat schema - A flat structure that resembles a tree-like view of the database without references to
elements.

• Hierarchical schema - Display the table dependencies visually, in a type of tree view where dependent
tables are shown as indented child elements in the content model. Select this option if you want to
configure the database columns of the tables to be converted.

4. Click Connect.

Result: The database structure is listed in the Select database tables section according to the format you
chose.

5. Select the database tables that you want to be included in the XML Schema.
6. If you selected Hierarchical schema for the format, you can configure the database columns.

Editing Documents 442

a. Select the database column you want to configure.
b. In the Criterion section you can choose to convert the selected database column as an Element, Attribute,

or to be Skipped in the resulting XML Schema.
c. You can also change the name of the selected database column by changing it in the Name text field.

7. Click Generate XML Schema.

Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

Flatten an XML Schema
You can organize an XML schema linked by xs:include and xs:import statements on several levels. In some
cases, working on such a schema as if it were a single file is more convenient than working on multiple files
separately. The Flatten Schema operation allows you to flatten an entire hierarchy of XML schemas. Starting
with the main XML schema, Oxygen XML Developer calculates its hierarchy by processing the xs:include and
xs:import statements.

The Flatten Schema action is available from the Tools menu or the contextual menu in Text mode. The action
opens the Flatten Schema dialog box that allows you to configure the operation.

Figure 250: Flatten Schema Dialog Box

For the main schema file and for each imported schema, a new flattened schema is generated in the specified
output folder. These schemas have the same name as the original ones.

Note: If necessary, the operation renames the resulted schemas to avoid duplicated file names.

A flattened XML schema is obtained by recursively adding the components of the included schemas into the
main one. This means Oxygen XML Developer replaces the xs:include, xs:redefine, and xs:override
elements with the ones coming from the included files.

Options in the Flatten Schema Dialog Box

The following options are available in the Flatten Schema dialog box:

Editing Documents 443

File name
The name of the output file.

Output directory
The path of the output directory where the flattened schema file will be saved.

Open the flattened XML Schema file in editor
Opens the main flattened schema in the editing area after the operation completes.

Use the XML Catalogs when collecting the referenced XML Schemas
Enables the imported and included schemas to be resolved through the available XML Catalogs.

Note: Changing this option triggers the recalculation of the dependencies graph for the main schema.

Process the imported XML Schemas resolved through the XML Catalogs
Specifies whether or not the imported schemas that were resolved through an XML Catalog are also
processed.

Flatten the imported XML Schema(s)
Specifies whether or not the imported schemas are flattened.

Note: For the schemas skipped by the flatten operation, no files are created in the output folder and the
corresponding import statements remain unchanged.

Flatten Schema from the Command Line

The Flatten Schema tool can be also ran from command line by using the following command:

• flattenSchema.bat on Windows
• sh flattenSchemaMac.sh on OS X
• sh flattenSchema.sh on Unix/Linux

The command line accepts the following parameters:

• -in:inputSchemaURL - The input schema URL.
• -outDir:outputDirectory - The directory where the flattened schemas should be saved.
• -flattenImports:<boolean_value> - Controls whether or not the imported XML Schemas should be

flattened. The default value true.
• -useCatalogs:<boolean_value> - Controls if the references to other XML Schemas should be resolved

through the available XML Catalogs. The default value false.
• -flattenCatalogResolvedImports:<boolean_value> - Controls whether or not the imported

schemas that were resolved through the XML Catalogs should be flattened. The default value is true.

Note: This option is used only when -useCatalogs is set to true.
• -verbose - Provides information about the current flatten XML Schema operation.
• --help | -help | --h | -h - Prints the available parameters for the operation.

Example: Command Line Example for Windows

flattenSchema.bat -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
 -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
 -flattenCatalogResolvedImports:true -verbose

Example: Command Line Example for OS X

sh flattenSchemaMac.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
 -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
 -flattenCatalogResolvedImports:true -verbose

Example: Command Line Example for Unix/Linux

sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
 -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
 -flattenCatalogResolvedImports:true -verbose

Editing Documents 444

XML Schema Regular Expressions Builder
The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as they
are applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions Builder
from the Tools menu.

Figure 251: XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:
Regular expressions editor

Allows you to edit the regular expression to be tested and used. Content completion is available and presents
a list with all the predefined expressions. It is triggered by pressing Ctrl + Space (Command + Space on OS
X).

Error display area
If the edited regular expression is incorrect, an error message will be displayed here. The message contains
the description and the exact location of the error. Also, clicking the quick navigation button () highlights the
error inside the regular expression.

Category
You can choose from several categories of predefined expressions. The selected category influences the
displayed expressions in the Available expressions table.

Available expressions
This table includes the available regular expressions and a short description for each of them. The set
of expressions depends on the category selected in the previous Category combo box. You can add an
expression in the Regular expressions editor by double-clicking the expression row in the table. You
will notice that in the case of Character categories and Block names, the expressions are also listed in
complementary format.

Evaluate expression on
You can choose between two options:

• Evaluate expression on each line - The edited expression will be applied on each line in the Test area.
• Evaluate expression on all text - The edited expression will be applied on the whole text.

Editing Documents 445

Test
A text editor that allows you to enter a text sample for which the regular expression will be applied. All
matches of the edited regular expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button will
become active when an editor is opened in the background and there is an expression in the Regular expressions
editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode or schema Design
mode. Accordingly, the Insert button will be not available if the current document is edited in these modes.

Note: Some regular expressions may indefinitely block the Java Regular Expressions engine. If the execution of
the regular expression does not end in about five seconds, the application displays a dialog box that allows you to
interrupt the operation.

XML Schema 1.1
Oxygen XML Developer offers full support for XML Schema 1.1, including:

• XML Documents Validation and Content Completion based on XML Schema 1.1.
• XML Schema 1.1 Validation and Content Completion.
• Editing XML Schema 1.1 files in the Schema Design mode.
• The Flatten Schema action.
• Resource Hierarchy/Dependencies and Refactoring Actions.
• Master files.
• Generating Documentation for XML Schema 1.1.
• Support for generating XML instances based on XML Schema.
• Support for validating XML documents with an NVDL schema that contains an XML Schema 1.1 validation

step.

Note: To enable XML Schema 1.1 validation in NVDL, you need to pass the following option to the validation
engine to specify the schema version: http://www.thaiopensource.com/validate/xsd-version
(the possible values are 1.0 or 1.1.

Tip: To enable the full XPath expression in assertions and type alternatives, you need to set the http://
www.thaiopensource.com/validate/full-xpath option.

XML Schema 1.1 is a superset of XML Schema 1.0, that offers lots of new powerful capabilities.

Figure 252: XML Schema 1.1

The significant new features in XSD 1.1 are:

• Assertions - Support to define assertions against the document content using XPath 2.0 expressions (an idea
borrowed from Schematron).

• Conditional type assignment - The ability to select the type of schema an element is validated against, based
on the values of the attribute of the element.

Editing Documents 446

• Open content - Content models can use the openContent element to specify content models with open
content. These content models allow elements not explicitly mentioned in the content model to appear in the
document instance. It is as if wildcards were automatically inserted at appropriate points within the content
model. A default may be set that causes all content models to be open unless specified otherwise.

To see the complete list with changes since version 1.0, go to http://www.w3.org/TR/xmlschema11-1/#ch_specs.

XML Schema 1.1 is intended to be mostly compatible with XML Schema 1.0 and to have approximately the same
scope. It also addresses bug fixes and brings improvements that are consistent with the constraints on scope
and compatibility.

Note: An XML document conforming to a 1.0 schema can be validated using a 1.1 validator, but an XML
document conforming to a 1.1 schema may not validate using a 1.0 validator.

If you are constrained to use XML Schema 1.0 (for example, if you develop schemas for a server that uses an
XML Schema 1.0 validator that cannot be updated), change the default XML Schema version to 1.0. If you keep
the default XML Schema version set to 1.1, the Content Completion Assistant presents XML Schema 1.1 elements
that you can insert accidentally in an 1.0 XML Schema. So even if you make a document invalid conforming with
XML Schema 1.0, the validation process does not signal any issues.

To change the default XML Schema version, open the Preferences dialog box (Options > Preferences) and go to
XML > XML Parser > XML Schema.

To watch our video demonstration about the XML Schema 1.1 support, go to https://www.oxygenxml.com/demo/
XML_Schema_11.html.

Related Information:
Setting the XML Schema Version on page 447

Setting the XML Schema Version
Oxygen XML Developer lets you set the version of the XML Schema you are editing either in the XML Schema
preferences page, or through the versioning attributes. If you want to use the versioning attributes, set the
minVersion and maxVersion attributes, from the http://www.w3.org/2007/XMLSchema-versioning namespace, on
the schema root element.

Note: The versioning attributes take priority over the XML Schema version defined in the preferences page.

Table 33: Using the minVersion and maxVersion Attributes to Set the XML Schema Version

Versioning Attributes XML Schema Version

minVersion = "1.0" maxVersion = "1.1" 1.0

minVersion = "1.1" 1.1

minVersion = "1.0" maxVersion = greater than "1.1" The XML Schema version defined in the XML
Schema preferences page

Not set in the XML Schema document The XML Schema version defined in the XML
Schema preferences page

To change the XML Schema version of the current document, use the Change XML Schema version action from
the contextual menu. This is available both in the Text mode, and in the Design mode and opens the Change XML
Schema version dialog box. The following options are available:

• XML Schema 1.0 - Inserts the minVersion and maxVersion attributes on the schema element and gives them
the values "1.0" and "1.1" respectively. Also, the namespace declaration (xmlns:vc=http://www.w3.org/2007/
XMLSchema-versioning) is inserted automatically if it does not exist.

• XML Schema 1.1 - Inserts the minVersion attribute on the schema element and gives it the value "1.1".
Also, removes the maxVersion attribute if it exists and adds the versioning namespace (xmlns:vc=http://
www.w3.org/2007/XMLSchema-versioning) if it is not declared.

• Default XML Schema version - Removes the minVersion and maxVersion attributes from the schema element.
The default schema version, defined in the XML Schema preferences page, is used.

Editing Documents 447

http://www.w3.org/TR/xmlschema11-1/#ch_specs
https://www.oxygenxml.com/demo/XML_Schema_11.html
https://www.oxygenxml.com/demo/XML_Schema_11.html

Note: The Change XML Schema version action is also available in the informative panel presented at the top of
the edited XML Schema. If you close this panel, it will no longer appear until you restore Oxygen XML Developer to
its default options.

Oxygen XML Developer automatically uses the version set through the versioning attributes, or the default version
if the versioning attributes are not declared, when proposing content completion elements and validating an XML
Schema. Also, the XML instance validation against an XML Schema is aware of the versioning attributes defined
in the XML Schema.

When you generate sample XML files from an XML Schema, Oxygen XML Developer takes into account the
minVersion and maxVersion attributes defined in the XML Schema.

Related Information:
XML Schema 1.1 on page 446

Editing XQuery Documents
XQuery is the query language for XML and is officially defined by a W3C Recommendation document. The many
benefits of XQuery include:

• XQuery allows you to work in one common model no matter what type of data you are working with: relational,
XML, or object data.

• XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside the
database, and to span relational and XML sources.

• XQuery allows you to create many different types of XML representations of the same data.
• XQuery allows you to query both relational sources and XML sources, and create one XML result.

Related Information:
XQuery and Databases on page 896

XQuery Validation
With Oxygen XML Developer, you can validate your documents before using them in your transformation
scenarios. The validation uses the Saxon 9.7.0.15 PE, EE, or HE processor, or you can use some database
engines (such as MarkLogic or eXist) if you installed them. Any other XQuery processor that offers an XQJ API
implementation can also be used. This is in conformance with the XQuery Working Draft. The processor is used in
two cases: validation of the expression and execution. Although the execution implies a validation, it is faster to
check the expression syntactically, without executing it. The errors that occurred in the document are presented
in the messages view at the bottom of editor window, with a full description message. As with all error messages,
if you click an entry, the line where the error appeared is highlighted.

Figure 253: XQuery Validation

Editing Documents 448

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

Note: If you choose a processor that does not support XQuery validation, Oxygen XML Developer displays a
warning when trying to validate.

The Validation options button, available in the Document > Validate menu, allows quick access to the XQuery
options in the Oxygen XML Developer preferences.

When you open an XQuery document from a connection that supports validation (for example, MarkLogic, or
eXist), by default Oxygen XML Developer uses this connection for validation. If you open an XQuery file using a
MarkLogic connection, the validation resolves imports better.

Content Completion in XQuery
Oxygen XML Developer provides content completion for keywords and all known XQuery functions and operators.
The Content Completion Assistant can be manually activated with the (Ctrl (Meta on Mac OS)+Space) shortcut.
The functions and operators are presented together with a description of the parameters and functionality,
depending on the validation or transformation engine.

For some supported database engines such as MarkLogic, eXist, and Berkeley DB, the content completion list
offers the specific XQuery functions implemented by that engine. This feature is available when the XQuery file
has an associated transformation scenario that uses one of these database engines or the XQuery validation
engine is set to one of them via a validation scenario or in the XQuery Preferences page. For more information
about the support for working with XQuery with regards to databases, see XQuery and Databases on page 896.

The extension functions included in the Saxon engine are available on content completion if one of the following
conditions are true:

• The edited file has a transformation scenario associated that uses as transformation engine Saxon 9.7.0.15
PE or Saxon 9.7.0.15 EE.

• The edited file has a validation scenario associated that use as validation engine Saxon 9.7.0.15 PE or Saxon
9.7.0.15 EE.

• The validation engine specified in Preferences is Saxon 9.7.0.15 PE or Saxon 9.7.0.15 EE.

If the Saxon namespace (http://saxon.sf.net) is mapped to a prefix, the functions are presented using this prefix.
Otherwise, the default prefix for the Saxon namespace (saxon) is used.

If you want to use a function from a namespace mapped to a prefix, just type that prefix and the content
completion displays all the XQuery functions from that namespace. When the default namespace is mapped to
a prefix, the XQuery functions from this namespace offered by content completion are also prefixed. Otherwise,
only the function name being used.

The content completion pop-up window presents all the variables and functions from both the edited XQuery file
and its imports.

Figure 254: XQuery Content Completion

Syntax Highlighting in XQuery
Oxygen XML Developer supports syntax highlighting in XQuery documents to improve the readability of the
content and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for XQuery files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).

Editing Documents 449

http://saxon.sf.net/

2. Go to Editor > Syntax Highlight.
3. Select and expand the XQuery/XPath section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Customize Syntax Highlight colors on page 82

Formatting and Indenting XQuery Documents
Editing XQuery documents may lead to large chunks of content that are not easily readable by human audience.
Also, each developer may have a particular way of writing XQuery code. Oxygen XML Developer assists you
in maintaining a consistent code writing style with the Format and Indent action that is available in the
Document > Source menu and also on the toolbar..

The Format and Indent action achieves this by performing the following steps:

• Manages whitespaces, by collapsing or inserting space characters where needed.
• Formats complex expressions on multiple, more readable lines by properly indenting each of them. The

amount of whitespaces that form an indent unit is controlled through one of the Indent with tabs and Indent
size options from the Format Preferences page.

Note: These operations can be performed only if your XQuery document conforms with W3C XQuery 1.0, XQuery
Update Facility 1.0, and XQuery 3.0 specifications. If the Format and Indent operation fails, the document is left
unaltered and an error message is presented in the Results view.

Folding in XQuery Documents
In a large XQuery document, the instructions enclosed in the '{' and '}' characters can be collapsed so that only the
needed instructions remain in focus. The same folding features available for XML documents are also available in
XQuery documents.

Figure 255: Folding in XQuery Documents

There is available the action Go to Matching Bracket Ctrl + Shift + G on contextual menu of XQuery editor for
going to matching character when cursor is located at '{' character or '}' character. It helps for finding quickly
matching character of current folding element.

Editing Documents 450

XQuery Outline View
The XQuery document structure is presented in the Outline view. The outline tree presents the list of all the
components (namespaces, imports, variables, and functions) from both the edited XQuery file and its imports
and it allows quick access to components. By default, it is displayed on the left side of the editor. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 256: XQuery Outline View

The following actions are available in the Settings menu on the Outline view toolbar:

Selection update on cursor move
Controls the synchronization between Outline view and source document. The selection in the Outline view
can be synchronized with the cursor moves or the changes performed in the XQuery editor. Selecting one of
the components from the Outline view also selects the corresponding item in the source document.

Sort
Allows you to alphabetically sort the XQuery components.

Show all components
Displays all collected components starting from the current file. This option is set by default.

Show only local components
Displays the components defined in the current file only.

Group by location/namespace/type
Allows you to group the components by location, namespace, and type. When grouping by namespace, the
main XQuery module namespace is presented first in the Outline view.

If you know the component name, you can search it in the Outline view by typing its name in the filter text field
from the top of the view or directly on the tree structure. When you type the component name in the filter text field
you can switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch
from tree structure to the filter text field, you can use (Tab), (Shift-Tab).

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

Editing Documents 451

If no wildcards are specified, the string to search is used as a partial match.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

XQuery Builder View
The XPath/XQuery Builder view allows you to compose complex XQuery expressions and execute them over
the currently edited XML document. You can use the doc() function to specify the source file for which the
expressions are executed. When you connect to a database, the expressions are executed over that database. If
you are using the XPath/XQuery Builder view and the current file is an XSLT document, Oxygen XML Developer
executes the expressions over the XML document in the associated scenario.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the view contains the following actions:
XPath version chooser drop-down menu

A drop-down menu that allows you to select the type of the expression you want to execute. You can choose
between:

• XPath 1.0 (Xerces-driven)
• XPath 2.0, XPath 2.0SA, XPath 3.0, XPath 3.0SA, XQuery 1.0, XQuery 3.0, Saxon-HE XQuery, Saxon-PE

XQuery, or Saxon-EE XQuery (all of them are Saxon-driven)
• Custom connection to XML databases that can execute XQuery expressions

Note: The results returned by XPath 2.0 SA and XPath 3.0 SA have a location limited to the line number of
the start element (there are no column information and no end specified).

Note: Oxygen XML Developer uses Saxon to execute XPath 3.0 expressions. Since Saxon implements a
part of the 3.0 functions, when using a function that is not implemented, Oxygen XML Developer returns a
compilation error.

Execute XPath button
Use this button to start the execution of the XPath or XQuery expression you are editing. The result of the
execution is displayed in the Results view.

Favorites button
Allows you to save certain expressions that you can later reuse. To add an expression as a favorite, press the
star button and enter a name for it. The star turns yellow to confirm that the expression was saved. Expand
the drop-down menu next to the star button to see all your favorites. Oxygen XML Developer automatically
groups favorites in folders named after the method of execution.

History drop-down menu

Keeps a list of the last 15 executed XPath or XQuery expressions. Use the Clear history action from the
bottom of the list to remove them.

Settings drop-down menu
Contains the following three options:

• Update on cursor move - When selected and you navigate through a document, the XPath expression
corresponding to the XML node at the current cursor position is displayed.

• Evaluate as you type - When you select this option, the XPath expression you are composing is
evaluated in real time.

Note: The Evaluate as you type option and the automatic validation are disabled when you edit huge
documents or when the scope is other than Current file.

• Options - Opens the Preferences page of the currently selected processing engine.

Editing Documents 452

XPath scope menu
Oxygen XML Developer allows you to define a scope for which the XPath operation will be executed. You can
choose where the XPath expression will be executed:

• Current file - Current selected file only.
• Project - All the files in the project.
• Selected project resources - The files selected in the project.
• All opened files - All files opened in the application.
• Opened archive - Files open in the Archive Browser view.
• Working sets - The selected working sets.

At the bottom of the scope menu the following scope configuration actions are available:

• Configure XPath working sets - Allows you to configure and manage collections of files and folders,
encapsulated in logical containers called working sets.

• XPath file filter - You can filter the files from the selected scope for which the XPath expression will be
executed. By default, the XPath expression will be executed only on XML files, but you can also define a
set of patterns that will filter out files from the current scope. If you select the Include archive option, the
XPath expression will be also executed on the files in any archive (including EPUB and DocX) found at the
current scope.

Figure 257: XPath/XQuery Builder View

While you edit an XPath or XQuery expression, Oxygen XML Developer assists you with the following features:

• Content Completion Assistant - It offers context-dependent proposals and takes into account the cursor
position in the document you are editing. The set of functions proposed by the Content Completion Assistant
also depends on the engine version. Select the engine version from the drop-down menu available in the
toolbar.

Editing Documents 453

• Syntax Highlighting - Allows you to identify the components of an expression. To customize the colors of the
components of the expression, open the Preferences dialog box (Options > Preferences) and go to Editor >
Syntax Highlight.

• Automatic validation of the expression as you type.

Note: When you type invalid syntax a red serrated line underlines the invalid fragments.
• Function signature and documentation balloon, when the cursor is located inside a function.

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of the top
editable part of the view.

XSLT/XQuery Input View
The structure of the XML document associated to the edited XSLT stylesheet, or the structure of the source
documents of the edited XQuery is displayed in a tree form in a view called the XSLT/XQuery Input view. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu. The tree nodes
represent the elements of the documents.

XSLT

If you click a node in the XSLT/XQuery Input view, the corresponding template from the stylesheet is highlighted.
A node can be dragged from this view and dropped in the editor area for quickly inserting xsl:template,
xsl:for-each, or other XSLT elements that have the match/select/test attribute already completed. The
value of the attribute is the correct XPath expression that refers to the dragged tree node. This value is based on
the current editing context of the drop spot.

Figure 258: XSLT Input View

XSLT Example:

For the following XML document:

<personnel>
 <person id="Big.Boss">
 <name>
 <family>Boss</family>
 <given>Big</given>
 </name>
 <email>chief@oxygenxml.com</email>
 <link subordinates="one.worker"/>
 </person>
 <person id="one.worker">
 <name>
 <family>Worker</family>
 <given>One</given>
 </name>
 <email>one@oxygenxml.com</email>
 <link manager="Big.Boss"/>
 </person>
</personnel>

and the following XSLT stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0">

Editing Documents 454

 <xsl:template match="personnel">
 <xsl:for-each select="*">

 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

if you drag the given element and drop it inside the xsl:for-each element, the following pop-up menu is
displayed:

Figure 259: XSLT Input Drag and Drop Pop-up Menu

If you select Insert xsl:copy-of (for example), the resulting document will look like this:

Figure 260: XSLT Input Drag and Drop Result

XQuery

You can also use the XSLT/XQuery Input view to drag and drop a node into the editing area to quickly insert
XQuery expressions.

Figure 261: XQuery Input View

XQuery Example:

For the following XML documents:

 <movies>
 <movie id="1">

Editing Documents 455

 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 <movie id="2">
 <title>Taxi Driver</title>
 <year>1976</year>
 </movie>
 </movies>

 <reviews>
 <review id="100" movie-id="1">
 <rating>5</rating>
 <comment>It is made after a great Stephen King book.
 </comment>
 <author>Paul</author>
 </review>
 <review id="101" movie-id="1">
 <rating>3</rating>
 <comment>Tom Hanks does a really nice acting.</comment>
 <author>Beatrice</author>
 </review>
 <review id="104" movie-id="2">
 <rating>4</rating>
 <comment>Robert De Niro is my favorite actor.</comment>
 <author>Maria</author>
 </review>
 </reviews>

and the following XQuery:

 let $review := doc("reviews.xml")
 for $movie in doc("movies.xml")/movies/movie
 let $movie-id := $movie/@id
 return
 <movie id="{$movie/@id}">
 {$movie/title}
 {$movie/year}
 <maxRating>
 {

 }
 </maxRating>
 </movie>

If you drag the review element and drop it between the braces, the following pop-up menu is displayed:

Figure 262: XQuery Input Drag and Drop Pop-up Menu

Select FLWOR review, the resulting document will look like this:

Figure 263: XQuery Input Drag and Drop Result

Generating HTML Documentation for an XQuery Document
To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is
opened with the XQuery Documentation action that is available from the Tools > Generate Documentation menu
or from the Generate Documentation submenu in the contextual menu of the Project view.

The dialog box allows you to configure a set of parameters for the process of generating the HTML
documentation.

Editing Documents 456

Figure 264: XQuery Documentation Dialog Box

The following options are available:

• Input - The full path to the XQuery file must be specified in one of the two fields in this section:

• URLFile - The URL of the file in which you want to generate the documentation.
• Folder - The directory that contains the files for which you want to generate the documentation. You can

also specify the XQuery file extensions to be searched for in the specified directory.
• Default function namespace - Optional URI for the default namespace for the submitted XQuery.
• Predefined function namespaces - Optional, engine-dependent, predefined namespaces that the submitted

XQuery refers to. They allow the conversion to generate annotation information to support the presentation
component hypertext linking (only if the predefined modules have been loaded into the local xqDoc XML
repository).

• Open in Browser/System Application - Select this option if you want the result to be opened in the system
application associated with that file type.

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

• Output - Allows you to specify where the generated documentation is saved on disk.

Transforming XML Documents Using XQuery
XQuery is similar to XSL stylesheets, both being capable of transforming an XML input into another format.
You specify the input URL when you define the transformation scenario. The result can be saved and opened in
the associated application. You can even run a FO processor on the output of an XQuery. The transformation
scenarios may be shared between many XQuery files, are exported together with the XSLT scenarios and can
be managed in the Configure Transformation Scenario dialog box ,or in the Scenarios view. The transformation
can be performed on the XML document specified in the XML URL field, or, if this field is empty, the documents
referenced from the query expression. The parameters of XQuery transforms must be set in the Parameters
dialog box. Parameters that are in a namespace must be specified using the qualified name (for example, a
param parameter in the http://www.oxygenxml.com/ns namespace must be set with the name {http://
www.oxygenxml.com/ns}param).

The transformation uses one of the Saxon 9.7.0.15 HE, Saxon 9.7.0.15 PE, Saxon 9.7.0.15 EE processors, a
database connection (details can be found in the Working with Databases chapter - in the XQuery transformation
section) or any XQuery processor that provides an XQJ API implementation.

Editing Documents 457

The Saxon 9.7.0.15 EE processor also supports XQuery 3.0 transformations.

Related Information:
XQuery and Databases on page 896

Display XQuery Result in Sequence View

The result of an XQuery executed on a database can be very large and sometimes only a part of the full result
is needed. To avoid the long time necessary for fetching the full result, select the Present as a sequence option
in the Output tab of the Edit scenario dialog box. This option fetches only the first chunk of the result. Clicking
the More results available label that is displayed at the bottom of the Sequence view fetches the next chunk of
results.

The size of a chunk can be set with the Size limit of Sequence view option. The XQuery options button from the
More results available label provides a quick access to this option by opening the XQuery preferences page where
the option can be modified.

Figure 265: XQuery transformation result displayed in Sequence view

A chunk of the XQuery transformation result is displayed in the Sequence view.

Figure 266: XQuery transformation result displayed in Sequence view

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon
HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as

Editing Documents 458

those in the Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options
for each transformation scenario, while the values set in the preferences page apply as global options. The
advanced options configured in a transformation scenario override the global options defined in the preferences
page.

The advanced options for Saxon 9.7.0.15 Home Edition (HE), Professional Edition (PE), and Enterprise Edition
(EE) are as follows:
Recoverable errors ("-warnings")

Allows you to choose how dynamic errors are handled. The following options can be selected:

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Use linked tree model ("-tree:linked")
This option activates the linked tree model.

Enable XQuery 3.0 support ("-qversion:(1.0|3.0)")
If selected (default value), Saxon runs the XQuery transformation with the XQuery 3.0 support.

Initializer class
Equivalent to the -init Saxon command-line argument. The value is the name of a user-supplied class
that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the
initialization process, and may be used to set any options required on the configuration programmatically. It
is particularly useful for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform initialization when
running user application code.

The following advanced options are specific for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition
(EE) only:
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is used for XQuery transformation and validation scenarios.
Allow calls on extension functions ("-ext")

If selected, calls on external functions are allowed. Selecting this option is recommended in an environment
where untrusted stylesheets may be executed. It also disables user-defined extension elements and the
writing of multiple output files, both of which carry similar security risks.

The advanced options that are specific for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

Editing Documents 459

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Enable XQuery update ("-update:(on|off)")
This option controls whether or not XQuery update syntax is accepted. The default value is off.

Backup files updated by XQuery ("-backup:(on|off)")
If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is
available when the Enable XQuery update option is selected.

Updating XML Documents using XQuery

Using the bundled Saxon 9.7.0.15 EE XQuery processor Oxygen XML Developer offers support for XQuery Update
1.0. The XQuery Update Facility provides expressions that can be used to make persistent changes to instances
of the XQuery 1.0 and XPath 2.0 Data Model. Thus, besides querying XML documents, you can modify them using
the various insert/delete/modify/create methods available in the XQuery Update 1.0 standard.

Choose Saxon 9.7.0.15 EE as a transformer in the scenario associated with the XQuery files containing update
statements and Oxygen XML Developer will notify you if the update was successful.

Example: Using XQuery Update to modify a tag name in an XML file

rename node doc("books.xml")//publisher[1]//book[1] as "firstBook"

Editing WSDL Documents
WSDL is an XML format for describing network services as a set of endpoints operating on messages containing
either document-oriented or procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message format to define an endpoint. Related
concrete endpoints are combined into abstract endpoints (services).

Oxygen XML Developer provides a special type of editor dedicated to WSDL documents. The WSDL editor offers
support for validation, a specialized Content Completion Assistant, a component oriented Outline view, searching
and refactoring operations, and support to generate documentation.

Both WSDL version 1.1 and 2.0 are supported and SOAP versions 1.1 and 1.2. That means that in the location
where a SOAP extension can be inserted the Content Completion Assistant offers elements from both SOAP 1.1
and SOAP 1.2. Validation of SOAP requests is executed first against a SOAP 1.1 schema and then against a SOAP
1.2 schema. In addition to validation against the XSD schemas, Oxygen XML Developer also checks if the WSDL
file conforms with the WSDL specification (available only for WSDL 1.1 and SOAP 1.1).

In the following example you can see how the errors are reported.

Editing Documents 460

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.w3.org/TR/xquery-update-10/#introduction

Figure 267: Validating a WSDL file

To watch our video demonstration about the WSDL editing support in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/Create_New_WSDL.html.

Related Information:
Editing XML Documents in Text Mode on page 237

Editing WSDL Documents in the Master Files Context
Smaller interrelated modules that define a complex WSDL structure cannot be correctly edited or validated
individually, due to their interdependency with other modules. Oxygen XML Developer provides the support for
defining the main module (or modules), allowing you to edit any of the imported/included files in the context of
the larger WSDL structure.

You cat set a main WSDL document either using the master files support from the Project view, or using a
validation scenario.

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen XML
Developer warns you if the current module is not part of the dependencies graph computed for the main WSDL
document. In this case, it considers the current module as the main WSDL document.

The advantages of editing in the context of a master file include:

• Correct validation of a module in the context of a larger WSDL structure.
• Content Completion Assistant displays all components valid in the current context.
• The Outline view displays the components collected from the entire WSDL structure.

Note: When you edit an XML schema document that has a WSDL document set as master, the validation
operation is performed over the master WSDL document.

To watch our video demonstration about editing WSDL documents in the master files context, go to https://
www.oxygenxml.com/demo/WSDL_Working_Modules.html.

Validating WSDL Documents
By default, WSDL files are validated as you type. To change this, open the Preferences dialog box (Options >
Preferences), go to Editor > Document Checking, and deselect the Enable automatic validation option.

To validate a WSDL document manually, select the Validate action from the Validation toolbar drop-down
menu or the Document > Validate menu. The validation problems are highlighted directly in the editor, making it
easy to locate and fix any issues.

Content Completion Assistance in WSDL Documents
The Content Completion Assistant is a powerful feature that enhances the editing of WSDL documents. It helps
you define WSDL components by proposing context-sensitive element names. It can be manually activated with
the Ctrl + Space (Command + Space on OS X) shortcut.

Another important capability of the Content Completion Assistant is to propose references to the defined
components when you edit attribute values. For example, when you edit the type attribute of a binding

Editing Documents 461

https://www.oxygenxml.com/demo/Create_New_WSDL.html
https://www.oxygenxml.com/demo/Create_New_WSDL.html
https://www.oxygenxml.com/demo/WSDL_Working_Modules.html
https://www.oxygenxml.com/demo/WSDL_Working_Modules.html

element, the Content Completion Assistant proposes all the defined port types. Each proposal that the Content
Completion Assistant offers is accompanied by a documentation hint.

Note: XML schema specific elements and attributes are offered when the current editing context is the internal
XML schema of a WSDL document.

Figure 268: WSDL Content Completion Assistant

Note: If you are using the concept of master files to import/include modules, the Content Completion Assistant
collects its components starting from the master files. The master files can be defined in the project or in the
associated validation scenario. For more information about the Master Files support in Oxygen XML Developer,
see Defining Master Files at Project Level.

Namespace prefixes in the scope of the current context are presented at the top of the content completion
assistance window to speed up the insertion into the document of prefixed elements.

Figure 269: Namespace Prefixes in the Content Completion Assistant

For the common namespaces, such as XML Schema namespace (http://www.w3.org/2001/XMLSchema) or SOAP
namespace (http://schemas.xmlsoap.org/wsdl/soap/), Oxygen XML Developer provides an easy mode to declare
them by proposing a prefix for these namespaces.

WSDL Syntax Highlighting
Oxygen XML Developer supports syntax highlighting in WSDL documents to improve the readability of the content
and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for WSDL files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Editing Documents 462

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Customize Syntax Highlight colors on page 82

WSDL Outline View
The Outline view for WSDL documents displays the list of all the components (services, bindings, port types and
so on) of the currently open WSDL document along with the components of its imports.

If you use the Master Files support, the Outline view collects the components of a WSDL document starting from
the master files of the current document.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Figure 270: WSDL Outline View

The Outline view can display both the components of the current document and its XML structure, organized in
a tree-like fashion. You can switch between the display modes by using the Show XML structure and Show
components actions in the Settings menu on the Outline view toolbar. The following actions are available:

Filter returns exact matches
The text filter of the Outline view returns only exact matches.

Selection update on cursor move
Controls the synchronization between the Outline view and the current document. The selection in the Outline
view can be synchronized with the cursor moves or the changes in the WSDL editor. Selecting one of the
components from the Outline view also selects the corresponding item in the current document.

When the Show components option is selected, the following actions are available:

Show XML structure
Displays the XML structure of the current document in a tree-like manner.

Sort
Sorts the components in the Outline view alphabetically.

Editing Documents 463

Show all components
Displays all the components that were collected starting from current document or from the main document,
if it is defined.

Show referable components
Displays all the components that you can reference from the current document.

Show only local components
Displays the components defined in the current file only.

Group by location
Groups the WSDL components by their location.

Group by type
Groups the WSDL components by their type.

Group by namespace
Groups the WSDL components by their namespace.

Note: By default, all the three grouping criteria are active.

When the Show XML structure option is selected, the following actions are available:

Show components
Switches the Outline view to the components display mode.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Configure displayed attributes
Displays the XML Structured Outline preferences page.

The following contextual menu actions are available in the Outline view when the Show components option is
selected in the Settings menu:
Edit Attributes

Opens a dialog box that allows you to edit the attributes of the currently selected component.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Search references
Searches for the references of the currently selected component.

Editing Documents 464

Search references in
Searches for the references of the currently selected component in the context of a scope that you define.

Component dependencies
Opens the Component Dependencies view that displays the dependencies of the currently selected
component.

Resource Hierarchy
Opens the Resource Hierarchy/Dependencies view that displays the hierarchy for the currently selected
resource.

Resource Dependencies
Opens the Resource Hierarchy/Dependencies view that displays the dependencies of the currently selected
resource.

Rename Component in
Renames the currently selected component in the context of a scope that you define.

The following contextual menu actions are available in the Outline view when the Show XML structure option
is selected in the Settings menu:

Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Toggle Comment
Comments/uncomments the currently selected element.

Search references
Searches for the references of the currently selected component.

Search references in
Searches for the references of the currently selected component in the context of a scope that you define.

Component dependencies
Opens the Component Dependencies view that displays the dependencies of the currently selected
component.

Rename Component in
Renames the currently selected component in the context of a scope that you define.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

Editing Documents 465

To switch from the tree structure to the text filter, use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

• * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the
Outline view, its definition is highlighted in the editing area.

WSDL Resource Hierarchy/Dependencies View in WSDL Documents
The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a WSDL resource.
If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Note: The hierarchy of a WSDL resource includes the hierarchy of imported XML Schema resources. The
dependencies of an XML Schema resource present the WSDL documents that import the schema.

To view the hierarchy of a WSDL document, select the document in the Project view and choose Resource
Hierarchy from the contextual menu.

Figure 271: Resource Hierarchy/Dependencies View

If you want to see the dependencies of a WSDL document, select the document in the Project view and choose
Resource Dependencies from the contextual menu.

Editing Documents 466

Figure 272: Resource Hierarchy/Dependencies View

The following actions are available in the Resource Hierarchy/Dependencies view:

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.

Editing Documents 467

Show Resource Hierarchy
Shows the hierarchy for the selected resource.

Show Resource Dependencies
Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Related Information:
Working with Modular XML Files in the Master Files Context on page 311
Search and Refactor Operations Scope on page 310

Moving/Renaming WSDL Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the
Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Select this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the
Move resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is selected, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are
updated.

Component Dependencies View in WSDL Documents
The Component Dependencies view allows you to view the dependencies for a selected WSDL component. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu.

To view the dependencies of an WSDL component, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. This action is available for all WSDL components
(messages, port types, operations, bindings and so on).

Note: If you search for dependencies of XML Schema elements, the Component Dependencies view presents the
references from WSDL documents.

Editing Documents 468

Figure 273: Component Dependencies View

The following action are available in the toolbar of the Component Dependencies view:

Refresh
Refreshes the dependencies structure.

Stop
Stops the dependencies computing.

Configure
Allows you to configure a search scope to compute the dependencies structure. You can decide to use the
defined scope for future operations automatically, by selecting the corresponding checkbox.

History
Allows you to repeat a previous dependencies computation.

The following actions are available in the contextual menu of the Component Dependencies view:
Go to First Reference

Selects the first reference of the referenced component from the current selected component in the
dependencies tree.

Go to Component
Displays the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another, a small table is displayed that contains all
references. When a recursive reference is encountered, it is marked with a special icon .

Highlight Component Occurrences in WSDL Documents
When you position your mouse cursor over a component in a WSDL document, Oxygen XML Developer searches
for the component declaration and all its references and highlights them automatically.

Customizable colors are used: one for the component definition and another one for component references.
Occurrences are displayed until another component is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box (Options >
Preferences) and go to Editor > Mark Occurrences. You can also trigger a search using the Search > Search
Occurrences in File () action from contextual menu. Matches are displayed in separate tabs of the Results view.

Editing Documents 469

Searching and Refactoring Operations in WSDL Documents

Search Actions

The following search actions are available from the Search submenu in the contextual menu of the current editor
or from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box is displayed and you have the possibility to define another search
scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box will be displayed and you have the possibility to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently
edited file.

The following action is available from the Document > Schema menu:

• Show Definition - Takes you to the location of the definition of the current item.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to
display its definition.

Refactoring Actions

The following refactoring actions are available from the Refactoring submenu from the Document > Refactoring
menu or in the contextual menu of the current editor:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Editing Documents 470

Figure 274: Rename Identity Constraint Dialog Box

Searching and Refactoring Operations Scope in WSDL Documents

The scope is a collection of documents that define the context of a search and refactor operation. To control it
you can use the Change scope operation, available in the Quick Assist action set or on the Resource Hierarchy/
Dependency View toolbar. You can restrict the scope to the current project or to one or multiple working sets. The
Use only Master Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations
to the resources from the Master Files directory. Click read more for details about the Master Files support.

Editing Documents 471

Figure 275: Change Scope Dialog Box

The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu
actions allow you to add or delete files, folders, and other resources to the working set structure.

Quick Assist Support in WSDL Documents
The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component.
It is accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also,
you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 276: WSDL Quick Assist Support

The Quick Assist support offers direct access to the following actions:

Rename Component in
Renames the component and all its dependencies.

Search Declarations
Searches the declaration of the component in a predefined scope. It is available only when the context
represents a component name reference.

Search References
Searches all references of the component in a predefined scope.

Editing Documents 472

Component Dependencies
Searches the component dependencies in a predefined scope.

Change Scope
Configures the scope that will be used for future search or refactor operations.

Rename Component
Allows you to rename the current component in-place.

Search Occurrences
Searches all occurrences of the component within the current file.

Generating Documentation for WSDL Documents
You can use Oxygen XML Developer to generate detailed documentation for the components of a WSDL
document in HTML format. You can select the WSDL components to include in your output and the level
of details to present for each of them. Also, the components are hyperlinked. You can also generate the
documentation in a custom output format by using a custom stylesheet.

Note: The WSDL documentation includes the XML Schema components that belong to the internal or imported
XML schemas.

To generate documentation for a WSDL document, select WSDL Documentation from the Tools > Generate
Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view.

Figure 277: WSDL Documentation Dialog Box

The Input URL field of the dialog box must contain the full path to the WSDL document that you want to generate
documentation for. The WSDL document may be a local or a remote file. You can specify the path to the WSDL
file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse
drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.

Editing Documents 473

• Custom - The documentation is generated in a custom output format, allowing you to control the output.
Click the Options button to open a Custom format options dialog box where you can specify a custom
stylesheet for creating the output. There is also an option to Copy additional resources to the output folder
and you can select the path to the additional Resources that you want to copy. You can also choose to
keep the intermediate XML files created during the documentation process by deselecting the Delete
intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large
WSDL documents, choosing a different split criterion may generate smaller output files providing a faster
documentation browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output
file type.

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with
the xml:lang attribute set to the selected language. If you choose a primary language code (for example, en
for English), this includes all its possible variations (en-us, en-uk, etc.).

Setting Tab

When you generate documentation for a WSDL document, you can choose what components to include in the
output and the details to be included in the documentation.

Figure 278: Settings Tab of the WSDL Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following:

• Components

• Services - Specifies whether or not the generated documentation includes the WSDL services.
• Bindings - Specifies whether or not the generated documentation includes the WSDL bindings.
• Port Types - Specifies whether or not the generated documentation includes the WSDL port types.
• Messages - Specifies whether or not the generated documentation includes the WSDL messages.

Editing Documents 474

• XML Schema Components - Specifies whether or not the generated documentation includes the XML
Schema components.

• Only global elements and types - Specifies whether or not the generated documentation includes only
global elements and types.

• Component Details

• Namespace - Presents the namespace information for WSDL or XML Schema components.
• Location - Presents the location information for each WSDL or XML Schema component.
• Used by - Presents the list of components that reference the current one.
• Documentation - Presents the component documentation. If you choose Escape XML Content, the XML

tags are presented in the documentation.
• Source - Presents the XML fragment that defines the current component.
• Instance - Generates a sample XML instance for the current component.

Note: This option applies to the XML Schema components only.
• XML Schema Diagram - Displays the diagram for each XML Schema component. You can choose the

image format (JPEG, PNG, GIF, SVG) to use for the diagram section.

• Diagram annotations - Specifies whether or not the annotations of the components presented in the
diagram sections are included.

• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If selected, local elements and attributes are included in the
documentation index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema
documentation is generated. It is deselected by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported
settings file you can generate the same documentation from the command-line interface.)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the WSDL documentation.

Generating WSDL Documentation in HTML Format

The WSDL documentation generated in HTML format is presented in a visual diagram style with various sections,
hyperlinks, and options.

Figure 279: WSDL Documentation in HTML Format

Editing Documents 475

The documentation of each component is presented in a separate section. The title of the section is composed of
the component type and the component name. The component information (namespace, documentation, etc.) is
presented in a tabular form.

If you choose to split the output into multiple files, the table of contents is displayed in the left frame and is
divided in two tabs: Components and Resource Hierarchy.

The Components tab allows you to group the contents by namespace, location, or component type. The WSDL
components from each group are sorted alphabetically. The Resource Hierarchy tab displays the dependencies
between WSDL and XML Schema modules in a tree-like fashion. The root of the tree is the WSDL document that
you generate documentation for.

After the documentation is generated, you can collapse or expand details for some WSDL components by using
the Showing options or the Collapse or Expand buttons.

Figure 280: Showing Options

Generating WSDL Documentation in a Custom Format

To obtain the default HTML documentation output from a WSDL document, Oxygen XML Developer uses an
intermediary XML document to which it applies an XSLT stylesheet. To create a custom output from your WSDL
document, edit the wsdlDocHtml.xsl XSLT stylesheet or create your own.

Note: The wsdlDocHtml.xsl stylesheet that is used to obtain the HTML documentation is located in the
[OXYGEN_INSTALL_DIR]/frameworks/wsdl_documentation/xsl folder.

Note: The intermediary XML document complies with the wsdlDocSchema.xsd XML Schema. This schema is
located in the [OXYGEN_INSTALL_DIR]/frameworks/wsdl_documentation folder.

Figure 281: Custom Format Options Dialog Box

When using a custom format, you can also copy additional resources into the output folder or choose to keep the
intermediate XML files created during the documentation process.

Generating WSDL Documentation from the Command-Line Interface

To generate documentation for a WSDL document from the command line, open the WSDL Documentation dialog
box and click Export settings. Using the exported settings file you can generate the same documentation from
the command line by running the following scripts:

• wsdlDocumentation.bat on Windows.
• wsdlDocumentation.sh on Unix / Linux.
• wsdlDocumentationMac.sh on Mac OS X.

Editing Documents 476

The scripts are located in the installation folder of Oxygen XML Developer. You can integrate the scripts in an
external batch process launched from the command-line interface.

WSDL SOAP Analyzer
WSDL SOAP Analyzer is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL)
are accepted by a Web Services server.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP,
it is easy to check if the defined SOAP messages are accepted by the remote Web Services server by using the
integrated WSDL SOAP Analyzer tool (available from the toolbar or Tools menu).

Oxygen XML Developer provides two ways of testing, one for the currently edited WSDL document and another
for the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for
the currently edited WSDL document do one of the following:

• Click the WSDL SOAP Analyzer toolbar button.
• Use the WSDL SOAP Analyzer action from the Tools menu.
• Go to Open with > WSDL SOAP Analyzer in the contextual menu of the Project view.

Figure 282: WSDL SOAP Analyzer Dialog Box

Editing Documents 477

This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer
fields are as follows:

• Services - The list of services defined by the WSDL file.
• Ports - The ports for the selected service.
• Operations - The list of available operations for the selected service.
• Action URL - The script that serves the operation.
• SOAP Action - Identifies the action performed by the script.
• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected

port.
• Request Editor - It allows you to compose the web service request. When an action is selected, Oxygen XML

Developer tries to generate as much content as possible for the SOAP request. The envelope of the SOAP
request has the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/
envelope/ for SOAP 1.1 or http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to
change a few values for the request to be valid. The Content Completion Assistant is available for this editor
and is driven by the schema that defines the type of the current message. While selecting various operations,
Oxygen XML Developer remembers the modified request for each one. You can press the Regenerate button
to overwrite your modifications for the current request with the initial generated content.

• Attachments List - You can define a list of file URLs to be attached to the request.
• Response Area - Initially it displays an auto generated server sample response so you can have an idea about

how the response looks like. After pressing the Send button, it presents the message received from the server
in response to the Web Service request. It may show also error messages. If the response message contains
attachments, Oxygen XML Developer prompts you to save them, then tries to open them with the associated
system application.

• Errors List - There may be situations where the WSDL file is respecting the WSDL XML Schema, but it fails to
be valid (for example, in the case of a message that is defined by means of an element that is not found in the
types section of the WSDL). In such a case, the errors are listed here. This list is presented only when there are
errors.

• Send Button - Executes the request. A status dialog box is displayed when Oxygen XML Developer is
connecting to the server.

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service, the port,
and the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually
attach files to it and send it to the server. Watch the server response in the response area. You can find more
details in the Testing Remote WSDL Files section.

Note: SOAP requests and responses are automatically validated in the WSDL SOAP Analyzer using the XML
Schemas specified in the WSDL file.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web
Service SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to Tools > WSDL SOAP Analyzer .
2. On the WSDL File tab enter the URL of the remote WSDL file.

You enter the URL:

• by typing
• by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry

3. Press the OK button.
This will open the WSDL SOAP Analyzer tool. In the Saved SOAP Request tab you can open directly a
previously saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

Editing Documents 478

UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog box (menu Tools > WSDL SOAP Analyzer) opens the UDDI
Registry Browser dialog box.

Figure 283: UDDI Registry Browser Dialog Box

The fields of the dialog box are as follows:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web

services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search either by company or by provided service.
• Case sensitive - When selected, the search takes into account the keyword case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button, the UDDI Registry Browser dialog box is closed
and you are returned to the WSDL File Opener dialog box.

Editing CSS Stylesheets
Oxygen XML Developer includes a built-in editor for CSS stylesheets. This section presents the features of the
CSS editor and how these features should be used. The features of the CSS editor include:

• Create new CSS files and templates - You can use the built-in new file wizards to create new CSS documents
or templates.

• Open and Edit CSS files - CSS files can be opened and edited in a source editing mode.
• Validation - Presents validation errors in CSS files.
• Content completion - Offers proposals for properties and the values that are available for each property.
• Syntax highlighting - The syntax highlighting in Oxygen XML Developer makes CSS files more readable.

Editing Documents 479

• Shortcut to open resources - You can use Ctrl + Single-Click (Command + Single-Click on OS X) to open
imported stylesheets or other resources (such as images) in the default system application for the particular
type of resource.

Validating CSS Stylesheets
Oxygen XML Developer includes a built-in CSS Validator, integrated with general validation support. This makes
the usual validation features for presenting errors also available for CSS stylesheets.

When you edit a CSS document, you can access the CSS validator options by selecting Validation options from
the Document > Validate menu.

The CSS properties accepted by the validator are those included in the current CSS profile that is selected in the
CSS validation preferences. The CSS 3 with Oxygen extensions profile includes all the CSS 3 standard properties
and the CSS extensions specific for Oxygen. That means all Oxygen specific extensions are accepted in a CSS
stylesheet by the built-in CSS validator when this profile is selected.

Specify Custom CSS Properties

To specify custom CSS properties, follow these steps:

1. Create a file named CustomProperties.xml that has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<css_keywords
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/css
 http://www.oxygenxml.com/ns/css/CssProperties.xsd"
 xmlns="http://www.oxygenxml.com/ns/css">
 <property name="custom">
 <summary>Description for custom property.</summary>
 <value name="customValue"/>
 <value name="anotherCustomValue"/>
 </property>
</css_keywords>

2. Go to your desktop and create the builtin/css-validator/ folder structure.
3. Press and hold Shift and right-click anywhere on your desktop. From the contextual menu, select Open

Command Window Here.
4. In the command line, run the jar cvf custom_props.jar builtin/ command.

The custom_props.jar file is created.
5. Go to [OXYGEN_INSTALL_DIR]/lib and create the endorsed folder. Copy the custom_props.jar file to

[OXYGEN_INSTALL_DIR]/lib/endorsed.

Content Completion in CSS Stylesheets
A Content Completion Assistant, similar to the one available for XML documents offers the CSS properties and the
values available for each property. It can be manually activated with the Ctrl + Space (Command + Space on OS
X) shortcut and is context-sensitive when invoked for the value of a property. The Content Completion Assistant
also includes code templates that can be used to quickly insert code fragments into CSS stylesheets. The code
templates that are proposed include form controls, actions, and Author mode operations.

Figure 284: Content Completion in CSS Stylesheets

The properties and values available are dependent on the CSS Profile selected in the CSS preferences. The CSS
2.1 set of properties and property values is used for most of the profiles. However, with CSS 1 and CSS 3 specific
proposal sets are used.

Editing Documents 480

Proposals for CSS Selectors - After inserting a CSS selector, the content completion assistance will propose a list
of pseudo-elements and pseudo-classes that are available for the selected CSS profile.

Proposals for @media and @import Rules - After inserting @media or @import <url> rules, the content
completion assistance will propose a list of supported media types.

Related Information:
Specify Custom CSS Properties on page 480

Syntax Highlighting in CSS Files
Oxygen XML Developer supports syntax highlighting in CSS files to improve the readability of the content and
reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for CSS files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the CSS section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Syntax Highlight Preferences on page 82

CSS Outline View
The Outline view for CSS stylesheets presents the import declarations for other CSS stylesheet files and all the
selectors defined in the current CSS document. The selector entries can be presented as follows:

• In the order they appear in the document.
• Sorted by the element name used in the selector.
• Sorted by the entire selector string representation.

You can synchronize the selection in the Outline view with the cursor moves or changes you make in the
stylesheet document. When you select an entry from the Outline view, Oxygen XML Developer highlights the
corresponding import or selector in the CSS editor.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Figure 285: CSS Outline View

Editing Documents 481

The selectors presented in this view can be found quickly using the key search field. When you press a sequence
of character keys while the focus is in the view, the first selector that starts with that sequence is selected
automatically.

Folding in CSS Stylesheets
In a large CSS stylesheet document, some styles can be collapsed so that only the styles that are needed remain
in focus. The same folding features available for XML documents are also available in CSS stylesheets.

Note: To enhance your editing experience, you can select entire blocks (parts of text delimited by brackets) by
double-clicking somewhere inside the brackets.

Formatting and Indenting CSS Stylesheets (Pretty Print)
If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines, the format and
indent operation available for XML documents is also available for CSS stylesheets. It works in the same way as
for XML documents and is available as the same menu and toolbar action.

Minifying CSS Stylesheets
Minification (or compression) of a CSS document is the practice of removing unnecessary code without affecting
the functionality of the stylesheet.

To minify a CSS, invoke the contextual menu anywhere in the edited document and choose the Minify CSS action.
Oxygen XML Developer opens a dialog box that allows you to:

• Set the location of the resulting CSS.
• Place each style rule on a new line.

After pressing OK, Oxygen XML Developer performs the following actions:

• All spaces are normalized (all leading and trailing spaces are removed, while sequences of white spaces are
replaced with single space characters).

• All comments are removed.

Note: The CSS minifier relies heavily upon the W3C CSS specification. If the content of the CSS file you are
trying to minify does not conform with the specifications, an error dialog box will be displayed, listing all errors
encountered during the processing.

The resulting CSS stylesheet gains a lot in terms of execution performance, but loses in terms of readability. The
source CSS document is left unaffected.

Note: To restore the readability of a minified CSS, invoke the Format and Indent action from the Document >
Source menu, the Source submenu from the contextual menu, or Source toolbar. However, this action will not
recover any of the deleted comments.

Editing LESS CSS Stylesheets
Oxygen XML Developer provides support for stylesheets coded with the LESS dynamic stylesheet language.
LESS extends the CSS language by adding features that allow mechanisms such as variables, nesting, mixins,
operators, and functions. Oxygen XML Developer offers additional LESS features that include:

• Create new LESS files and templates - You can use the built-in new file wizards to create new LESS documents
or templates.

• Open and Edit LESS files - LESS files can be opened and edited in a source editing mode.
• Validation - Presents validation errors in LESS files.
• Content completion - Offers proposals for properties and the values that are available for each property.
• Compile to CSS - Options are available to compile LESS files to CSS.
• Syntax highlighting - Oxygen XML Developer supports syntax highlighting in LESS files, although there may be

some limitations in supporting all the LESS constructs.

Editing Documents 482

• Shortcut to open resources - While editing LESS files, you can use Ctrl + Single-Click (Command + Single-
Click on OS X) to open imported stylesheets or other resources (such as images) in the default system
application for the particular type of resource.

For more information about LESS go to http://lesscss.org/.

Validating LESS Stylesheets
Oxygen XML Developer includes a built-in LESS CSS Validator, integrated with general validation support. The
usual validation features for presenting errors also available for LESS stylesheets.

Oxygen XML Developer provides three validation methods:

• Automatic validation as you type - marks validation errors in the document as you are editing.
• Validation upon request, by pressing the Validate button from the Validation toolbar drop-down menu.

An error list is presented in the message panel at the bottom of the editor.
• Validation scenarios, by selecting Configure Validation Scenario(s) from the Validation toolbar drop-

down menu. Errors are presented in the message panel at the bottom of the editor. This is useful when you
need to validate the current file as part of a larger LESS import hierarchy (for instance, you may change the
URL of the file to validate to the root of the hierarchy).

Content Completion in LESS Stylesheets
A Content Completion Assistant offers the LESS properties and the values available for each property. It can be
manually activated with the Ctrl + Space (Command + Space on OS X) shortcut and is context-sensitive when
invoked for the value of a property in a LESS file. The Content Completion Assistant also includes code templates
that can be used to quickly insert code fragments into LESS stylesheets. The code templates that are proposed
include form controls, actions, and Author mode operations.

Figure 286: Content Completion in LESS Stylesheets

The properties and values available are dependent on the CSS Profile selected in the CSS preferences .

Syntax Highlighting in LESS Files
Oxygen XML Developer supports syntax highlighting in LESS files to improve the readability of the content and
reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for LESS files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the LESS section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Syntax Highlight Preferences on page 82

Editing Documents 483

http://lesscss.org/

Compiling LESS Stylesheets to CSS
When editing LESS files, you can compile the files into CSS. Oxygen XML Developer provides both manual and
automatic options to compile LESS stylesheets into CSS.

Important: The LESS processor works well only with files having the UTF-8 encoding. Thus, it is highly
recommended that you always use the utf-8 encoding when working with LESS files or the files they import
(other LESS or CSS files). You can use the following directive at the beginning of your files:

@charset "utf-8";

You have two options for compiling LESS files to CSS:

1. Use the contextual menu in a LESS file and select Compile to CSS (Ctrl + Shift + C (Command + Shift + C on
OS X)).

2. Select the Automatically compile LESS to CSS when saving option in the settings (open the Preferences dialog
box (Options > Preferences) and go to Editor > Open/Save > Save Hooks). If selected, when you save a LESS
file it will automatically be compiled to CSS (this option is deselected by default).

Important: If this option is selected, when you save a LESS file, the CSS file that has the same name as the
LESS file is overwritten without warning. Make sure all your changes are made in the LESS file. Do not edit the
CSS file directly, as your changes might be lost.

Editing Relax NG Schemas
An XML Schema describes the structure of an XML document and is used to validate XML document instances
against it, to check that the XML instances conform to the specified requirements. If an XML instance conforms
to the schema then it is said to be valid. Otherwise, it is invalid.

Oxygen XML Developer offers support for editing Relax NG schema files in the following editing modes:

• Text editing mode - Allows you to edit Relax NG schema files in a source editing mode, along with a schema
design pane with two tabs that offer a Full Model View and Logical Model View.

• Grid editing mode - Displays Relax NG schema files in a structured spreadsheet-like grid.

For information about applying and detecting schemas, see Associating a Schema to XML Documents on page
294.

Related Information:
Associating a Schema to XML Documents on page 294

Editing Relax NG Schema in the Master Files Context
Smaller interrelated modules that define a complex Relax NG Schema cannot be correctly edited or validated
individually, due to their interdependency with other modules. For example, an element defined in a main schema
document is not visible when you edit an included module. Oxygen XML Developer provides the support for
defining the main module (or modules), thus allowing you to edit any of the imported/included schema files in the
context of the larger schema structure.

You cat set a main Relax NG document either using the master files support from the Project view, or using a
validation scenario.

To set a master file using a validation scenario, add validation units that point to the main schemas. Oxygen XML
Developer warns you if the current module is not part of the dependencies graph computed for the main schema.
In this case, it considers the current module as the main schema.

The advantages of editing in the context of master file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant displays all the referable components valid in the current context. This include

components defined in modules other than the currently edited one.
• The Outline view displays the components collected from the entire schema structure.

Editing Documents 484

Related Information:
Creating a New Validation Scenario on page 282
XML Schema Outline View on page 189

Relax NG Schema Diagram Editor
This section explains how to use the graphical diagram editor for Relax NG schemas.

Introduction to Relax NG Schema Diagram Editor

Oxygen XML Developer provides a simple, expressive, and easy-to-read schema diagram editor for Relax NG
schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as
JPEG, PNG, or BMP images. It helps both schema authors in developing the schema and content authors who are
using the schema to understand it.

Oxygen XML Developer is the only XML editor to provide a side by side source and diagram presentation and have
them real-time synchronized:

• The changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• Changing the selected element in the diagram selects the underlying code in the source editor.

Full Model View

When you create a new schema document or open an existing one, the editor panel is divided in two sections: one
containing the schema diagram and the second the source code. The schema diagram editor has two tabs that
offer a Full Model View and Logical Model View.

Figure 287: Relax NG Schema Editor - Full Model View

The following references can be expanded in place: patterns, includes, and external references. This expansion
mechanism, coupled with the synchronization support, makes the schema navigation easy.

Editing Documents 485

All the element and attribute names are editable by double-clicking the names.

Logical Model View

The Logical Model View presents the compiled schema in the form of a single pattern. The patterns that form the
element content are defined as top level patterns with generated names. These names are generated depending
of the elements name class.

Figure 288: Logical Model View for a Relax NG Schema

Symbols Used in the Schema Diagram

The views in the schema diagram editor renders all the Relax NG schema patterns with the following intuitive
symbols:

•
 - define pattern with the name attribute set to the value shown inside the rectangle (in this

example name).
•

 - define pattern with the combine attribute set to interleave and the name attribute
set to the value shown inside the rectangle (in this example attlist.person).

•
 - define pattern with the combine attribute set to choice and the name attribute set to

the value shown inside the rectangle (in this example attlist.person).
•

 - element pattern with the name attribute set to the value shown inside the rectangle (in this
example name).

•
 - attribute pattern with the name attribute set to the value shown inside de rectangle (in this

case note).

Editing Documents 486

•
 - ref pattern with the name attribute set to the value shown inside the rectangle (in this case

family).
•

 - oneOrMore pattern.
•

 - zeroOrMore pattern.
•

 - optional pattern.
•

 - choice pattern.
•

 - value pattern (for example, used inside a choice pattern).
•

 - group pattern.
•

 - A pattern from the Relax NG Annotations namespace (http://relaxng.org/ns/compatibility/
annotations/1.0) that is treated as a documentation element in a Relax NG schema.

•
 - text pattern.

•
 - empty pattern.

Actions Available in the Schema Diagram Editor

When editing Relax NG schemas in Full Model View, the contextual menu offers the following actions:

Append child
Appends a child to the selected component.

Insert Before
Inserts a component before the selected component.

Insert After
Inserts a component after the selected component.

Edit attributes
Edits the attributes of the selected component.

Remove
Removes the selected component.

Show only the selected component
Depending on its state (selected/not selected), either the selected component or all the diagram components
are shown.

Show Annotations
Depending on its state (selected/not selected), the documentation nodes are shown or hidden.

Auto expand to references
This option controls how the schema diagram is automatically expanded. If you select it and then edit a top-
level element or you make a refresh, the diagram is expanded until it reaches referenced components. If this
option is left unchecked, only the first level of the diagram is expanded, showing the top-level elements. For
large schemas, the editor disables this option automatically.

Collapse Children
Collapses the children of the selected view.

Expand Children
Expands the children of the selected view.

Editing Documents 487

Print Selection
Prints the selected view.

Save as Image
Saves the current selection as JPEG, BMP, SVG or PNG image.

Refresh
Refreshes the schema diagram according to the changes in your code. They represent changes in your
imported documents or changes that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

Validating Relax NG Schema Documents
By default, Relax NG schema files are validated as you type. To change this, open the Preferences dialog box
(Options > Preferences), go to Editor > Document Checking, and deselect the Enable automatic validation option.

To validate a Relax NG schema document manually, select the Validate action from the Validation toolbar
drop-down menu or the Document > Validate menu. When Oxygen XML Developer validates a Relax NG schema
file, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are
highlighted directly in the editor, making it easy to locate and fix any issues.

Related Information:
Validating XML Documents Against a Schema on page 277
Validation Scenario on page 281
Associating a Schema to XML Documents on page 294
Presenting Validation Errors in Text Mode on page 183

Content Completion in Relax NG Schemas
The intelligent Content Completion Assistant allows you to quickly identify and insert elements, attributes, and
attribute values that are valid in the current editing context. All available proposals are listed in a pop-up menu
displayed at the current cursor position.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options >
Preferences), go to Editor > Content Completion, and deselect the Enable content completion option.

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current
cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut. You
can navigate through the list of proposals by using the Up and Down keys on your keyboard. For each selected
item in the list, the Content Completion Assistant displays a documentation window. You can customize the size
of the documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Text mode, do one of the following:

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a
position suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor
between the tags in a position where you can start typing content.

If you are using the concept of master files to import/include modules, the Content Completion Assistant collects
its components starting from the master files. The master files can be defined in the project or in the associated
validation scenario. For more information about the Master Files support in Oxygen XML Developer, see Defining
Master Files at Project Level.

The Content Completion Assistant also offers additional information for the element and attribute proposals in
the form of schema annotations that is displayed in a tooltip.

Editing Documents 488

Figure 289: Relax NG Content Completion Assistant

Syntax Highlighting in Relax NG Schemas
Oxygen XML Developer supports syntax highlighting in Relax NG schemas to improve the readability of the
content and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for Relax NG schemas, follow these
steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane (for RELAX NG Compact Syntax schemas, select and

expand the RNC section).
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes (for RELAX NG Compact Syntax

schemas, the tab is RNC).

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Syntax Highlight Preferences on page 82

Quick Fixes for DTD, XSD, and Relax NG Errors
Oxygen XML Developer offers Quick Fixes for common errors that appear in XML documents that are validated
against DTD, XSD, or Relax NG schemas.

Note: For XML documents validated against XSD schemas, the Quick Fixes are only available if you use the
default Xerces validation engine.

Quick Fixes are available in Text mode .

Oxygen XML Developer provides Quick Fixes for numerous types of problems, including the following:

Problem Type Available Quick Fixes

A specific element is required in the current
context

Insert the required element

An element is invalid in the current context Remove the invalid element

The content of the element should be empty Remove the element content

Editing Documents 489

Problem Type Available Quick Fixes

An element is not allowed to have child elements Remove all child elements

Text is not allowed in the current element Remove the text content

A required attribute is missing Insert the required attribute

An attribute is not allowed to be set for the current
element

Remove the attribute

The attribute value is invalid Propose the correct attribute values

ID value is already defined Generate a unique ID value

References to an invalid ID Change the reference to an already defined ID

Related Information:
Schematron Quick Fixes (SQF) on page 293

Relax NG Outline View
The Outline view for Relax NG schemas presents a list with the patterns that appear in the diagram in both
the Full Model View and Logical Model View cases and it allows for quick access to a component by name. By
default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it
from the Window > Show View menu.

Figure 290: Relax NG Outline View

This view has two modes, with the tree showing either the XML structure or the defined pattern (components)
collected from the current document. By default, the Outline view presents the components.

When the Show components option is selected in the Settings menu on the Outline view toolbar, the
following option is available:

Editing Documents 490

Show XML structure
Shows the XML structure of the current document in a tree-like manner.

The following actions are available in the Settings menu on the Outline view toolbar when the Show XML
structure option is selected:

Filter returns exact matches
The text filter of the Outline view returns only exact matches.

Selection update on cursor move
Allows a synchronization between Outline view and schema diagram. The selected view from the diagram will
be also selected in the Outline view.

Show components
Shows the defined pattern collected from the current document.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Configure displayed attributes
Displays the XML Structured Outline preferences page.

The following contextual menu actions are also available in the Outline view when the Show XML structure
option is selected in the Settings menu:

Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Toggle Comment
Comments/uncomments the currently selected element.

Search references
Searches for the references of the currently selected component.

Search references in
Searches for the references of the currently selected component in the context of a scope that you define.

Editing Documents 491

Component dependencies
Opens the Component Dependencies view that displays the dependencies of the currently selected
component.

Rename Component in
Renames the currently selected component in the context of a scope that you define.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

RNG Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a schema. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the hierarchy of a schema, select the desired schema in the Project view and choose Resource
Hierarchy from the contextual menu.

Figure 291: Resource Hierarchy/Dependencies View - hierarchy for map.rng

If you want to see the dependencies of a schema, select the desired schema in the Project view and choose
Resource Dependencies from the contextual menu.

Editing Documents 492

Figure 292: Resource Hierarchy/Dependencies View - Dependencies for tblDecl.mod.rng

The following actions are available in the Resource Hierarchy/Dependencies view:

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.

Editing Documents 493

Show Resource Hierarchy
Shows the hierarchy for the selected resource.

Show Resource Dependencies
Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Related Information:
Working with Modular XML Files in the Master Files Context on page 311
Search and Refactor Operations Scope on page 310

Moving/Renaming RNG Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the
Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Select this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the
Move resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is selected, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are
updated.

Note: Updating the references of a resource that is resolved through a catalog is not supported. Also, the update
references operation is not supported if the path to the renamed or moved resource contains entities.

Component Dependencies View for RelaxNG Schemas
The Component Dependencies view allows you to see the dependencies for a selected Relax NG component. If
the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the dependencies of a RelaxNG component, select the desired component in the editor and
choose the Component Dependencies action from the contextual menu. The action is available for all named
defines.

Editing Documents 494

Figure 293: Component Dependencies View - Hierarchy for base.rng

In the Component Dependencies view you have several actions in the toolbar:

Refresh
Refreshes the dependencies structure.

Stop
Stops the dependencies computing.

Configure
Allows you to configure a search scope to compute the dependencies structure. You can decide to use
automatically the defined scope for future operations by selecting the corresponding checkbox.

History
Allows you to repeat a previous dependencies computation.

The following actions are available on the contextual menu:
Go to First Reference

Selects the first reference of the referenced component from the current selected component in the
dependencies tree.

Go to Component
Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another components, a small table is displayed that contains
all references. When a recursive reference is encountered, it is marked with a special icon .

Related Information:
Search and Refactor Operations Scope on page 310

Searching and Refactoring Actions in RNG Schemas

Search Actions

The following search actions can be applied on named defines and are available from the Search submenu in the
contextual menu of the current editor or from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box is displayed and you have the possibility to define another search
scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope if any. If a scope is defined, but the current edited resource is not part of the range of resources

Editing Documents 495

determined by this, a warning dialog box will be displayed and you have the possibility to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently
edited file.

The following action is available from the contextual menu and the Document > Schema menu:

• Show Definition - Moves the cursor to the definition of the current element in the Relax NG (full syntax)
schema.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to
display its definition.

Refactoring Actions

The following refactoring actions can be applied on named defines and are available from the Refactoring
submenu in the contextual menu of the current editor or from the Document > Refactoring menu:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Figure 294: Rename Identity Constraint Dialog Box

RNG Quick Assist Support
The Quick Assist support improves the development work flow, offering fast access to the most commonly used
actions when you edit schema documents.

Editing Documents 496

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component.
It is accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also,
you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 295: RNG Quick Assist Support

The Quick Assist support offers direct access to the following actions:

Rename Component in
Renames the component and all its dependencies.

Search Declarations
Searches the declaration of the component in a predefined scope. It is available only when the context
represents a component name reference.

Search References
Searches all references of the component in a predefined scope.

Component Dependencies
Searches the component dependencies in a predefined scope.

Change Scope
Configures the scope that will be used for future search or refactor operations.

Rename Component
Allows you to rename the current component in-place.

Search Occurrences
Searches all occurrences of the component within the current file.

Related Information:
Component Dependencies View on page 494
Resource Hierarchy/Dependencies View on page 492
Searching and Refactoring Actions on page 495
Search and Refactor Operations Scope on page 310

Configuring a Custom Datatype Library for a RELAX NG Schema
A RELAX NG schema can declare a custom datatype library for the values of elements found in XML document
instances. The datatype library must be developed in Java and it must implement the interface specified on the
www.thaiopensource.com website.

The JAR file containing the custom library and any other dependent JAR file must be added to the classpath of
the application, that is the JAR files must be added to the folder [OXYGEN_INSTALL_DIR]/lib .

To load the custom library, restart Oxygen XML Developer.

Editing Documents 497

http://www.thaiopensource.com/relaxng/pluggable-datatypes.html
http://www.thaiopensource.com/relaxng/pluggable-datatypes.html

Editing NVDL Schemas
Some complex XML documents are composed by combining elements and attributes from namespaces.
Furthermore, the schemas that define these namespaces are not even developed in the same schema language.
In such cases, it is difficult to specify in the document all the schemas that must be taken into account for
validation of the XML document or for content completion. An NVDL (Namespace Validation Definition
Language) schema can be used. This schema allows the application to combine and interleave multiple schemas
of different types (W3C XML Schema, RELAX NG schema, Schematron schema) in the same XML document.

Oxygen XML Developer offers support for editing NVDL schema files in the following editing modes:

• Text editing mode - Allows you to edit NVDL schema files in a source editing mode, along with a schema
design pane with two tabs that offer a Full Model View and Logical Model View.

• Grid editing mode - Displays NVDL schema files in a structured spreadsheet-like grid.

For information about applying and detecting schemas, see Associating a Schema to XML Documents on page
294.

Related Information:
Associating a Schema to XML Documents on page 294

NVDL Schema Diagram
This section explains how to use the graphical diagram of a NVDL schema.

Introduction to NVDL Schema Diagram Editor

Oxygen XML Developer provides a simple, expressive, and easy-to-read schema diagram editor for NVDL
schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as
JPEG, PNG, and BMP images. It helps both schema authors in developing the schema and content authors that
are using the schema to understand it.

Oxygen XML Developer is the only XML Editor to provide a side by side source and diagram presentation and have
them real-time synchronized:

• The changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• Changing the selected element in the diagram, selects the underlying code in the source editor.

Full Model View

When you create a schema document or open an existing one, the editor panel is divided in two sections: one
containing the schema diagram and the second the source code. The diagram view has two tabbed panes
offering a Full Model View and a Logical Model View.

Editing Documents 498

Figure 296: NVDL Schema Editor - Full Model View

The Full Model View renders all the NVDL elements with intuitive icons. This representation coupled with the
synchronization support makes the schema navigation easy.

Double-click any diagram component to edit its properties.

Logical Model View

The Logical Model View presents the compiled schema in the form of a single pattern. The patterns that form the
element content are defined as top level patterns with generated names. These names are generated depending
of the elements name class.

Figure 297: Logical Model View for an NVDL Schema

Editing Documents 499

Actions Available in the Diagram Editor

The contextual menu offers the following actions:

Show only the selected component
Depending on its state (selected/not selected), either the selected component or all the diagram components
are shown.

Show Annotations
Depending on its state (selected/not selected), the documentation nodes are shown or hidden.

Auto expand to references
This option controls how the schema diagram is automatically expanded. For instance, if you select it and
then edit a top-level element or you trigger a diagram refresh, the diagram will be expanded until it reaches
the referenced components. If this option is left unchecked, only the first level of the diagram is expanded,
showing the top-level elements. For large schemas, the editor disables this option automatically.

Collapse Children
Collapses the children of the selected view.

Expand Children
Expands the children of the selected view.

Print Selection
Prints the selected view.

Save as Image
Saves the current selection as image, in JPEG, BMP, SVG or PNG format.

Refresh
Refreshes the schema diagram according to the changes in your code (changes in your imported documents
or those that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View instead of the diagram.

Validating NVDL Schema Documents
By default, NVDL schema files are validated as you type. To change this, open the Preferences dialog box
(Options > Preferences), go to Editor > Document Checking, and deselect the Enable automatic validation option.

To validate an NVDL schema document manually, select the Validate action from the Validation toolbar
drop-down menu or the Document > Validate menu. When Oxygen XML Developer validates an NVDL schema
file, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are
highlighted directly in the editor, making it easy to locate and fix any issues.

Related Information:
Validating XML Documents Against a Schema on page 277

Content Completion in NVDL Schemas
The intelligent Content Completion Assistant allows you to quickly identify and insert elements, attributes, and
attribute values that are valid in the current editing context. All available proposals are listed in a pop-up menu
displayed at the current cursor position.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options >
Preferences), go to Editor > Content Completion, and deselect the Enable content completion option.

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current
cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut. You
can navigate through the list of proposals by using the Up and Down keys on your keyboard. For each selected
item in the list, the Content Completion Assistant displays a documentation window. You can customize the size
of the documentation window by dragging its top, right, and bottom borders.

To insert the selected content in Text mode, do one of the following:

Editing Documents 500

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a
position suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor
between the tags in a position where you can start typing content.

If you are using the concept of master files to import/include modules, the Content Completion Assistant collects
its components starting from the master files. The master files can be defined in the project or in the associated
validation scenario. For more information about the Master Files support in Oxygen XML Developer, see Defining
Master Files at Project Level.

The Content Completion Assistant also offers additional information for the element and attribute proposals in
the form of schema annotations that is displayed in a tooltip.

Figure 298: NVDL Content Completion Assistant

Syntax Highlighting in NVDL Schemas
Oxygen XML Developer supports syntax highlighting in NVDL schemas to improve the readability of the content
and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for NVDL schemas, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Syntax Highlight Preferences on page 82

NVDL Outline View
The Outline view for NVDL schemas presents a list with the named or anonymous rules that appear in the
diagram and it allows for quick access to a rule by name. By default, it is displayed on the left side of the editor. If
the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Component Dependencies View for NVDL Schemas
The Component Dependencies view allows you to see the dependencies for a selected NVDL named mode. If the
view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the dependencies of an NVDL mode, select the desired component in the editor and choose the
Component Dependencies action from the contextual menu. The action is available for all named modes.

Editing Documents 501

Figure 299: Component Dependencies View - Hierarchy for test.nvdl

In the Component Dependencies the following actions are available on the toolbar:

Refresh
Refreshes the dependencies structure.

Stop
Allows you to stop the dependencies computing.

Configure
Allows you to configure a search scope to compute the dependencies structure. If you decide to set the
application to use automatically the defined scope for future operations, select the corresponding checkbox.

History
Repeats a previous dependencies computation.

The following actions are available in the contextual menu:

Go to First Reference
Selects the first reference of the referenced component from the current selected component in the
dependencies tree.

Go to Component
Shows the definition of the current selected component in the dependencies tree.

Tip: If a component contains multiple references to another component, a small table containing all references is
displayed. When a recursive reference is encountered it is marked with a special icon .

Searching and Refactoring Actions in NVDL Schemas

Search Actions

The following search actions can be applied on name, useMode, and startMode attributes and are available
from the Search submenu in the contextual menu of the current editor or from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box is displayed and you have the possibility to define another search
scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box will be displayed and you have the possibility to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when you define a scope for the search operation.

Editing Documents 502

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently
edited file.

The following action is available from the contextual menu and the Document > Schema menu:

• Show Definition - Moves the cursor to its definition in the schema used by the NVDL to validate it.

Note: You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to
display its definition.

Refactoring Actions

The following refactoring actions can be applied on name, useMode, and startMode attributes and are available
from the Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring
menu:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Figure 300: Rename Identity Constraint Dialog Box

Editing JSON Documents
This section explains the features of the Oxygen XML Developer JSON Editor and how to use them.

Editing JSON Documents in Text Mode
When editing JSON documents in the Text editing mode, the usual text editing actions are available, along with
other editor specific actions, including:

Editing Documents 503

• Find / Replace
• Drag and Drop
• Validation
• Format and Indent (Pretty Print)

Note: You can run XPath expressions on opened JSON documents, but in Text mode the XPath results cannot be
mapped in the document. However, they can be mapped in the Grid editing mode. You can use the Grid button at
the bottom of the editor panel to switch to that editing mode.

Figure 301: JSON Editor Text Mode

Related Information:
Text Preferences on page 68
Editing JSON Documents in Grid Mode on page 505

Editing Documents 504

Editing JSON Documents in Grid Mode

Figure 302: JSON Editor Grid Mode

Oxygen XML Developer allows you to view and edit the JSON documents in the Grid mode. The JSON is
represented in Grid mode as a compound layout of nested tables in which the JSON data and structure can be
easily manipulated with table-specific operations or drag and drop operations on the grid components. You can
also use the following JSON-specific contextual actions:
Array

Useful when you want to convert a JSON value to array.
Insert value before

Inserts a value before the currently selected one.
Insert value after

Inserts a value after the currently selected one.
Append value as child

Appends a value as a child of the currently selected value.

You can customize the JSON grid appearance according to your needs. For instance, you can change the font, the
cell background, foreground, or even the colors from the table header gradients. The default width of the columns
can also be changed.

Related Information:
Grid Editing Mode on page 185

Editing Documents 505

Grid Preferences on page 69

Validating JSON Documents
Oxygen XML Developer includes a built-in JSON validator (based on the free JAVA source code available on
www.json.org), integrated with the general validation support.

Related Information:
Presenting Validation Errors in Text Mode on page 183
Document Checking Preferences on page 73

Syntax Highlighting in JSON Documents
Oxygen XML Developer supports syntax highlighting in JSON files to improve the readability of the content and
reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for JSON files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the JSON section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Syntax Highlight Preferences on page 82

Folding in JSON
In a large JSON document, the data enclosed in the '{' and '}' characters can be collapsed so that only the needed
data remain in focus. The folding features available for XML documents are available in JSON documents.

JSON Outline View
The Outline view for JSON documents displays the list of all the components of the JSON document you are
editing. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by
selecting it from the Window > Show View menu.

Figure 303: JSON Outline View

Editing Documents 506

The following actions are available in the contextual menu of the JSON Outline view:

• Cut
• Copy
• Paste
• Delete

The Settings menu on the JSON Outline view toolbar includes a Selection update on cursor move option
that allows you to control the synchronization between the Outline view and source the document. Oxygen XML
Developer synchronizes the selection in the Outline view with the cursor moves or the changes you make in the
JSON editor. Selecting one of the components from the Outline view also selects the corresponding item in the
source document.

XML to JSON Converter
Oxygen XML Developer includes a useful and simple tool for converting XML files to JSON. It can be found in the
Tools menu.

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the Tools menu.
The XML to JSON dialog box is displayed:

Figure 304: XML to JSON Dialog Box
2. Choose or enter the Input URL of the XML document.
3. Choose the path of the Output file that will contain the conversion JSON result.
4. Select the Open in Editor option to open the JSON result of the conversion in the Oxygen XML Developer JSON

Editor.
5. Click the Convert button.

The original XML document is now converted to a JSON document.

Editing Documents 507

Figure 305: Example: XML to JSON Operation Result

Editing StratML Documents
Strategy Markup Language (StratML) is an XML vocabulary and schema for strategic plans. Oxygen XML
Developer supports StratML Part 1 (Strategic Plan) and StratML Part 2 (Performance Plans and Reports) and
provides templates for the following documents:

• Strategic Plan (StratML Part 1)
• Performance Plan (StratML Part 2)
• Performance Report - (StratML Part 2)
• Strategic Plan - (StratML Part 2)

You can view the components of a StratML document in the Outline view. Oxygen XML Developer implements a
default XML with XSLT transformation scenario for this document type, called StratML to HTML.

Editing XLIFF Documents
XLIFF (XML Localization Interchange File Format) is an XML-based format that was designed to standardize the
way multilingual data is passed between tools during a localization process. Oxygen XML Developer provides the
following support for editing XLIFF documents:

XLIFF Version 1.2 and 2.0 Support:

• New file templates for XLIFF documents.
• A default CSS file (xliff.css) used for rendering XLIFF content in Author mode is stored in

[OXYGEN_INSTALL_DIR]/frameworks/xliff/css/.

Editing Documents 508

• Validation and content completion support using local catalogs. The default catalog (catalog.xml) for
version 1.2 is stored in [OXYGEN_INSTALL_DIR]/frameworks/xliff/xsd/1.2, and for version 2.0 in
[OXYGEN_INSTALL_DIR]/frameworks/xliff/xsd/2.0.

XLIFF Version 2.0 Enhanced Support:

• Support for validating XLIFF 2.0 documents using modules. The default modules are stored in
[OXYGEN_INSTALL_DIR]/frameworks/xliff/xsd/2.0/modules.

Editing JavaScript Documents
This section explains the features of the Oxygen XML Developer JavaScript Editor and how you can use them.

JavaScript Editing Actions
Oxygen XML Developer allows you to create and edit JavaScript files and assists you with useful features such as
syntax highlight, content completion, and outline view. To enhance your editing experience, you can select entire
blocks (parts of text delimited by brackets) by double-clicking somewhere inside the brackets.

Figure 306: JavaScript Editor Text Mode

The contextual menu of the JavaScript editor offers the following actions:

Cut
Allows you to cut fragments of text from the editing area.

Copy
Allows you to copy fragments of text from the editing area.

Paste
Allows you to paste fragments of text in the editing area.

Toggle Comment
Allows you to comment a line or a fragment of the JavaScript document you are editing. This option inserts a
single comment for the entire fragment you want to comment.

Toggle Line Comment
Allows you to comment a line or a fragment of the JavaScript document you are editing. This option inserts a
comment for each line of the fragment you want to comment.

Go to Matching Bracket
Use this option to find the closing, or opening bracket, matching the bracket at the cursor position. When you
select this option, Oxygen XML Developer moves the cursor to the matching bracket, highlights its row, and
decorates the initial bracket with a rectangle.

Editing Documents 509

Note: A rectangle decorates the opening or closing bracket that matches the current one, at all times.

Source
Allows you to select one of the following actions:

To Lower Case
Converts the selection content to lower case characters.

To Upper Case
Converts the selection content to upper case characters.

Capitalize Lines
Converts to upper case the first character of every selected line.

Join and Normalize Lines
Joins all the rows you select to one row and normalizes the content.

Insert new line after
Inserts a new line after the line at the cursor position.

Modify all matches
Use this option to modify (in-place) all the occurrences of the selected content. When you use this option, a
thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases
are found, a dialog box is displayed that allows you select whether you want to modify only matches with the
same letter case or all matches.

Open
Allows you to select one of the following actions:

• Open File at Cursor - select this action to open the source of the file located at the cursor position
• Open File at Cursor in System Application - select this action to open the source of the file located at the

cursor position with the application that the system associates with the file

Compare
Select this option to open the Compare Files tool to compare the file you are editing with a file you choose in
the dialog box.

Folding
When you invoke the contextual menu from the folding triangles in the stripe on the left side of the editor, the
following actions are available:

Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))
Folds all the elements except the current element.

Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))
Folds the elements indented with one level inside the current element.

Expand Child Folds
Unfolds all child elements of the currently selected element.

Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))
Unfolds all elements in the current document.

Validating JavaScript Files
You have the possibility to validate the JavaScript document you are editing. Oxygen XML Developer uses the
Mozilla Rhino library for validation. For more information about this library, go to http://www.mozilla.org/rhino/
doc.html. The JavaScript validation process checks for errors in the syntax. Calling a function that is not defined
is not treated as an error by the validation process. The interpreter discovers this error when executing the faulted
line. Oxygen XML Developer can validate a JavaScript document both on-request and automatically.

Editing Documents 510

http://www.mozilla.org/rhino/doc.html
http://www.mozilla.org/rhino/doc.html

Content Completion in JavaScript Documents
When you edit a JavaScript document, the Content Completion Assistant presents you a list of the elements you
can insert at the cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X)
shortcut.

For an enhanced assistance, JQuery methods are also presented. The following icons decorate the elements in
the content completion list of proposals depending on their type:

• - function
• - variable
• - object
• - property
• - method

Note: These icons decorate both the elements from the content completion list of proposals and from the
Outline view.

Figure 307: JavaScript Content Completion Assistant

The Content Completion Assistant collects:

• Method names from the current file and from the library files.
• Functions and variables defined in the current file.

If you edit the content of a function, the content completion list of proposals contains all the local variables
defined in the current function, or in the functions that contain the current one.

Syntax Highlighting in JavaScript Documents
Oxygen XML Developer supports syntax highlighting in JavaScript files to improve the readability of the content
and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for JavaScript files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the JavaScript section in the top pane.

Editing Documents 511

4. Select the component you want to change and customize the colors or styles using the selectors to the right
of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Syntax Highlight Preferences on page 82

JavaScript Outline View
Oxygen XML Developer present a list of all the components of the JavaScript document you are editing in the
Outline view. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened
by selecting it from the Window > Show View menu.

Figure 308: JavaScript Outline View

The following icons decorate the elements in the Outline view depending on their type:

• - function
• - variable
• - object
• - property
• - method

The contextual menu of the JavaScript Outline view contains the usual Cut, Copy, Paste, and Delete
actions. From the Settings menu, you can select the Update selection on cursor move option to synchronize
the Outline view with the editing area.

Editing XProc Scripts
An XProc script is edited as an XML document that is validated against a RELAX NG schema. If the script has
an associated transformation scenario, then the XProc engine from the scenario is invoked as validating engine.
The default engine for XProc scenarios is the Calabash engine that comes bundled with Oxygen XML Developer
version 19.0.

Editing Documents 512

XProc Content Completion

Oxygen XML Developer helps you edit a XProc scripts through the Content Completion Assistant, offering
proposals that are valid at the cursor position. It can be manually activated with the Ctrl + Space (Command +
Space on OS X) shortcut.

The content completion inside the element input/inline from the XProc namespace http://www.w3.org/ns/
xproc offers elements from the following schemas depending both on the port attribute and the parent of the
input element. When invoking the content completion inside the XProc element inline, the list of content
completion proposals is populated as follows:

• If the value of the port attribute is stylesheet and the xslt element is the parent of the input elements,
the Content Completion Assistant offers XSLT elements.

• If the value of the port attribute is schema and the validate-with-relax-ng element is the parent of the
input element, the Content Completion Assistant offers RELAX NG schema elements.

• If the value of the port attribute is schema and the validate-with-xml-schema element is the parent of
the input element, the Content Completion Assistant offers XML Schema schema elements.

• If the value of the port attribute is schema and the validate-with-schematron element is the parent of
the input element , the Content Completion Assistant offers either ISO Schematron elements or Schematron
1.5 schema elements.

• If the above cases do not apply, then the Content Completion Assistant offers elements from all the schemas
from the above cases.

Figure 309: XProc Content Completion

XProc Syntax Highlighting

The XProc editor assists you in writing XPath expressions by offering dedicated coloring schemes for syntax
highlighting.

To customize the colors or styles used for the syntax highlighting colors for XProc, follow these steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Editing Documents 513

Editing Schematron Schemas
Schematron is a simple and powerful Structural Schema Language for making assertions about patterns found
in XML documents. It relies almost entirely on XPath query patterns for defining rules and checks. Schematron
validation rules allow you to specify a meaningful error message. This error message is provided to you if an error
is encountered during the validation stage.

Oxygen XML Developer assists you in editing Schematron documents with schema-based content completion,
syntax highlight, search and refactor actions, and dedicated icons for the Outline view. You can create a new
Schematron schema using one of the Schematron templates available in the New document wizard.

For information about applying and detecting Schematron schemas, see Associating a Schema to XML
Documents on page 294.

Validating XML Documents Against Schematron

The Skeleton XSLT processor is used for validation and conforms with ISO Schematron or Schematron 1.5. It
allows you to validate XML documents against Schematron schemas or against combined RELAX NG / W3C XML
Schema and Schematron.

How to Specify the Query Language Binding

You can specify the query language binding to be used in the Schematron schema by doing the following:

• For embedded ISO schematron, open the Preferences dialog box (Options > Preferences), go to XML > XML
Parser > Schematron, and select it in the Embedded rules query language binding option.

• For standalone ISO Schematron, specify the version by setting the query language to be used in a
queryBinding attribute on the schema root element. For more information, see the Query Language Binding
section of the Schematron specifications.

• For Schematron 1.5 (standalone and embedded), open the Preferences dialog box (Options > Preferences), go
to XML > XML Parser > Schematron, and select the version in the XPath Version option.

Multi-Lingual Support in Schematron Messages

You can specify the desired language for the validation messages in the Schematron Preferences page. The
Schematron validation messages can be presented in multiple languages by defining the language for each
message using the Schematron diagnostics. For more information, see the Use of Schematron for Multi-
Lingual Schemas specification.

How to Customize Color Schemes in Schematron

The Schematron editor renders the XPath expressions with dedicated coloring schemes . To customize the
coloring schemes, open the Preferences dialog box (Options > Preferences) and go to Editor > Syntax Highlight.

Schematron Transformation Scenario

When you create a Schematron document, Oxygen XML Developer provides a built-in transformation scenario.
You can use this scenario to obtain the XSLT style-sheet corresponding to the Schematron schema. You can
apply this XSLT stylesheet to XML documents to obtain the Schematron validation results.

To watch our video demonstration about the Schematron support in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/Schematron_Validation.html, and to https://www.oxygenxml.com/demo/
Editing_Schematron_Schemas.html.

Related Information:
Editing XML Documents in Text Mode on page 237
Associating a Schema to XML Documents on page 294

Editing Documents 514

http://www.schematron.com/iso/
http://www.schematron.com/iso/
http://www.schematron.com/iso/
http://www.schematron.com/iso/
https://www.oxygenxml.com/demo/Schematron_Validation.html
https://www.oxygenxml.com/demo/Schematron_Validation.html
https://www.oxygenxml.com/demo/Editing_Schematron_Schemas.html
https://www.oxygenxml.com/demo/Editing_Schematron_Schemas.html

Editing Schematron Schema in the Master Files Context
Smaller interrelated modules that define a complex Schematron cannot be correctly edited or validated
individually, due to their interdependency with other modules. For example, a diagnostic defined in a main
schema document is not visible when you edit an included module. Oxygen XML Developer provides the support
for defining the main module (or modules), thus allowing you to edit any of the imported/included schema files in
the context of the larger schema structure.

You cat set a main Schematron document either using the master files support from the Project view, or using a
validation scenario.

To set a main file using a validation scenario, add validation units that point to the main schemas. Oxygen XML
Developer warns you if the current module is not part of the dependencies graph computed for the main schema.
In this case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant displays all the referable components valid in the current context. This include

components defined in modules other than the currently edited one.

Validating Schematron Documents
By default, a Schematron schema is validated as you type. To change this, open the Preferences dialog box
(Options > Preferences), go to Editor > Document Checking, and deselect the Enable automatic validation option.

To validate a Schematron document manually, select the Validate action from the Validation toolbar drop-
down menu or the Document > Validate menu. When Oxygen XML Developer validates a Schematron schema,
it expands all the included modules so the entire schema hierarchy is validated. The validation problems are
highlighted directly in the editor, making it easy to locate and fix any issues.

Oxygen XML Developer offers an error management mechanism capable of pinpointing errors in XPath
expressions and in the included schema modules.

Related Information:
Presenting Schematron Validation Issues

Presenting Schematron Validation Issues
The possible issues that might occur during the validation process when validating XML documents against
Schematron are presented with colored underlines in the editing pane, colored markers in the right vertical stripe,
and details about the issues are presented in the Errors panel at the bottom area of the Oxygen XML Developer
window. Each error is flagged with a severity level that can be: warning, error, fatal or info.

To set a severity level, Oxygen XML Developer looks for the following information:

• The role attribute, which can have one of the following values:

• warn or warning - Sets the severity level to warning. By default, underlined with a yellow squiggly line in
the editing pane and a yellow marker in the right vertical stripe.

• error - Sets the severity level to error. By default, underlined with a red squiggly line in the editing pane
and a red marker in the right vertical stripe.

• fatal - Sets the severity level to fatal. By default, underlined with a red squiggly line in the editing pane and
a red marker in the right vertical stripe.

• info or information - Sets the severity level to info. By default, underlined with a blue squiggly line in the
editing pane and a blue marker in the right vertical stripe.

• The start of the message, after trimming leading white-spaces. Oxygen XML Developer looks to match the
following exact string of characters (case sensitive):

• Warning: - Sets the severity level to warning. By default, underlined with a yellow squiggly line in the
editing pane and a yellow marker in the right vertical stripe.

• Error: - Sets the severity level to error. By default, underlined with a red squiggly line in the editing pane
and a red marker in the right vertical stripe.

Editing Documents 515

• Fatal: - Sets the severity level to fatal. By default, underlined with a red squiggly line in the editing pane
and a red marker in the right vertical stripe.

• Info: - Sets the severity level to info. By default, underlined with a blue squiggly line in the editing pane
and a blue marker in the right vertical stripe.

• If none of the previous rules match, Oxygen XML Developer sets the severity level to error. By default,
underlined with a red squiggly line in the editing pane and a red marker in the right vertical stripe.

Tip: You can configure the color for each type in the Document Checking preferences page.

Related Information:
Validating XML Documents Against a Schema on page 277
Validation Scenario on page 281
Associating a Schema to XML Documents on page 294
Presenting Validation Errors in Text Mode on page 183

Content Completion in Schematron Documents
Oxygen XML Developer helps you edit a Schematron schema through the Content Completion Assistant, offering
proposals that are valid at the cursor position. It can be manually activated with the Ctrl + Space (Command +
Space on OS X) shortcut.

When you edit the value of an attribute that refers a component, the proposed components are collected from
the entire schema hierarchy. For example, if the editing context is phase/active/@pattern, the Content
Completion Assistant proposes all the defined patterns.

Note: For Schematron resources, the Content Completion Assistant collects its components starting from the
master files. The master files can be defined in the project or in the associated validation scenario. For further
details about the Master Files support go to Defining Master Files at Project Level.

If the editing context is an attribute value that is an XPath expression (such as assert/@test or report/
@test), the Content Completion Assistant offers the names of XPath functions, the XPath axes, and user-defined
variables.

The Content Completion Assistant displays XSLT 1.0 functions and optionally XSLT 2.0 / 3.0 functions in the
attributes path, select, context, subject, test depending on the Schematron options that are set in Preferences
pages. If the Saxon 6.5.5 namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.7.0.15
namespace is declared in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content
completion also displays the XSLT Saxon extension functions as in the following figure:

Figure 310: XSLT Extension Functions in Schematron Schema Content Completion

Editing Documents 516

The Content Completion Assistant also includes code templates that can be used to quickly insert code fragments
into Schematron documents.

Syntax Highlighting in Schematron
Oxygen XML Developer supports syntax highlighting in Schematron schemas to improve the readability of the
content and reduce the time it takes to internalize the semantics of the structured content.

To customize the colors or styles used for the syntax highlighting colors for Schematron schemas, follow these
steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Developer also allows you to specify syntax highlighting colors for specific XML elements
and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/
Attributes by Prefix preferences page.

Related Information:
Syntax Highlight Preferences on page 82

XML Schema or RELAX NG with Embedded Schematron Rules
Schematron rules can be embedded into an XML Schema through annotations (using the appinfo element), or
in any element on any level of a RELAX NG Schema (taking into account that the RELAX NG validator ignores all
elements that are not in the RELAX NG namespace).

Oxygen XML Developer accepts such documents as Schematron validation schemas and it is able to extract and
use the embedded rules.

Validating XML Documents with Relax NG and Embedded Schematron

To validate an XML document with both RELAX NG schema and its embedded Schematron rules, you need to
associate the document with both schemas. For example:

<?xml-model href="percent.rng" type="application/xml"
 schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="percent.rng" type="application/xml"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>

The second association validates your document with Schematron rules extracted from the RELAX NG Schema.

Validating XML Documents with XML Schema and Embedded Schematron

Similarly, you can specify an XML Schema having the embedded Schematron rules.

<?xml-model href="percent.xsd" type="application/xml"
 schematypens="http://purl.oclc.org/dsdl/schematron"?>

Note: When you work with XML Schema or Relax NG documents that have embedded Schematron rules Oxygen
XML Developer provides two built-in validation scenarios: Validate XML Schema with embedded Schematron
for XML schema , and Validate Relax NG with embedded Schematron for Relax NG. You can use one of these
scenarios to validate the embedded Schematron rules.

Example: Embedded Schematron in Relax NG Schema

<sch:pattern>
 <sch:rule context="...">
 <sch:assert test="...">Message.</sch:assert>
 </sch:rule>
</sch:pattern>

Editing Documents 517

Example: Embedded Schematron in XML Schema

<xsd:appinfo>
 <sch:pattern>
 <sch:rule context="...">
 <sch:assert test="...">Message.</sch:assert>
 </sch:rule>
 </sch:pattern>
</xsd:appinfo>

Related Information:
Embed Schematron Quick Fixes in Relax NG or XML Schema on page 531

Schematron Outline View
The Outline view for Schematron schemas presents a list of components in a tree-like structure and it allows for
quick access to a component by name. By default, it is displayed on the left side of the editor. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 311: Schematron Outline View

The following actions are available in the Settings menu on the Outline view toolbar:

Filter returns exact matches
The text filter of the Outline view returns only exact matches.

Selection update on cursor move
Controls the synchronization between Outline view and source document. The selection in the Outline view
can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components
from the Outline view also selects the corresponding item in the source document.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from
the Outline preferences panel.

Editing Documents 518

Configure displayed attributes
Displays the XML Structured Outline preferences page.

The following contextual menu actions are also available in the Outline view:

Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Toggle Comment
Comments/uncomments the currently selected element.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type
a text fragment in the filter box and only the components that match it are presented. For advanced usage you
can use wildcard characters (*, ?) and separate multiple patterns with commas.

Schematron Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view allows you to see the hierarchy/dependencies for a Schematron
schema. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the hierarchy of a schema, select the desired schema in the Project view and choose Resource
Hierarchy from the contextual menu.

Figure 312: Resource Hierarchy/Dependencies View

If you want to see the dependencies of a schema, select the desired schema in the Project view and choose
Resource Dependencies from the contextual menu.

Editing Documents 519

Figure 313: Resource Hierarchy/Dependencies View - Dependencies for table_abstract.sch

The following actions are available in the Resource Hierarchy/Dependencies view:

Refresh
Refreshes the Hierarchy/Dependencies structure.

Stop
Stops the hierarchy/dependencies computing.

Show Hierarchy
Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies
Allows you to choose a resource to compute the dependencies structure.

Configure
Allows you to configure a scope to compute the dependencies structure. There is also an option for
automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove
all items from this list.

The contextual menu contains the following actions:
Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.
Copy location

Copies the location of the resource.
Move resource

Moves the selected resource.
Rename resource

Renames the selected resource.
Show Resource Hierarchy

Shows the hierarchy for the selected resource.
Show Resource Dependencies

Shows the dependencies for the selected resource.

Add to Master Files
Adds the currently selected resource in the Master Files directory.

Expand All
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All
Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Editing Documents 520

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon
.

Note: The Move resource or Rename resource actions give you the option to update the references to the
resource.

Moving/Renaming Schematron Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the
Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the
Rename resource dialog box is displayed. The following fields are available:

• New name - Presents the current name of the edited resource and allows you to modify it.
• Update references - Select this option to update the references to the resource you are renaming.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the
Move resource dialog box is displayed. The following fields are available:

• Destination - Presents the path to the current location of the resource you want to move and gives you the
option to introduce a new location.

• New name - Presents the current name of the moved resource and gives you the option to change it.
• Update references of the moved resource(s) - Select this option to update the references to the resource you

are moving, in accordance with the new location and name.

If the Update references of the moved resource(s) option is selected, a Preview option (which opens the Preview
dialog box) is available for both actions. The Preview dialog box presents a list with the resources that are
updated.

Highlight Component Occurrences in Schematron Documents
When you position your mouse cursor over a component in a Schematron document, Oxygen XML Developer
searches for the component declaration and all its references and highlights them automatically.

Customizable colors are used: one for the component definition and another one for component references.
Occurrences are displayed until another component is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box (Options >
Preferences) and go to Editor > Mark Occurrences. You can also trigger a search using the Search > Search
Occurrences in File Ctrl + Shift + U (Command + Shift + U on OS X) action from contextual menu. Matches are
displayed in separate tabs of the Results view.

Searching and Refactoring Operations in Schematron Documents

Search Actions

The following search actions can be applied on pattern, phase, or diagnostic types and are available from
the Search submenu in the contextual menu of the current editor or from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box is displayed and you have the possibility to define another search
scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box will be displayed and you have the possibility to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when you define a scope for the search operation.

Editing Documents 521

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently
edited file.

Refactoring Actions

The following refactoring actions can be applied on pattern, phase, or diagnostic types and are available
from the Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring
menu:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Figure 314: Rename Identity Constraint Dialog Box

Searching and Refactoring Operations Scope in Schematron Documents

The scope is a collection of documents that define the context of a search and refactor operation. To control it
you can use the Change scope operation, available in the Quick Assist action set or on the Resource Hierarchy/
Dependency View toolbar. You can restrict the scope to the current project or to one or multiple working sets. The
Use only Master Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations
to the resources from the Master Files directory. Click read more for details about the Master Files support.

Editing Documents 522

Figure 315: Change Scope Dialog Box

The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu
actions allow you to add or delete files, folders, and other resources to the working set structure.

Quick Assist Support in Schematron Documents
The Quick Assist support improves the development work flow, offering fast access to the most commonly used
actions when you edit schema documents.

The Quick Assist feature is activated automatically when the cursor is positioned over the name of a component.
It is accessible via a yellow bulb icon () placed at the current line in the stripe on the left side of the editor. Also,
you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 316: Schematron Quick Assist Support

The Quick Assist support offers direct access to the following actions:

Rename Component in
Renames the component and all its dependencies.

Search Declarations
Searches the declaration of the component in a predefined scope. It is available only when the context
represents a component name reference.

Search References
Searches all references of the component in a predefined scope.

Component Dependencies
Searches the component dependencies in a predefined scope.

Editing Documents 523

Change Scope
Configures the scope that will be used for future search or refactor operations.

Rename Component
Allows you to rename the current component in-place.

Search Occurrences
Searches all occurrences of the component within the current file.

Editing Schematron Quick Fixes
Oxygen XML Developer provides support for editing the Schematron Quick Fixes. You can define a library of Quick
Fixes by editing them directly in the current Schematron file or in a separate file. Oxygen XML Developer assists
you in editing Schematron Quick Fixes with schema-based content completion, syntax highlighting, and validation
as you type.

For information about applying and detecting the Schematron schemas that include SQF, see Associating a
Schema to XML Documents on page 294.

Related Information:
Oxygen XML Blog: Schematron Checks to Help Technical Writing

Schematron Quick Fixes (SQF)
Oxygen XML Developer provides support for Schematron Quick Fixes (SQF). They help you resolve issues that
appear in XML documents that are validated against Schematron schemas by offering you solution proposals.
The Schematron Quick Fixes are an extension of the Schematron language and they allow you to define fixes for
Schematron validation messages. Specifically, they are associated with assert or report messages.

A typical use case is using Schematron Quick Fixes to assist content authors with common editing tasks.
For example, you can use Schematron rules to automatically report certain validation warnings (or errors)
when performing regular editing tasks, such as inserting specific elements or changing IDs to match
specific naming conventions. For more details and examples, please see the following blog post: http://
blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html.

Displaying the Schematron Quick Fix Proposals

The defined Schematron Quick Fixes are displayed on validation errors in Text mode.

Figure 317: Example of a Schematron Quick Fix

Related Information:
Editing Schematron Quick Fixes on page 524
Schematron Quick Fix Specifications
Presenting Schematron Validation Issues

Defining Schematron Quick Fixes
You can define and customize Schematron Quick Fixes directly in the current Schematron file or in a separate
Schematron file. The Schematron Quick Fixes are an extension of the Schematron language and they allow you to
define fixes for Schematron error messages. You can refer the Quick Fixes from the assert or report elements
in the values of the sqf:fix attributes.

Editing Documents 524

http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html
http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html
http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html
http://schematron-quickfix.github.io/sqf/publishing-snapshots/April2015Draft/spec/SQFSpec.html

Defining a Schematron Quick Fix

The basics of a Schematron Quick Fix is defined by an ID, name, description, and the operations to be executed.

• ID - Defined by the id attribute from the fix element and must be unique in the current context. It is used to
refer the Quick Fix from a report or assert element.

• Name - The name of the Quick Fix is defined by the title element.
• Description - Defined by the text in the paragraphs (p) of the description element.
• Operations - The following basic types of operations (elements) are supported:

• <sqf:add> Element - To add a new node or fragment in the document.
• <sqf:delete> Element - To remove a node from the document.
• <sqf:replace> Element - To replace a node with another node or fragment.
• <sqf:stringReplace> Element - To replace text content with other text or a fragment.

Figure 318: Schematron Quick Fix Components

The assertion message that generates the Quick Fix is added as the description of the problem to be fixed.
The title is presented as the name of the Quick Fix. The content of the paragraphs (p) within the description
element are presented in the tooltip message when the Quick Fix is selected.

Additional Elements Supported in the Schematron Quick Fixes

<sqf:user-entry>
This element defines a value that must be set manually by the user. For more information, see User Entry SQF
Operation on page 528.

<sqf:call-fix>
This element calls another Quick Fix within a Quick Fix. The called Quick Fix must be defined globally or in the
same Schematron rule as the calling Quick Fix. A calling Quick Fix adopts the activity elements of the called
Quick Fix and should not include other activity elements. You can also specify which parameters are sent by
using the <sqf:with-param> child element.

<sqf:group>
Allows you to group multiple Quick Fixes and refer them from an assert or report element.

<sqf:fixes>
Is defined globally and contains global fixes and groups of fixes.

<sqf:keep>
Used to copy the selected nodes that are specified by the select attribute.

Note: In Oxygen XML Developer the copied nodes cannot be manipulated by the current or other activity
elements.

Editing Documents 525

<sqf:param>
Defines a parameter for a Quick Fix. If the parameter is defined as abstract then the type and default value
should not be specified and the fix can be called from an abstract pattern that defines this parameter.

Other SQF Notes

Note: The sqf:default-fix attribute is ignored in Oxygen XML Developer.

For more details on editing Schematron Quick Fixes, go to: Schematron Quick Fix Specifications

Basic Schematron Quick Fix Operations

There are four basic operations that can be executed in a Schematron Quick Fix: Add, Delete, Replace, and String
Replace.

Add

The <sqf:add> element allows you to add a node to the instance. An anchor node is required to select the
position for the new node. The anchor node can be selected by the match attribute. Otherwise, it is selected
by the context attribute of the rule.

The target attribute defines the name of the node to be added. It is required if the value of the node-type
attribute is set to anything other than "comment".

The <sqf:add> element has a position attribute and it determines the position relative to the anchor
node. The new node could be specified as the first child of the anchor node, the last child of the anchor node,
before the anchor node, or after the anchor node (first-child is the default value). If you want to add an
attribute to the anchor node, do not use the position attribute.

Note: If you insert an element and its content is empty, Oxygen XML Developer will insert the required
element content.

An Example of the <sqf:add> Element:

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
 queryBinding="xslt2">
 <pattern>
 <rule context="head">
 <assert test="title" sqf:fix="addTitle">title element missing.</assert>
 <sqf:fix id="addTitle">
 <sqf:description>
 <sqf:title>Insert title element.</sqf:title>
 </sqf:description>
 <sqf:add target="title" node-type="element">Title text</sqf:add>
 </sqf:fix>
 </rule>
 </pattern>
</schema>

Specific Add Operations:

• Insert Element - To insert an element, use the <sqf:add> element, set the value of the node-type
to "element", and specify the element QName with the target attribute. If the element has a prefix,
it must be defined in the Schematron using a namespace declaration (<ns uri="namespace"
prefix="prefix"/>).

• Insert Attribute - To insert an attribute, use the <sqf:add> element, set the value of the node-type
to "attribute", and specify the attribute QName with the target attribute. If the attribute has a prefix,
it must be defined in the Schematron using a namespace declaration (<ns uri="namespace"
prefix="prefix"/>).

• Insert Fragment - If the node-type is not specified, the <sqf:add> element will insert an XML fragment.
The XML fragment must be well formed. You can specify the fragment in the add element or by using the
select attribute.

• Insert Comment - To insert a comment, use the <sqf:add> element and set the value of the node-type
to "comment".

• Insert Processing Instruction - To insert a processing instruction, use the <sqf:add> element, set
the value of the node-type to "pi" or "processing-instruction", and specify the name of the processing
instruction in the target attribute.

Editing Documents 526

http://schematron-quickfix.github.io/sqf/publishing-snapshots/April2015Draft/spec/SQFSpec.html

Delete
The <sqf:delete> element allows you to remove any type of node (such as elements, attributes, text,
comments, or processing instructions). To specify nodes for deletion the <sqf:delete> element can
include a match attribute that is an XPath expression (the default value is .). If the match attribute is not
included, it deletes the context node of the Schematron rule.

An Example of the <sqf:delete> Element:

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <pattern>
 <rule context="*[@xml:lang]">
 <report test="@xml:lang" sqf:fix="remove_lang">
 The attribute "xml:lang" is forbidden.</report>
 <sqf:fix id="remove_lang">
 <sqf:description>
 <sqf:title>Remove "xml:lang" attribute</sqf:title>
 </sqf:description>
 <sqf:delete match="@xml:lang"/>
 </sqf:fix>
 </rule>
 </pattern>
</schema>

Replace
The <sqf:replace> element allows you to replace nodes. Similar to the <sqf:delete> element, it can
include a match attribute. Otherwise, it replaces the context node of the rule. The <sqf:replace> element
has three tasks. It identifies the nodes to be replaced, defines the replacing nodes, and defines their content.

An Example of the <sqf:replace> Element:

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
 queryBinding="xslt2">
 <pattern>
 <rule context="title">
 <report test="exists(ph)" sqf:fix="resolvePh" role="warn">
 ph element is not allowed in title.</report>
 <sqf:fix id="resolvePh">
 <sqf:description>
 <sqf:title>Change the ph element into text</sqf:title>
 </sqf:description>
 <sqf:replace match="ph">
 <value-of select="."/>
 </sqf:replace>
 </sqf:fix>
 </rule>
 </pattern>
</schema>

Other Attributes for Replace Operations:

• node-type - Determines the type of the replacing node. The permitted values include:

• keep - Keeps the node type of the node to be replaced.
• element - Replaces the node with an element.
• attribute - Replaces the node with an attribute.
• pi - Replaces the node with a processing instruction.
• comment - Replaces the node with a comment.

• target - By using a QName it gives the replacing node a name. This is necessary when the value of the
node-type attribute is anything other than "comment".

• select - Allows you to choose the content of the replacing nodes. You can use XPath expressions with
the select attribute. If the select attribute is not specified then the content of the <sqf:replace>
element is used instead.

String Replace
The <sqf:stringReplace> element is different from the others. It can be used to find a sub-string of text
content and replace it with nodes or other strings.

Attributes for the String Replace Operation:

• match - Allows you to select text nodes that contain the sub-strings you want to replace.

Editing Documents 527

• select - Allows you to select the replacing fragment, in case you do not want to set it in the content of
the stringReplace element.

• regex - Matches the sub-strings using a regular expression.

Note: Consider the following information about using regular expressions in the stringReplace
element:

• The regular expressions from this operation are compiled as Java regular expressions. For more
information, see https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

• The j flag allows you to use the standard Java regular expression engine, which allows native Java
regular expression syntax. This allows, for example, the use of \b in a regular expression to match
word boundaries. For more information, see http://www.saxonica.com/html/documentation/functions/
fn/matches.html.

• Regular expressions in the <sqf:stringReplace> element always have the dot matches all flag set
to "true". Therefore, the line terminator will also be matched by the regular expression.

Attention: The context of the content within the <sqf:stringReplace> element is set to the whole
text node, rather than the current sub-string.

An Example of the <sqf:stringReplace> Element:

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
 queryBinding="xslt2">
 <sch:pattern>
 <sch:rule context="text()">
 <sch:report test="matches(., '[oO][xX]ygen')"
 sqf:fix="changeWord">The oXygen word is not allowed</sch:report>
 <sqf:fix id="changeWord">
 <sqf:description>
 <sqf:title>Replace word with product</sqf:title>
 </sqf:description>
 <sqf:stringReplace regex="[oO][xX]ygen"><ph keyref="product"/>
 </sqf:stringReplace>
 </sqf:fix>
 </sch:rule>
 </sch:pattern>
</sch:schema>

Related Information:
User Entry SQF Operation on page 528
Restricting Quick Fix Operations on page 528

User Entry SQF Operation

The <sqf:user-entry> element defines a value that must be set manually by the user. If multiple user-
entry elements are defined, Oxygen XML Developer will display a dialog box for each one, in which the user can
specify values. Also, the <user-entry> element can be used as an XPath variable where the XPath variable is
the name of the user-entry.

An Example of the <sqf:user-entry> Element:

<sqf:fix id="duplicate">
 <sqf:description>
 <sqf:title>Change the name of the element</sqf:title>
 </sqf:description>
 <sqf:user-entry name="newName" default="product">
 <sqf:description>
 <sqf:title>Enter the new name of the element</sqf:title>
 </sqf:description>
 </sqf:user-entry>
 <sqf:replace node-type="element" target="{$newName}" select="child::node()"/>
</sqf:fix>

Related Information:
Basic Schematron Quick Fix Operations on page 526

Restricting Quick Fix Operations

To restrict a Quick Fix or a specific operation to only be available if certain conditions are met, the use-when
attribute can be included in the <sqf:fix> element or any of the SQF operation elements. The condition of the

Editing Documents 528

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://www.saxonica.com/html/documentation/functions/fn/matches.html
http://www.saxonica.com/html/documentation/functions/fn/matches.html

use-when attribute is an XPath expression and the fix or operation will be performed only if the condition is
satisfied. In the following example, the use-when condition is applied to the <sqf:fix> element:

<sqf:fix id="last" use-when="$colWidthSummarized - 100 lt $lastWidth"
 role="replace">
 <sqf:description>
 <sqf:title>Subtract excessive width from the last element.</sqf:title>
 </sqf:description>
 <let name="delta" value="$colWidthSummarized - 100"/>
 <sqf:add match="html:col[last()]" target="width" node-type="attribute">
 <let name="newWidth" value="number(substring-before(@width,'%')) - $delta"/>
 <value-of select="concat($newWidth,'%')"/>
 </sqf:add>
</sqf:fix>

Related Information:
Basic Schematron Quick Fix Operations on page 526

Formatting/Indenting Content Inserted by SQF Operations

Content that is inserted by the Add, Replace, or String Replace Schematron Quick Fix operations is automatically
indented unless you set the value of the xml:space attribute to preserve on the operation element. There are
several methods available to format the content that is inserted:

• xsl:text - You can use an xsl:text element to format the inserted content and keep the automatic
indentation, as in the following example:

<sqf:add position="last-child">
 <row><xsl:text>
 </xsl:text>
 <entry>First column</entry><xsl:text>
 </xsl:text>
 <entry>Second column</entry><xsl:text>
 </xsl:text>
 </row><xsl:text>
 </xsl:text>
</sqf:add>

• xml:space - Use the xml:space attribute and set its value to preserve to format the content and specify
the spacing between elements, as in the following example:

<sqf:add node-type="element" target="codeblock" xml:space="preserve">
 /* a long sample program */
 Do forever
 Say "Hello, World"
 End</sqf:add>

Related Information:
Basic Schematron Quick Fix Operations on page 526

Executing Schematron Quick Fixes in Other Documents

You can apply Schematron Quick Fixes over nodes from referenced documents (using XInclude or external
entities), and you can access them as nodes in your current document.

Also, you can apply the Quick Fixes over other documents using the doc() function in the value of the match
attribute. For example, you can add a new key in the keylist.xml file using the following operation:

<sqf:add match="doc('keylist.xml')/KeyList" target="Key"
 node-type="element" select="Key2">

Validating Schematron Quick Fixes
By default, Schematron Quick Fixes are validated as you edit them within the Schematron file or while editing
them in a separate file. To change this, open the Preferences dialog box (Options > Preferences), go to Editor >
Document Checking, and deselect the Enable automatic validation option.

To validate Schematron Quick Fixes manually, select the Validate action from the Validation toolbar drop-
down menu or the Document > Validate menu. The validation problems are highlighted directly in the editor,
making it easy to locate and fix any issues.

Editing Documents 529

Related Information:
Validating XML Documents Against a Schema on page 277
Validation Scenario on page 281
Presenting Validation Errors in Text Mode on page 183

Content Completion in SQF
Oxygen XML Developer helps you edit Schematron Quick Fixes embedded in a Schematron document by offering
proposals that are valid at the cursor position in a Content Completion Assistant. It can be manually activated with
the Ctrl + Space (Command + Space on OS X) shortcut.

When you edit the value of an attribute that references a Quick Fix ID, the ids are collected from the entire
definition scope. For example, if the editing context is assert/@sqf:fix, the Content Completion Assistant
proposes all fixes defined locally and globally.

If the editing context is an attribute value that is an XPath expression (such as sqf:add/@match or replace/
@select), the Content Completion Assistant offers the names of XPath functions, the XPath axes, and user-
defined variables and parameters.

The Content Completion Assistant displays XSLT 1.0 functions (and optionally XSLT 2.0 / 3.0 functions) in the
attributes path, select, context, subject, and test, depending on the Schematron options that are set in Preferences
pages. If the Saxon 6.5.5 namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.7.0.15
namespace is declared in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content
completion also displays the XSLT Saxon extension functions.

Highlight Quick Fix Occurrences in SQF
When you position your mouse cursor over a Quick Fix ID in a Schematron document, Oxygen XML Developer
searches for the Quick Fix declaration and all its references and highlights them automatically.

Customizable colors are used: one for the Quick Fix definition and another one for its references. Occurrences are
displayed until another Quick Fix is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box (Options >
Preferences) and go to Editor > Mark Occurrences. You can also trigger a search using the Search > Search
Occurrences in File (Ctrl + Shift + U (Command + Shift + U on OS X)) action from contextual menu. Matches are
displayed in separate tabs of the Results view.

Searching and Refactoring Operations in SQF

Search Actions

The following search actions can be applied on Quick Fix IDs and are available from the Search submenu in the
contextual menu of the current editor or from the Document > References menu:

• Search References - Searches all references of the item found at current cursor position in the defined
scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box is displayed and you have the possibility to define another search
scope.

• Search References in - Searches all references of the item found at current cursor position in the file or files
that you specify when define a scope in the Search References dialog box.

• Search Declarations - Searches all declarations of the item found at current cursor position in the defined
scope if any. If a scope is defined, but the current edited resource is not part of the range of resources
determined by this, a warning dialog box will be displayed and you have the possibility to define another
search scope.

• Search Declarations in - Searches all declarations of the item found at current cursor position in the file or
files that you specify when you define a scope for the search operation.

• Search Occurrences in File - Searches all occurrences of the item at the cursor position in the currently
edited file.

Editing Documents 530

Refactoring Actions

The following refactoring actions can be applied on Quick Fix IDs and are available from the Refactoring submenu
in the contextual menu of the current editor or from the Document > Refactoring menu:

• Rename Component - Allows you to rename the current component (in-place). The component and all its
references in the document are highlighted with a thin border and the changes you make to the component at
the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing,
press the Esc or Enter key on your keyboard.

• Rename Component in - Opens a dialog box that allows you to rename the selected component by
specifying the new component name and the files to be affected by the modification. If you click the Preview
button, you can view the files to be affected by the action.

Figure 319: Rename Identity Constraint Dialog Box

Embed Schematron Quick Fixes in Relax NG or XML Schema
Schematron Quick Fixes can be embedded into an XML Schema through annotations (using the appinfo
element), or in a schematron rule embedded in the RELAX NG Schema. For more information about embedding
schematron in XML Schema or Relax NG, see XML Schema or RELAX NG with Embedded Schematron Rules on
page 517.

Oxygen XML Developer is able to extract and use the embedded Schematron Quick Fixes. To make the embedded
Schematron Quick Fixes available, follow these steps:

1. Define a validation against a schema.
2. For the Schema type, choose XML Schema or Relax NG.
3. Select the Embedded schematron rules option.

Example: Embedded Schematron Quick Fix in XML Schema

<xsd:appinfo>
 <sch:pattern>
 <sch:rule context="...">
 <sch:assert test="..." sqf:fix="fixId">Message.</sch:assert>
 <sqf:fix id="fixId">

 </sqf:fix>
 </sch:rule>

Editing Documents 531

 </sch:pattern>
</xsd:appinfo>

Example: Embedded Schematron Quick Fix in Relax NG

<sch:pattern>
 <sch:rule context="...">
 <sch:assert test="..." sqf:fix="fixId">Message.</sch:assert>
 <sqf:fix id="fixId">

 </sqf:fix>
 </sch:rule>
</sch:pattern>

Tip: For more extensive examples, see our samples in the [OXYGEN_INSTALL_DIR]/samples/schematron
folder.

Related Information:
XML Schema or RELAX NG with Embedded Schematron Rules on page 517
Defining Schematron Quick Fixes on page 524

Integrating SQF in a Framework
You can use Schematron Quick Fixes to assist your content authors by imposing rules for an entire framework
(document type) and offering fixes when a rule violation is detected.

For example, if you are using DITA, you may want your contributors to avoid inserting a figure (fig element)
inside a paragraph (p element) that contains other content since it may result in undesirable placement or
spacing in the output. The Schematron rule and its Quick Fix for this particular use-case could look like this:

<schema xmlns="http://purl.oclc.org/dsdl/schematron"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
 queryBinding="xslt2">
 <pattern id="check.figure.location">
 <rule context="p/fig">
 <report test="true()" role="warn" sqf:fix="moveAfter">
 A figure inside a paragraph doesn't transform well into PDF. </report>
 <sqf:fix id="moveAfter">
 <sqf:description>
 <sqf:title>Move after the paragraph.</sqf:title>
 </sqf:description>
 <let name="figToMove" value="."/>
 <sqf:add match="parent::p" select="$figToMove" position="after"/>
 <sqf:delete match="."/>
 </sqf:fix>
 </rule>
 </pattern>
</schema>

The result of this example would be that the user will see a warning if they insert a fig element inside a p
element and they are presented with the option of selecting the Quick Fix that would move the figure outside the
paragraph.

How to Integrate SQF in a Framework

To integrate a Schematron Quick Fix in a framework, follow these steps:

1. Define a Schematron Quick Fix for a rule in an existing or new Schematron file.
2. Save it somewhere in your framework directory. For example, the default framework directory for DITA is

located in: [OXYGEN_INSTALL_DIR]/frameworks/dita/.
3. Add a reference to the Schematron file that includes the SQF in your framework by following the procedure in

Associating a Schema in Validation Scenarios Defined in the Document Type on page 297.
4. Open a document in your framework and test the new rule and Quick Fix.
5. You can continue to refine the rule and develop additional rules as needed.

Related Information:
Defining Schematron Quick Fixes on page 524
Basic Schematron Quick Fix Operations on page 526
Associating a Schema in Validation Scenarios Defined in the Document Type on page 297

Editing Documents 532

Editing SVG Files
SVG (Scalable Vector Graphics) is a platform for two-dimensional graphics. It has two parts: an XML-based file
format and a programming API for graphical applications. Some of the key features include support for shapes,
text, and embedded raster graphics with many painting styles, scripting through languages such as ECMAScript,
and support for animation.

SVG is a vendor-neutral, open standard that has important industry support. Companies such as Adobe, Apple,
and IBM have contributed to its W3C specifications. Many documentation frameworks (including DocBook) have
support for SVG by defining the graphics directly in the document.

Oxygen XML Developer adds SVG support by using the Batik distribution package (an open source project
developed by the Apache Software Foundation) and the default XML Catalog resolves the SVG DTD.

Note: Batik partially supports SVG 1.1. For a detailed list of supported elements, attributes, and properties, see
the Batik Implementation Status page.

How to Render SVG Images that Use Java Scripting

1. Copy the js.jar library from the Batik distribution into the Oxygen XML Developer lib folder.
2. Restart the application.

SVG 1.2 Rendering Issues

Oxygen XML Developer uses the Apache Batik open source library to render SVG images and it only has partial
support for SVG 1.2. For more information, see http://xmlgraphics.apache.org/batik/dev/svg12.html.

This partial support could lead to some rendering issues in Oxygen XML Developer. For example, if you are
using the Inkscape SVG editor, it is possible for it to save the SVG as 1.1, while using SVG 1.2 elements (such as
flowRoot) inside it. This means that the image will not be properly rendered inside the application.

Standalone SVG Viewer
Oxygen XML Developer includes a simple SVG Viewer that allows you to work with SVG images.

To open the viewer, select SVG Viewer from the Tools menu.

Figure 320: SVG Viewer

You can browse for and open any SVG file that has the .svg or .svgz extension.

If the file is included in the current project, you can open it in the viewer by right-clicking the image file in the
Project view and selecting Open with > SVG Viewer.

Editing Documents 533

http://xml.apache.org/batik/
http://xmlgraphics.apache.org/batik/status.html
http://xml.apache.org/batik/
http://xmlgraphics.apache.org/batik/dev/svg12.html

Actions Available in the SVG Viewer

The following actions are available in the SVG Viewer:

Zoom in
To zoom in on an image, use any of the following methods:

• Scroll forward with the mouse wheel.
• Select Zoom in from the contextual menu.
• Use the Ctrl + I (Command + I on OS X) keyboard shortcut.

Zoom out
To zoom in on an image, use any of the following methods:

• Scroll backward with the mouse wheel.
• Use the Ctrl + O (Command + O on OS X) keyboard shortcut.
• Select Zoom out from the contextual menu.

Rotate
To rotate an image, use either of the following methods:

• Use the Ctrl + Right-Click + Drag (Command + Right-Click + Drag on OS X) shortcut.
• Select Rotate from the contextual menu. This rotates the image exactly 90 degrees clockwise.

Refresh
To refresh (or reset) an image, use either of the following methods:

• Use the Ctrl + T (Command + T on OS X) keyboard shortcut.
• Select Refresh from the contextual menu.

Move
To move an image, use either of the following methods:

• Use the Arrow Keys on your keyboard.
• Use the Shift + Left-Click + Drag shortcut.

Pan
To pan an image, click and drag the image with your mouse.

Related Information:
Editing SVG Files on page 533

Integrated SVG Viewer in the Results Panel
Oxygen XML Developer includes an integrated SVG Viewer that can render the results of an XSLT transformation
scenario that generates SVG images in the Results panel at the bottom of the editor. This is useful for developing
XSL stylesheets with the capability of producing SVG graphics.

To enable this feature, select Show in results view as > SVG in the Output tab of the XSLT transformation scenario
configuration dialog box. When you run the transformation, the SVG result is then rendered in an integrated SVG
viewer in the Results panel.

Example of a Use-Case

Suppose you have an XML document that describes the evolution of your sales over a time period and you want
to create a graphic for it. You could use the following steps to accomplish this task:

1. Start with a static SVG image, written directly in Oxygen XML Developer or exported from a external graphics
tool.

2. Extract the parts that are dependent upon the data from the XML document and create an XSL template to
produce the image.

3. Create an XML transformation with XSLT scenario.
4. While configuring the transformation scenario, select Show in results view as > SVG in the Output tab of the

configuration dialog box.

Editing Documents 534

5. Run the transformation.

The SVG image is rendered in an integrated SVG viewer in the Results panel at the bottom of the editor.

Figure 321: Integrated SVG Viewer

Editing XHTML Documents
Oxygen XML Developer provides support for editing XHTML files. Oxygen XML Developer includes
XHTML catalogs and document templates to help you get started. You can also find a sample file in the
[OXYGEN_INSTALL_DIR]/samples/xhtml folder.

The XHTML editing features include:

• Source Editing - You can edit XHTML files in the Text editing mode (XML source editor) using all of its useful
features.

• Validation - Easily identify errors and their location with the Oxygen XML Developer XML validation features.
• Content Completion - The Content Completion Assistant displays a list of context-sensitive proposals that

are valid at the current cursor position. In Text mode, it can be manually activated with the Ctrl + Space
(Command + Space on OS X) shortcut, while in Author mode, it is activated by simply pressing Enter.

• Import HTML as XHTML - Oxygen XML Developer includes support for importing HTML files as an XML
document.

• Remote Editing - Oxygen XML Developer has built-in support for editing documents that are stored on remote
servers through FTP, SFTP, and WebDAV protocols, allowing you to edit XHTML pages from your web server.

• Syntax Highlighting - XHTML documents with embedded CSS, JS, PHP, and JSP scripts are rendered with
dedicated coloring schemes. To customize them, open the Preferences dialog box (Options > Preferences)
and go to Editor > Syntax Highlight. Select and expand the XHTML section in the top pane and you can see the
effects of your changes in the Preview pane.

Related Information:
XHTML Document Type (Framework) on page 630

Editing Markdown Documents
Markdown was created as a lightweight markup language with plain text formatting syntax designed to provide a
syntax that is very easy to read and write, and to convert it to HTML and other formats. It is often used by content
contributors who want a quick and easy way to write content without having to take their fingers off the keyboard
and without having to learn numerous codes or shortcuts, and it can easily be shared interchangeably between
virtually any types of contributor and system.

Oxygen XML Developer provides a built-in Markdown editor that allows you to convert Markdown syntax to HTML
or DITA and it includes a preview panel to help you visualize the final output. Aside from the plain text syntax that
is common amongst most Markdown applications, the editor in Oxygen XML Developer also integrates many

Editing Documents 535

other powerful features that content authors are accustomed to using for other types of documents. Some of
these additional unique features include:

• Additional toolbar and contextual menu actions.
• Automatic validation to help keep the syntax valid.
• Dedicated syntax highlighting to make Markdown documents even easier to read and write.
• Unique features for creating Markdown documents directly in DITA maps and converting Markdown

documents to DITA topics.
• Specialized syntax rules to combine popular syntax features from several specifications.

Markdown Editor
Oxygen XML Developer provides an intuitive, dynamic, and easy-to-use Markdown editor for writing and
converting Markdown documents. It is a split-screen editor with two panels that are synchronized in real-time.
The left side is a simple text editor that is specially designed for writing Markdown syntax. The right side is a
WYSIWYG style preview of how changes will look in the output.

Markdown Text Editor Pane (Left Side)

The left pane is a simple text editor that is refined to accept Markdown syntax. At the same time, you still have
many of the actions, options, and features that you are used to when editing any other type of document in
Oxygen XML Developer.

The features of this special editor that are unique for Markdown documents include:

• Unique Markdown Syntax Rules - The Markdown editor in Oxygen XML Developer uses an integration of rules
that combine rules from common default Markdown syntax along with many of the rules used in the GitHub
Flavored Markdown syntax.

• Syntax Highlighting - The Oxygen XML Developer syntax highlighting feature is integrated into the Markdown
text editor to make it easier to read and write Markdown syntax. You can even customize the colors and styles
for the syntax highlighting.

• Automatic Spell Checking - The Markdown editor supports the Oxygen XML Developer automatic spell
checking feature that reports possible misspelled words as you type. You simply need to select the Automatic
spell check option in the Spell Check preferences page, then click the Select editors button and select
Markdown Editor.

• Helpful Toolbar and Contextual Menu Actions - A variety of unique actions are available from the toolbar to
help you insert proper Markdown syntax. The contextual menu also includes some common editing actions,
as well as unique actions to export (convert) Markdown documents to HTML or DITA.

• Shortcut Keys - Many of the shortcut keys that are most commonly used in Oxygen XML Developer also work in
the Markdown editor.

WYSIWYG Preview Pane (Right Side)

The right pane is a WYSIWYG Preview pane that shows a visual representation of how changes made in the left-
side text editor will be converted to HTML or DITA output. The changes you make in the text editor are parsed
continually and they are immediately visible in the Preview pane. There are two tabs available in the Preview pane,
one for visualizing DITA output and one for visualizing HTML output. You can switch between the two tabs at the
bottom of the pane.

The Preview pane includes the following unique features:

• WYSIWYG Visualization - This pane presents the Markdown syntax from the left-side text editor in a visual
WYSIWYG style interface that is automatically synchronized as you type.

• Export Options - The DITA tab includes a contextual menu action to export (convert) the current Markdown
document to a DITA topic. Similarly, the HTML tab includes a contextual menu action to export (convert) it to
an XHTML document.

• Automatic Validation - As you edit Markdown documents, they are validated automatically. The conversion
engine constantly tries to parse your changes and if a change results in an error that prevents the parser from
converting the syntax, an error message will be displayed in the Preview pane or Results view at the bottom of
the editor.

Editing Documents 536

• Print Feature - The Markdown editor includes a Print action that is available in the contextual menu and it
allows you to configure options for printing the current document as you see it in the Preview pane.

• Specialized DITA Features - The Markdown editor includes some unique, specialized features to integrate it
with the powerful DITA support in Oxygen XML Developer.

Figure 322: Markdown Editor in Oxygen XML Developer

Related Information:
Markdown Editor Syntax Rules and Specifications on page 543
Actions Available in the Markdown Editor on page 537
Working with Markdown Documents in DITA on page 543
Creating New Markdown Documents on page 537

Creating New Markdown Documents
To create a new Markdown document in Oxygen XML Developer, follow these steps:

1. Click the New button on the toolbar or select File > New.
2. Select the Markdown file template (in the New Document folder).
3. Click the Create button.

Result: A new Markdown document is created and it is opened in the specialized Markdown Editor.

Related Information:
Markdown Editor on page 536

Actions Available in the Markdown Editor
Aside from the actions that are available in Oxygen XML Developer for any type of document (such as the actions
in the various menus and the common sections of the toolbar), a variety of unique actions are also available in
the Markdown editor, from the toolbar and contextual menu.

Editing Documents 537

Toolbar Actions

The following default actions are readily available on the toolbar when editing Markdown documents:

Header (1st Level)
Inserts an atx-style first level header at the cursor position.

Header (2st Level)
Inserts an atx-style second level header at the cursor position.

Header (3rd Level)
Inserts an atx-style third level header at the cursor position.

Horizontal Rule
Inserts a horizontal rule at the cursor position.

Bold (Strong)
Marks the selected text with bold.

Italic (Emphasis)
Marks the selected text with italics.

Strikethrough
Marks the selected text with a strikethrough.

Code Block
Inserts (or surrounds selected text in) a codeblock.

Blockquote
Inserts a blockquote at the cursor position.

Insert Link
Opens the Insert Link dialog box that allows you to define a link to insert at the cursor position.

Figure 323: Insert Link Dialog Box

Insert Image
Opens the Insert Image dialog box that allows you to define an image to insert at the cursor position. You can
type the URL of the image you want to insert or use browsing tools in the Browse drop-down menu.

Editing Documents 538

Figure 324: Insert Link Dialog Box

Insert Ordered List
Inserts an ordered list at the cursor position. Three child list items are also automatically inserted by default.

Insert Unordered List
Inserts an unordered list at the cursor position. Three child list items are also automatically inserted by
default.

Insert Task List
Inserts a task list at the cursor position. Three child list items are also automatically inserted by default.

Insert Table
Inserts a table at the cursor position.

Contextual Menu Actions

The following default actions are available in the contextual menu when editing Markdown documents:

Cut, Copy, Paste
Use these actions to execute the typical editing actions on the currently selected content.

Source submenu
This submenu includes the following actions:

To Upper Case
Converts the content selection to upper case characters.

To Lower Case
Converts the content selection to lower case characters.

Capitalize Lines
It capitalizes the first letter found on every new line that is selected. Only the first letter is affected, the rest
of the line remains the same. If the first character on the new line is not a letter then no changes are made.

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))

Converts a sequence of hexadecimal characters to the corresponding Unicode character. The action can
be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at
the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2
to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X prefix. Examples of valid
sequences: 0x0045, 0X0125, 1253, 265, 43.

Base64 Encode/Decode submenu
This submenu includes the following actions for encoding or decoding base64 schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Editing Documents 539

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another
file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment where the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box
is displayed that allows you select whether you want to modify only matches with the same letter case
or all matches.

Base32 Encode/Decode submenu
This submenu includes the following actions for encoding or decoding base32 schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another
file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment where the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box

Editing Documents 540

is displayed that allows you select whether you want to modify only matches with the same letter case
or all matches.

Hex Encode/Decode submenu
This submenu includes the following actions for encoding or decoding hex schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another
file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is
displayed that allows you to select the encoding to use. There is an option to choose to not show this
dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32,
Hex conversions option in the Encoding preferences page will be used. Likewise, the same is true if
the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not
selected in the Messages preference page.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous
fragment where the cursor is located). When you use this option, a thin rectangle replaces the
highlights and allows you to start editing. If matches with different letter cases are found, a dialog box
is displayed that allows you select whether you want to modify only matches with the same letter case
or all matches.

Join and Normalize Lines (Ctrl + J (Command + J on OS X))
For the current selection, this action joins the lines by replacing the line separator with a single space
character. It also normalizes the whitespaces by replacing a sequence of such characters with a single
space.

Insert new line after (Ctrl + Alt + Enter (Command + Alt + Enter on OS X))
This action has the same result as moving the cursor to the end of the current line and pressing the ENTER
key.

Modify All Matches
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment
where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows
you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you
select whether you want to modify only matches with the same letter case or all matches.

Open submenu
The following actions are available in this submenu:

Open File at Cursor
Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be
opened in system file browser. If the file at the specified location does not exist, an error dialog box is
displayed and it includes a Create new file button that starts the New document wizard. This allows you to
choose the type or the template for the file. If the action succeeds, the file is created with the referenced
location and name and is opened in a new editor panel.

Editing Documents 541

Open File at Cursor in System Application
Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The
target is opened in the default system application associated with that file type.

Compare
Opens the current file in the Compare Files tool.

Show/Hide Preview
A toggle action that shows or hides the Preview pane.

Export as DITA Topic
Converts the current Markdown document into a DITA topic.

Export as HTML
Converts the current Markdown document into an XHTML document.

Print (Available in the Preview pane)
Opens a page setup dialog box that allows you to configure printing options for the current document.

Related Information:
Markdown Editor on page 536
Working with Markdown Documents in DITA on page 543
Markdown Editor Syntax Rules and Specifications on page 543

Syntax Highlighting in the Markdown Editor
Oxygen XML Developer supports syntax highlighting in the Markdown editor to improve the readability of the
content and make it easier to internalize the semantics of the content.

To customize the colors or styles used for the syntax highlighting colors for Markdown documents, follow these
steps:

1. Open the Preferences dialog box (Options > Preferences).
2. Go to Editor > Syntax Highlight.
3. Select and expand the Markdown section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right

of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Syntax Highlight Preferences on page 82
Markdown Editor on page 536

Automatic Validation in Markdown Documents
Markdown documents are validated automatically as you type. The conversion engine constantly tries to parse
your changes to display the results in the Preview pane. If a change results in an error that prevents the parser
from converting the syntax, an error message will be displayed in the DITA tab or in the Results view at the
bottom of the editor.

The types of errors that will be reported include the following:

• Improper order of headers.
• The syntax in a documents begins with something other than a 1st level header.
• Tags are not closed properly if XHTML markup is used in the document.
• Invalid tag names if XHTML markup is used in the document.
• Markup is not well formed if XHTML markup is used in the document.

Related Information:
Markdown Editor on page 536

Editing Documents 542

Working with Markdown Documents in DITA
Oxygen XML Developer includes some unique features that allow you to easily integrate Markdown documents
in a DITA project. This is especially helpful for teams that have contributors who are familiar with the Markdown
syntax, but they want their output to be generated from DITA projects. The integration between the Markdown
editor and DITA includes actions to export or convert Markdown documents to DITA topics and the DITA tab in
the Preview pane provides a visualization of how the topic will look after conversion.

Export Markdown as a DITA Topic

The Markdown editor includes an option to quickly convert the current Markdown document into a DITA topic.
The Export as DITA Topic action is available in the contextual menu of the left-side text editor and the right-side
Preview pane when the DITA tab selected.

The conversion creates a new XML file that is defined as a DITA topic and opens it in the Text editing mode. You
can then work with the document as you would with any other DITA topic, although you may need to manually
correct some issues where the parser could not properly map Markdown syntax to DITA markup.

Tip: Oxygen XML Developer comes with a sample ditamap project for converting Markdown to DITA. Go to the
Project view, open the sample.xpr project, and navigate to the dita/markdown-dita folder.

Related Information:
Markdown Editor on page 536
Actions Available in the Markdown Editor on page 537
Markdown Editor Syntax Rules and Specifications on page 543
Automatic Validation in Markdown Documents on page 542

Markdown Editor Syntax Rules and Specifications
The Markdown editor in Oxygen XML Developer uses rules that were integrated from the most common set of
default Markdown syntax rules along with many of the GitHub Flavored Markdown rules.

The Oxygen XML Developer implementation of the most commonly used syntax rules are as follows:

Headers

The Markdown editor supports two styles of headers, Setext and Atx.

• Setext Style

Setext-style headers are underlined using equal signs (for first-level headers) and dashes (for second-level
headers). Any number of equal signs or dashes will result in the same output.

Example: Setext Style Headers

First-Level Header (H1)
========

Second-Level Header (H2)

• Atx Style

Atx-style headers use 1-6 hash characters at the start of the line, corresponding to header levels 1-6.
Optionally, you may close atx-style headers. This is purely cosmetic and the closing hashes do not need to
match the number of hashes used to open the header. It is the number of opening hashes that determines the
header level.

Example: Atx Style Headers

H1 text
H2 text
H3 text ######
H4 text
H5 text
H6 text

Editing Documents 543

http://daringfireball.net/projects/markdown/syntax
https://help.github.com/categories/writing-on-github/

Horizontal Rules (for HMTL output only)

You can produce a horizontal rule tag (<hr />) by placing three or more hyphens, asterisks, or underscores on a
line by themselves (they also need to be preceded and followed by a blank line). Optionally, they can be separated
by spaces.

• Example: Horizontal Rules

* * *

_ _ _ _

Paragraphs and Line Breaks

A paragraph is simply one or more consecutive lines of text, separated by one or more blank lines. The text at the
beginning of a paragraph should not be indented with spaces or tabs. To create a new paragraph, simply insert a
blank line in between them.

Important: When converting to HTML, if you break a paragraph on multiple lines (without a blank line in between
them), it will create a break tag (
. When converting to DITA, the text is kept in a single paragraph in this
case and a blank line is required to break a paragraph. This behavior differs slightly from the default Markdown
rules.

• Example: Paragraphs

This is a paragraph that contains
two lines of text. (In HTML, a break tag is created in between the two lines)

This is a new paragraph.

Styling Text

The Markdown editor supports some syntax rules for styling text (such as bold, italic, or strikethrough).

• Italic (Emphasis) - Text wrapped with one asterisk or underscore produces an italic (emphasis) tag.

italic
italic

• Bold (Strong) - Text wrapped with two asterisks or underscores produces a bold (strong) tag.

bold
__bold__

• Strikethrough - In HTML only, text wrapped with two tildes (~~) produces a strikethrough tag.

~~strikethrough~~

Tip: You can also combine these styling rules. For example, **BoldText _ItalicText_ BoldText**
would produce italicized text within bold text. Also, if you surround an asterisk or underscore with spaces, it will
be treated as a literal asterisk or underscore. To produce a literal asterisk or underscore at a position where it
would otherwise be used as an styling delimiter, you can escape it with a backslash (for example, *literal
asterisks*.

Links

The Markdown editor supports two types of links, inline and reference. In both cases, it begins with link text that is
delimited by [square brackets].

• Inline Links

Editing Documents 544

To create an inline link, use a set of regular parentheses immediately after the closing square bracket for the
link text. Inside the parentheses, put the URL where you want the link to point, and optionally a title surrounded
in quotes. Also, if you referencing a local resource on the same server, you can use relative paths.

Examples: Inline Link

With a title:

Text with [example link text](http://www.example.com/path "Title") an inline link
 with a title.

Without a title:

Text with [example link text](http://www.example.com/path) an inline link without
 a title.

Relative path:

Text with [example link text](/relative_path/) an inline link with relative path.
• Reference Links

Reference-type links use a second set of square brackets that include a label (link identifier) to identify the link
(it may consist of letters, numbers, spaces, and punctuation and it is not case sensitive). You can optionally
use a space to separate the sets of brackets. The labels (link identifiers) are only used for creating the links
and do not appear in the output.

Text with [link text1][id 1] a reference-type link and [link text2][id_2] another
 one.

Then, somewhere in the document, you need to define your link label on a line by itself. The link identifier must
be within square brackets followed by a colon, then after one or more spaces the URL for the link. Optionally
this can be followed by a title enclosed in single quotes, double quotes, or parentheses. Also, the link may
optionally be enclosed in angle brackets (< >).

[id 1]: http://example1.com/ "Optional Title"
[id_2]: <http://example2.com/> "Optional Title2"

Other notes about Reference Links:

• You can put the title on a second line and use extra spaces or tabs for padding. This is useful for aesthetics
when the URL is long.

[id]: http://example.com/long/path/to/resource/here
 "Optional Title Here"

• The label (link identifier) can be missing, in which case the link text (in square brackets) is used as the
name.

[My Link][]

and then defined as:

[My Link]: http://example.com/

Automatic Links

The Markdown editor supports a shortcut style for creating automatic links for URLs and email addresses. You
simply surround the URL or email address with angle brackets.

Note: These automatic links only work properly in HTML conversions. The Preview pane may display them
properly in the DITA tab, but the DITA output will not properly recognize the format.

• URLs

By surrounding a URL with angle brackets, you can show the actual text of the URL while also making it
clickable in the output.

Editing Documents 545

<http://example.com/>

For example, in HTML it is converted to:

http://example.com/
• Email Addresses

Automatic links for email addresses work similarly, except that Markdown will also perform a bit of
randomized decimal and hex entity-encoding to help obscure your address from address-harvesting
spambots.

<address@example.com>

In HTML, it is converted to something like:

<a href="mailto:addre
ss@example.co
m">address@exa
mple.com

Images

The Markdown editor uses an image syntax that is intended to resemble the syntax for links, allowing for the
same two types: inline and reference. In both cases, the syntax for images begin with an exclamation mark,
followed by alt attribute text surrounded by square brackets., and then followed by a set of parentheses that
contain the URL or path to the image.

• Inline Images

For inline images, use a set of regular parentheses immediately after the closing square bracket for the alt
attribute text. Inside the parentheses, put the URL or path of the image, and optionally a title surrounded in
quotes.

Examples: Inline Images

With a title:

Text with ![Alt text](/path/to/img.jpg "Optional title") an inline image with a
 title.

Without a title:

Text with ![Alt text](/path/to/img.jpg) an inline link without a title.
• Reference Images

For reference-type images, use a second set of square brackets that include a label (image identifier) to
identify the image (it may consist of letters, numbers, spaces, and punctuation and it is not case sensitive).
You can optionally use a space to separate the sets of brackets. The labels (image identifiers) do not appear
in the output.

Text with ![Alt text1][id] a reference-type image.

Then, somewhere in the document, you need to define your image label on a line by itself. The image identifier
must be within square brackets followed by a colon, then after one or more spaces the URL or path of the
image. Optionally this can be followed by a title enclosed in single quotes, double quotes, or parentheses.

[id]: url/to/image "Optional Title"

Blockquotes

The Markdown editor uses email-style greater than characters (>) for blockquotes. You only need to put the >
before the first line of a hard-wrapped paragraph, but it looks better (and is more clear) if you put a > before every
line.

Editing Documents 546

• Example: Blockquotes

> This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet,
> consectetuer adipiscing elit. Aliquam hendrerit mi posuere lectus.
> Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus.
>
> Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse
> id sem consectetuer libero luctus adipiscing.

• Blockquotes can be nested by adding additional levels of > characters.

Example: Nested Blockquotes

> This is the first level of quoting.
>
> > This is nested blockquote.
>
> Back to the first level.

• Blockquotes can also contain other Markdown elements (such as headers, lists, and code blocks).

Example: Blockquotes with Other Markdown Elements

> ## This is a header.
>
> 1. This is the first list item.
> 2. This is the second list item.
>
> Here's some example code:
>
> return shell_exec("echo $input | $markdown_script")

Quoting Code (Inline and Code Blocks)

The Markdown editor supports quoting code or commands inline within a sentence or in distinct blocks.

• Inline

You can quote or emphasize code within a sentence (inline) with single backticks (`). The text within the
backticks will not be formatted.

Example: Inline Code Emphasis

This is a normal sentence with a `code` in the middle.
• Code Blocks

You can format code or text into its own distinct block by inserting a blank line before and after the content
and using at least 4 spaces (or 1 tab), or by using opening and closing triple backticks (```) on separate lines.

Example: Code Block

This is a normal paragraph:

 This is a code block

This is a normal paragraph:

```
This is a code block
```

One level of indentation is removed from each line of a codeblock and it continues until it reaches a line that is
not indented (or until the closing backticks).

Example: Code Block with Indentation

 tell application "something"
 beep

Editing Documents 547

 end tell

For example, in HTML the result would look like this:

<pre><code>tell application "Foo"
 beep
end tell
</code></pre>

You can also add an optional language identifier to enable syntax highlighting in your code blocks. The Oxygen
XML Developer Markdown editor supports the following languages: Java, JavaScript, CSS, and Python.

Example: Syntax Highlighting in Code Block

```css
input[type="submit"] {
    color: white;
    font-weight: bold;
```

Inline XHTML (for HMTL output only)

The Markdown editor supports writing inline XHTML. Since Markdown is just a writing format, it requires a
conversion for publishing purposes. If you are using the HTML conversion, for any markup that is not covered by
Markdown syntax, you can simply use XHTML syntax.

• Example: Inline XHTML

This is a regular paragraph.

<table>
 <tr>
 <td>Col 1</td>
 <td>Col 2</td>
 </tr>
</table>

This is another regular paragraph.

Lists

The Markdown editor supports ordered and unordered lists. You can also insert blockquotes and code blocks
inside list items. List markers typically start at the left margin, but may be indented by up to three spaces.

• Unordered Lists

For unordered lists, you can use asterisks (*), plus signs (+), and hyphens (-) interchangeably.

* List item 1
+ List item 2
- List item 3

• Ordered Lists

For ordered lists, use numbers followed by periods. The actual numbers you use have no effect on the output.
It simply converts them to list items within an ordered list an the actual number of list items will determine the
numbers in the output.

1. List item 1
8. List item 2
5. List item 3

• Nested Lists

You can create nested lists by indenting lines by two spaces.

1. Ordered list item 1
 1. Nested ordered list item 1

Editing Documents 548

 2. Nested ordered list item 2
 * 2nd level nested unordered list item 1
 * 2nd level nested unordered list item 2
 * 3rd level nested unordered list item 1
2. Ordered list item 2

• Paragraphs Inside Lists

If list items are separated by blank lines, Markdown will wrap the items in a paragraph in the output.

* List item 1

* List item 2

For both DITA and HTML output, this would result in:

<p>List item 1</p>
<p>List item 2</p>

• Multiple Paragraphs Inside Lists

List items may consist of multiple paragraphs. Each subsequent paragraph in a list item must be indented by
either 4 spaces or one tab. Optionally, you can also indent each line of a paragraph to make it look nicer.

1. This is a list item with two paragraphs. Lorem ipsum dolor
 sit amet, consectetuer adipiscing elit. Aliquam hendrerit
 mi posuere lectus.

 Vestibulum enim wisi, viverra nec, fringilla in, laoreet
 vitae, risus. Donec sit amet nisl. Aliquam semper ipsum
 sit amet velit.

2. Suspendisse id sem consectetuer libero luctus adipiscing.
• Blockquotes Inside Lists

To put a blockquote within a list item, the blockquote delimiters (>) need to be indented so that it is under the
first letter of the text after the list item marker.

* A list item with a blockquote:
 > This is a blockquote
 > inside a list item.

• Code Blocks Inside Lists

To put a code block within a list item, insert an empty line in between the list item and the code block, and
the code block needs to be indented twice (with 8 spaces or 2 tabs), or if you are using the triple backticks
method, the opening triple backtick needs to be indented with 4 spaces or 1 tab.

* A list item with a code block:

 This is a code block inside a list item

    ```
    This is a code block inside a list item using the backticks method
    ```

Task Lists

You can create task lists by prefacing list items with a hyphen followed by a space followed by square brackets (-
[]). To mark a task as complete, use - [x].

• Example: Task Lists

- [] Unfinished task 1
- [x] Finished task 2

Editing Documents 549

Definition Lists

You can create definition lists by using a colon plus a space for each list item.

• Example: Definition Lists

Term 1
: Definition A
: Definition B

Tables

You can create tables in the Markdown editor by using pipes (|) and hyphens (-).

• Creating a Table

Pipes are used to separate each column, while hyphens are used to create column headers. The pipes on
either end of the table are optional. Cells can vary in width and do not need to be perfectly aligned within
columns, but there must be at least three hyphens in each column of the header row.

First Header	Second Header
Column 1 Row 1 Cell	Column 2 Row 1 Cell
Column 1 Row 2 Cell	Column 2 Row 2 Cell

• Formatting Rules in Table Cells

You can use formatting rules inside the cells of the table (such as links, inline code blocks, and text styling).

First Header	Second Header
`inline code`	Content with **bold text** inside cell

• Aligning Text in Tables

You can align text to the left, right, or center of a column by including colons (:) to the left, right, or on both
sides of the hyphens within the header row.

Left-aligned	Center-aligned	Right-aligned
Content Cell	Content Cell	Content Cell

• Joining Cells (Span a Cell Over Multiple Columns)

You can join cells horizontally (span a cell over multiple columns) by using multiple consecutive pipe
characters (|) to the right of the particular cell. The number of consecutive pipes indicate the number of
columns the cell will span (|| for two, ||| for three, and so on).

First Header	Second Header	Third Header	Fourth Header
Content Cell	*Cell Span Over 3 Columns*		

Emoji

You can add emoji in the Markdown editor by surrounding the EMOJICODE with colons (:EMOJICODE:).

• Example: Emoji

:smile:
:laughing:

The resulting emoticons will appear in the output, but they are not displayed in the Preview pane.

For a full list of available emoji codes, see Emoji Cheat Sheet.

Editing Documents 550

http://www.webpagefx.com/tools/emoji-cheat-sheet/

Backslash Escapes

You can ignore Markdown formatting by using backslash escapes (\) to generate literal characters that would
otherwise have special meaning in the Markdown syntax. For example, if you want to surround a word with literal
asterisks (instead of an italic or emphasis tag), you can use backslashes to escape the asterisks.

literal asterisks

The Markdown editor provides backslash escapes for the following characters:

\ backslash
` backtick
* asterisk
_ underscore
{} curly braces
[] square brackets
() parentheses
hash mark
+ plus sign
- minus sign (hyphen)
. dot
! exclamation mark

Automatic Escaping for Special Characters

The Markdown editor includes support for automatically escaping special characters such as angle brackets (<
>) and ampersands (&). If you want to use them as literal characters, you must escape them as entities, as in the
table below. The exception to this is in HTML output, if the special characters for a valid tag (for example,),
they are treated as literal characters and escaping is not necessary.

Literal Character Escaping Code

< <

> >

& &

Footnotes

The Markdown editor in Oxygen XML Developer supports normal and inline footnotes. The following examples
show the required syntax.

• Example: Normal Footnote

Here is a footnote reference,[^1]

[^1]: Here is the footnote.
• Example: Normal Footnote with Multiple Blocks

Here is a footnote reference,[^longnote]

[^longnote]: Here is the footnote with multiple blocks.

 Subsequent paragraphs are indented with 4 spaces or 1 tab to show that they
belong to the previous footnote.

• Example: Inline Footnote

Here is an inline note.^[Inlines notes are easier to write, since
you don't have to pick an identifier and move down to type the
note.]

Related Information:
Default Markdown Syntax

Editing Documents 551

http://daringfireball.net/projects/markdown/syntax

GitHub Flavored Markdown Rules
Markdown Editor on page 536
Actions Available in the Markdown Editor on page 537

Editing Non-XML Files
While Oxygen XML Developer specializes in XML-related technologies, you can also use it to create and edit
various types of non-XML files. Non-XML files are opened in a simple text editor and many of the helpful features
that are commonly used when editing XML files in the Oxygen XML Developer Text editing mode are available in
this simple editor.

Types of Non-XML Files That are Supported

Some of the types of non-XML files that can be created and edited in Oxygen XML Developer include:

• Markdown
• Java
• C++
• C
• PHP
• Perl
• Properties
• SQL
• Shell executables
• Batch
• Python
• Text

Features Available in the Simple Text Editor

When editing non-XML files in the simple text editor, the features that are available include the following:

• Project Support - The unique features that are designed to help you work with projects are available for all
types of files.

• Shortcut Actions - Many of the shortcut actions that are available in Text mode are also available in the simple
text editor.

• Drag and Drop - The normal drag and drop support is available in the simple text editor.
• Content Selection Features - The content selection shortcuts that are available in Text mode (including the

Rectangular Selection feature) are also available in the simple text editor.
• Bookmarks - You can use bookmarks to mark positions in any type of file so that you can return to it later.
• Convert Hexadecimal Characters - You can convert a sequence of hexadecimal characters to the

corresponding Unicode character.
• Encoding/Decoding Actions - Contextual menu actions are available to encode or decode Base64, Base 32, and

Hex schemes.
• Code Templates - You can define your own code templates for any type of file and use the Content Completion

Assistant to invoke them.
• Syntax Highlighting - Non-XML files also support syntax highlighting with dedicated coloring schemes. To

customize them, open the Preferences dialog box (Options > Preferences) and go to Editor > Syntax Highlight.
Select and expand the appropriate section in the top pane for the type of file you are editing and you can see
the effects of your changes in the Preview pane.

• Find/Replace - You can use the Find/Replace action to find or replace all the occurrences of a word or string
of characters in any type of file that you are editing.

• File Comparison Tool - The Compare Files tool can also be used to compare non-XML files.

Editing Documents 552

https://help.github.com/categories/writing-on-github/

Spell Checking
Oxygen XML Developer includes an automatic (as-you-type) spell checking feature, as well as a manual spell
checking action to open a Spelling dialog box that offers a variety of options.

To manually check spelling in the current document, use the Check Spelling action on the toolbar or from the
Edit menu.

Figure 325: Check Spelling Dialog Box

The Spelling dialog box contains the following:
Unrecognized word

Displays the word that cannot be found in the selected dictionary. The word is also highlighted in the XML
document.

Replace with
The character string that will replace the misspelled word.

Guess
Displays a list of words suggested to replace the unknown word. Double-click a word to automatically insert it
in the document and resume the spell checking process.

Default language
Allows you to select the default language dictionary used by the spelling engine.

Paragraph language
In an XML document, you can mix content written in multiple languages. You can set the language code in the
lang or xml:lang attribute for any particular section and Oxygen XML Developer will automatically instruct
the spell checker engine to apply the appropriate language dictionary for that section.

Begin at cursor position
Instructs the spell checker to begin checking the document starting from the current cursor position.

Action Buttons

Replace
Use this button to replace the unrecognized word with the selected word from the Replace with field.

Editing Documents 553

Replace All
Use this button to replace all occurrences of the unrecognized word with the selected word from the
Replace with field.

Ignore
Ignores the first occurrence of the unrecognized word and allows you to continue checking the document.
Oxygen XML Developer skips the content of the XML elements marked to be ignored.

Ignore All
Ignores all instances of the unrecognized word in the current document.

Learn
Adds the unrecognized word to the list of valid words.

Options
Opens the Spell Check preferences page where you can configure various options in regards to the feature.

Spell Check Dictionaries and Term Lists
Oxygen XML Developer uses the Hunspell engine for the spell checking feature. The Hunspell spell checking
engine is open source and has an LGPL license. It is designed for languages with rich morphology and complex
compounding or character encoding. Each language-country variant combination have their own specific
dictionaries. Oxygen XML Developer includes the following built-in dictionaries for the spell checker:

• English (US) [en_US]
• English (UK) [en_GB]
• French [fr]
• German [de_DE]
• Spanish [es_ES]

Other Hunspell Dictionaries

You can also download Hunspell dictionaries for other languages and add them to the Oxygen XML
Developer spell checker. An example of a website that includes numerous dictionary files is: http://
extensions.services.openoffice.org/dictionary.

If you cannot find a Hunspell dictionary that is already built for your language, you can build the dictionary you
need. To build a full Hunspell dictionary, follow these instructions and then add the dictionary to the Oxygen XML
Developer spell checker by following this procedure.

Personalized Term Lists

Authoring in certain areas of expertise (for example, the pharmaceutical or automobile industries) might require
the use of specific terms that are not part of the standard spell checker dictionary. To avoid marking these terms
as errors, Oxygen XML Developer provides a way of adding personalized term lists to the spell check engine.
This involves creating a term list file that the spell checker will recognize and it is similar to the file Oxygen XML
Developer uses for storing learned words.

The term list files are specific for each language and can be specific to each domain or area of expertise (for
example, legal, medical, automotive). They can also be used to control forbidden words.

Related Information:
Adding Spell Check Dictionaries on page 555
Adding Spell Check Term Lists on page 556
Building and Testing Hunspell Dictionaries

Adding Custom Dictionaries and Term Lists

The Oxygen XML Developer spell checker allows you to add customized Hunspell dictionaries and personalized
term lists. The Hunspell dictionary mechanism requires a dictionary file (with a .dic file extension) and an
affix file (with an .aff file extension). The personalized term lists are custom files (with a .tdi file extension)

Editing Documents 554

http://extensions.services.openoffice.org/dictionary
http://extensions.services.openoffice.org/dictionary
http://www.divvun.no/doc/infra/hunspell.html
http://www.divvun.no/doc/infra/hunspell.html

that you can create to include specialized terms or specify forbidden words in the Oxygen XML Developer spell
checker.

You can add dictionaries and personalized term lists to the default folder where they are stored or specify your
own custom locations. You can view the default storage location in the Spell Check Dictionaries preferences page
and the Include dictionaries and term list from option allows you to choose a custom storage location. All the
dictionaries and term lists for a particular language that are found in either location are merged and used by the
spell checker in Oxygen XML Developer.

Related Information:
Replacing a Spell Check Dictionary on page 557

Adding Spell Check Dictionaries

There are three possible scenarios for adding Hunspell dictionaries to the Oxygen XML Developer spell checker:

• You can download a pre-built Hunspell dictionary and add it to the spell checking mechanism.
• You can create a custom Hunspell dictionary file that defines your own list of words and add it to the spell

checking mechanism.
• You can build your own full Hunspell dictionary and add it to the spell checking mechanism.

Download and Add a Pre-Built Hunspell Dictionary

To add a downloaded pre-built dictionary, follow these steps:

1. Download the files needed for your dictionary. You will need a dictionary file (with a .dic file extension) and
an affix file (with an .aff file extension). If the dictionary does not include an affix file (.aff), you can create
one and leave it empty, but it is needed for the mechanism to work properly. An example of a website that
includes numerous dictionary files is: http://extensions.services.openoffice.org/dictionary.

Important: The name of the files should begin with a two letter prefix for the language code, followed by
an underscore or hyphen, then two letters that indicate the country code, followed by another underscore
or hyphen, and then a descriptive name (for example, en_US_medical.dic for a medical dictionary in
the US version of the English language, or for a less specific English medical dictionary, you could omit the
country code like this: en_medical.dic). For a list of language codes, see https://en.wikipedia.org/wiki/
List_of_ISO_639-1_codes.

2. Open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check > Dictionaries.
3. Choose one of the following two options for adding the downloaded files.

a. Copy both files (.dic and .aff) to the default directory displayed in the Dictionaries and term lists default
folder option.

b. Copy both files (.dic and .aff) to any other directory, select the Include dictionaries and term list from
option, and select that directory. If you choose this option, make sure you read this important note.

4. Restart the application for the spell checker to start using the new dictionary.

Create a Custom Hunspell Dictionary that Defines a List of Words

To create a custom Hunspell dictionary that defines your own list of words, follow these steps:

1. Create a dictionary file (with a .dic file extension) and an affix file (with an .aff file extension). The affix file
(.aff) can be left empty, but it is needed for the mechanism to work properly.

Important: The name of the files should begin with a two letter prefix for the language code, followed by
an underscore or hyphen, then two letters that indicate the country code, followed by another underscore
or hyphen, and then a descriptive name (for example, en_US_medical.dic for a medical dictionary in
the US version of the English language, or for a less specific English medical dictionary, you could omit the
country code like this: en_medical.dic). For a list of language codes, see https://en.wikipedia.org/wiki/
List_of_ISO_639-1_codes.

2. In the dictionary file (.dic extension), add the words you want to be included in your custom dictionary. Add
one word per row and the first line needs to contain the number of words, as in the following example:

 2
 parabola

Editing Documents 555

http://extensions.services.openoffice.org/dictionary
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

 asimptotic

3. Open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check > Dictionaries.
4. Choose one of the following two options for saving the files.

a. Save both files (.dic and .aff) to the default directory displayed in the Dictionaries and term lists default
folder option.

b. Save both files (.dic and .aff) to any other directory, select the Include dictionaries and term list from
option, and select that directory. If you choose this option, make sure you read this important note.

5. Restart the application for the spell checker to start using the new dictionary.

Build and Add a Full Hunspell Dictionary

To build and add a full Hunspell dictionary, follow these steps:

1. Follow these instructions: Building and Testing Hunspell Dictionaries.

Result: You should end up with a dictionary file (with a .dic file extension) and an affix file (with an .aff file
extension). The affix file (.aff) can be empty, but it is needed for the mechanism to work properly.

Important: The name of the files should begin with a two letter prefix for the language code, followed by
an underscore or hyphen, then two letters that indicate the country code, followed by another underscore
or hyphen, and then a descriptive name (for example, en_US_medical.dic for a medical dictionary in
the US version of the English language, or for a less specific English medical dictionary, you could omit the
country code like this: en_medical.dic). For a list of language codes, see https://en.wikipedia.org/wiki/
List_of_ISO_639-1_codes.

2. Open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check > Dictionaries.
3. Choose one of the following two options for saving the files.

a. Save both files (.dic and .aff) to the default directory displayed in the Dictionaries and term lists default
folder option.

b. Save both files (.dic and .aff) to any other directory, select the Include dictionaries and term list from
option, and select that directory. If you choose this option, make sure you read this important note.

4. Restart the application for the spell checker to start using the new dictionary.

Related Information:
Adding Spell Check Term Lists on page 556

Adding Spell Check Term Lists

You can create personalized term lists that are used to store specialized terms or control forbidden words. They
can then be added to one of the directories that store the spell check dictionaries and the spell checker will be
merge them with all the dictionaries and other term lists for a particular language.

Create and Add Personalized Term Lists

To create and add a personalized term list, follow these steps:

1. Create a term list file (with a .tdi file extension). The name of the file must begin with a two letter prefix
that indicates the language it should be attached to, followed by an underscore or hyphen, and then
a descriptive name (for example, en_US_myterms.tdi for term list in the US version of the English
language or en_myterms.tdi for a less specific English term list). For a list of language codes, see https://
en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. In the term list file (.tdi extension), add the terms you want to be included in your custom dictionary. If you
need to specify forbidden terms, those words simply need to be preceded by an asterisk. Add one word per
row, as in the following example:

 parabola
 asimptotic
 *hyperbola

3. Open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check > Dictionaries.
4. Choose one of the following two options for saving the file.

Editing Documents 556

http://www.divvun.no/doc/infra/hunspell.html
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

a. Save the file (.tdi) to the default directory displayed in the Dictionaries and term lists default folder
option.

b. Save the file (.tdi) to any other directory, select the Include dictionaries and term list from option, and
select that directory. If you choose this option, make sure you read this important note.

5. Restart the application for the spell checker to start using the new term list.

Related Information:
Adding Spell Check Dictionaries on page 555

Replacing a Spell Check Dictionary

There are several possible scenarios for replacing an existing Hunspell dictionary for the Oxygen XML Developer
spell checker:

• You can download a pre-built Hunspell dictionary and replace an existing dictionary with it.
• You can build your own full Hunspell dictionary and replace an existing dictionary with it.

Download a Pre-Built Hunspell Dictionary and Replace an Existing One

To replace an existing dictionary with a downloaded pre-built dictionary, follow these steps:

1. Download the files needed for your dictionary. You will need a dictionary file (with a .dic file extension) and
an affix file (with an .aff file extension). If the dictionary does not include an affix file (.aff), you can create
one and leave it empty, but it is needed for the mechanism to work properly. An example of a website that
includes numerous dictionary files is: http://extensions.services.openoffice.org/dictionary.

2. Open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check > Dictionaries.
3. Choose one of the following two options to replace existing files.

a. Replace the existing files (.dic and .aff) for the particular language in the default directory displayed
in the Dictionaries and term lists default folder option. Leave the Include dictionaries and term list from
option deselected.

b. Replace existing files (.dic and .aff) for the particular language in a directory specified in the Include
dictionaries and term list from option. If you choose this option, make sure you read this important note.

Important: Do not alter the naming convention. The name of the files must begin with a two letter prefix
that indicates the language it should be attached to (for example, en_US.dic for a US English dictionary or
en.dic for a less specific English dictionary). For a list of language codes, see https://en.wikipedia.org/wiki/
List_of_ISO_639-1_codes.

4. Restart the application for the spell checker to start using the new dictionary.

Build a Full Hunspell Dictionary and Replace an Existing One

To replace an existing dictionary with a full Hunspell dictionary that you build, follow these steps:

1. Follow these instructions: Building and Testing Hunspell Dictionaries.

Result: You should end up with a dictionary file (with a .dic file extension) and an affix file (with an .aff file
extension). The affix file (.aff) can be empty, but it is needed for the mechanism to work properly.

2. Open the Preferences dialog box (Options > Preferences) and go to Editor > Spell Check > Dictionaries.
3. Choose one of the following two options to replace existing files.

a. Replace the existing files (.dic and .aff) for the particular language in the default directory displayed
in the Dictionaries and term lists default folder option. Leave the Include dictionaries and term list from
option deselected.

b. Replace existing files (.dic and .aff) for the particular language in a directory specified in the Include
dictionaries and term list from option. If you choose this option, make sure you read this important note.

4. Restart the application for the spell checker to start using the new dictionary.

Related Information:
Adding Custom Dictionaries and Term Lists on page 554

Editing Documents 557

http://extensions.services.openoffice.org/dictionary
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://www.divvun.no/doc/infra/hunspell.html

Learned Words
Spell checker engines rely on dictionaries to decide if a word is spelled correctly. To instruct the spell checker
engine that an unknown word is actually correctly spelled, you need to add that word to a list of learned words.
There are two ways to do this:

• Invoke the contextual menu on an unknown word, then select Learn word.
• Press the Learn button from the Spelling dialog box that is invoked by using the Check Spelling action on

the toolbar.

Note: To delete items from the list of learned words, use the Delete learned words option in the Editor > Spell
Check > Dictionaries preferences page.

Ignored Words (Elements)
There are certain XML elements (such as programlisting, codeblock, or screen) in which you may want the
content to always be skipped during the spell check process. This can be done in one of several ways:

• You can skip through them manually, word by word, using the Ignore button in the Spelling dialog box that is
invoked by using the Check Spelling action on the toolbar.

• You can automatically skip the content of certain elements by maintaining a set of known element names that
should never be checked. You can manage this set of element names by using the Ignore elements section in
the Spell Check preferences page.

Automatic Spell Check
Oxygen XML Developer includes an option to automatically check the spelling as you type. This feature is
disabled by default, but it can be enabled and configured in the Spell Check preferences page. When the
Automatic Spell Check option is selected, unknown words are underlined and some actions are available in the
contextual menu to help you correct the word or prevent the word from being reported in the future.

Figure 326: Automatic Spell Checking in Text Mode

The contextual menu includes the following actions:
Delete Repeated Word

Allows you to delete words that were repeated in consecutive order.
List of Suggestions

A list of words suggested by the spell checking engine as possible replacements for the unknown word.
Learn Word

Allows you to add the current unknown word to the persistent dictionary of learned words.
Other actions

This submenu give you access to all the usual contextual menu actions.

Related Information:
Learned Words on page 558

Editing Documents 558

Spell Check Multiple Files

The Check Spelling in Files action allows you to check the spelling on multiple local or remote documents.
This action is available in the following locations:

• The Edit menu.
• The contextual menu of the Project view.

This action opens the Check Spelling in Files dialog box that allows you to define the scope and several other
options. After you configure the settings for the operation, click the Check All button to check the spelling in all
specified files. The spelling corrections are displayed in the Results view at the bottom of the editor and you can
group the reported errors as a tree with two levels.

Figure 327: Check Spelling in Files Dialog Box

The following scopes are available:

• All opened files - The spell check is performed in all opened files.
• Directory of the current file - All the files in the folder of the current edited file.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - Checks the spelling in the files located at a path that you specify.

The Options section includes the following options:

• File filter - Allow you to filter the files from the selected scope.
• Recurse subdirectories - When selected, the spell check is performed recursively for the specified scope. The

one exception is that this option is ignored if the scope is set to All opened files.
• Include hidden files - When selected, the spell check is also performed in the hidden files.
• Spell Check Options - The spell check processor uses the options available in the Spell Check preferences

panel .

Loading Large Documents
When you open a document with a file size larger than the limit configured in Open/Save preferences, Oxygen
XML Developer prompts you to choose whether you want to optimize the loading of the document for large files
or for huge files.

If your file has a size smaller than 300 MB, the recommended approach is Optimize loading for large files. For
documents that exceed 300 MB the recommended approach is Optimize loading for huge files.

Editing Documents 559

File Sizes Smaller than 300 MB
For editing large documents (file size up to 300 Megabytes), a special memory optimization is implemented on
loading such a file so that the total memory allocated for the application is not exceeded.

A temporary buffer file is created on disk so you have to make sure that the available free disk space is at least
double the size of the large file that you want to edit. For example, Oxygen XML Developer can load a 200-
Megabytes file using a minimum memory setting of 512 Megabytes and at least 400-Megabytes free disk space.

The increase of the maximum size of editable files includes the following restrictions:

• A file larger than the value of the above option is edited only in Text mode.
• The automatic validation is not available when editing a very large file.
• The XPath filter is disabled in the Find/Replace dialog box.
• The bidirectional Unicode support (right-to-left writing) is disabled.
• The Format and indent the document on open option is deselected for non-XML documents. For XML

documents, it is done optimizing the memory usage but without respecting the options set in the Format
preferences page.

• Less precise localizations for the results of an XPath expression.

File Sizes Greater than 300 MB
Files tend to become larger and larger mostly because they are frequently used as a format for database export
or for porting between different database formats. Traditional text editors simply cannot handle opening these
huge export files, some having sizes exceeding one gigabyte, because all the file content must be loaded in
memory before the user can actually view it.

The file is split in multiple pages (each having about 1MB in size). Each page is individually loaded (and edited) in
the Text mode by using the special horizontal slider located at the top of the editing area. The loading operation is
very fast and has no upper limit for the size of the loaded file.

The increase of the maximum size of editable files includes the following restrictions:

• For XML files, only the UTF-8, UTF-16, and ASCII encodings are handled; for all non-XML files, the content is
considered to be UTF-8.

• Files can be edited in Text editing mode only.
• The automatic validation is disabled.
• The XPath filter is disabled in the Find/Replace dialog box.
• The bidirectional Unicode support (right-to-left writing) is disabled.
• The Format and indent the document on open option is deselected for non-XML documents. For XML

documents, the format and indent operation it is done optimizing the memory usage, but it ignores the options
set in the Format preferences page.

• The Outline view is not supported.
• The file content is soft wrapped by default.
• The Find/Replace dialog box only supports the Find action.
• Saving changes is possible if Safe save is activated.
• The undo operation is not available if you go to other pages and come back to the modified page. the Undo

operation loses its previous states if the back and forth between

Scratch Buffer
The Scratch Buffer view can be used for storing fragments of arbitrary text during the editing process. It can be
used to drop bits of paragraphs (including arbitrary XML markup fragments) while rearranging and editing the
document and also to drag and drop fragments of text from the Scratch Buffer to the editor panel. The Scratch
Buffer is basically a text area offering XML syntax highlight. The view's contextual menu contains basic edit
actions such as Cut, Copy, and Paste.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Editing Documents 560

Handling Read-Only Files
If a file marked as read-only is opened in Oxygen XML Developer you can by default perform modifications to it.
This behavior is controlled by the Can edit read only files option. When attempting to save such files you will be
prompted to save them to another location.

You can check out the read-only state of the file by looking in the Properties view. If you modify the file properties
from the operating system and the file becomes writable, you can modify it on the spot without having to reopen
it.

The read-only state is marked with a lock decoration that appears in the editor tab and specified in the tooltip for
a certain tab.

Editing Documents with Long Lines
When working with documents that contain lines of text that exceed the boundaries of your monitor, you might
want to see the text wrapped. To do so, use one of the following methods:

• Press Ctrl + Shift + Y (Command + Shift + Y on OS X) to toggle the line wrap feature for the current document
only.

• Select the Line wrap option in the Text preferences page to apply the line wrap to all documents.

Features that Might be Affected by Wrapping Lines of Text

Documents that contain thousands of characters per line can affect the performance of Oxygen XML Developer
Text mode. When a certain line length limit is reached (controlled from the Optimize loading for documents with
lines longer than (Characters) on page option), Oxygen XML Developer prompts you to wrap the lines of
text. By doing so, the following features may be affected to maintain a reasonable level of productivity:

• The editor uses the Monospaced font.
• You cannot set font styles.
• Automatic validation is disabled.
• Automatic spell checking is disabled.
• When editing XML documents, the XPath field is disabled in the Find/Replace dialog box.
• Less precise localization for executed XPath expressions in XML documents. The XPath executions use SAX

sources for a smaller memory footprint. We recommend using XPath 2.0 instead of XPath 1.0 because it
features an increased execution speed and uses a smaller memory footprint. Running an XPath expression
requires additional memory of about 2 or 3 times the size of the document on disk.

XML Digital Signatures
This chapter explains how to apply and verify digital signatures on XML documents.

Digital Signatures Overview
Digital signatures are widely used as security tokens, not just in XML. A digital signature provides a mechanism
for assuring integrity of data, the authentication of its signer, and the non-repudiation of the entire signature to an
external party:

• A digital signature must provide a way to verify that the data has not been modified or replaced to ensure
integrity.

• The signature must provide a way to establish the identity of the data's signer for authentication.
• The signature must provide the ability for the data's integrity and authentication to be provable to a third party

for non-repudiation.

A public key system is used to create the digital signature and it's also used for verification. The signature binds
the signer to the document because digitally signing a document requires the originator to create a hash of the
message and then encrypt that hash value with their own private key. Only the originator has that private key and

Editing Documents 561

that person is the only one who can encrypt the hash so that it can be unencrypted using their public key. The
recipient, upon receiving both the message and the encrypted hash value, can decrypt the hash value, knowing
the originator's public key. The recipient must also try to generate the hash value of the message and compare
the newly generated hash value with the unencrypted hash value received from the originator. If the hash values
are identical, it proves that the originator created the message, because only the actual originator could encrypt
the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recommendation,
XML-Signature Syntax and Processing). An XML Signature may be applied to the content of one or more
resources:

• Enveloped or enveloping signatures are applied over data within the same XML document as the signature
• Detached signatures are applied over data external to the signature element; the signature is "detached" from

the content it signs. This definition typically applies to separate data objects, but it also includes the instance
where the signature and data object reside within the same XML document but are sibling elements.

The XML Signature is a method of associating a key with referenced data. It does not normatively specify how
keys are associated with persons or institutions, nor the meaning of the data being referenced and signed.

The original data is not actually signed. Instead, the signature is applied to the output of a chain of
canonicalization and transformation algorithms, which are applied to the data in a designated sequence. This
system provides the flexibility to accommodate whatever "normalization" or desired preprocessing of the data
that might be required or desired before subjecting it to being signed.

Since the signature is dependent on the content it is signing, a signature produced from a non-canonicalized
document could possibly be different from one produced from a canonicalized document. The canonical form
of an XML document is physical representation of the document produced by the method described in this
specification. The XML canonicalization method is the algorithm defined by this specification that generates
the canonical form of a given XML document or document subset. XML canonicalization is designed to be
useful for applications that require the ability to test whether or not the information content of a document or
document subset has been changed. This is done by comparing the canonical form of the original document
before application processing with the canonical form of the document result of the application processing.

A digital signature over the canonical form of an XML document or document subset would allows the signature
digest calculations to be oblivious to changes in the original document's physical representation. During signature
generation, the digest is computed over the canonical form of the document. The document is then transferred to
the relying party, which validates the signature by reading the document and computing a digest of the canonical
form of the received document. The equivalence of the digests computed by the signing and relying parties
(hence, the equivalence of the canonical forms for which they were computed) ensures that the information
content of the document has not been altered since it was signed.

The following canonicalization algorithms are used in Oxygen XML Developer:

• Canonical XML (or Inclusive XML Canonicalization) (XMLC14N) - Used for XML where the context doesn't
change.

Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the
signature, and all the declarations you might use will be unambiguously specified. Inclusive Canonicalization
is useful when it is less likely that the signed data will be inserted in other XML document and it is the safer
method from the security standpoint because it requires no knowledge of the data that are to be secured to
safely sign them. A problem may occur if the signed document is moved into another XML document that has
other declarations because the Inclusive Canonicalization will copy them and the signature will be invalid.

• Exclusive XML Canonicalization (EXCC14N) - Designed for canonicalization where the context might change.

Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part of the
XML syntax). It does not look into attribute values or element content, so the namespace declarations required
to process these are not copied. This is useful if you have a signed XML document that you want to insert
into other XML documents (or you need self-signed structures that support placement within various XML
contexts), as it will ensure the signature is verified correctly each time.

The canonicalization method can specify whether or not comments should be included in the canonical form
output by the XML canonicalization method. If a canonical form contains comments corresponding to the
comment nodes in the input node-set, the result is called canonical XML with comments. In an uncommented
canonical form comments are removed, including delimiter for comments outside document element.

Editing Documents 562

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/

The three operations. Canonicalize, Sign, and Verify Signature, are available from the Source submenu when
invoking the contextual menu in Text mode or from the Tools menu.

Related Information:
Certificates on page 563
Canonicalizing Files on page 563
Signing Files on page 564
Verifying Signature on page 566
Example of How to Digitally Sign XML Files or Content on page 566

Certificates
A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a firm),
saying that the public key (and some other information) of some other entity has a particular value. When data
is digitally signed, the signature can be verified to check the data integrity and authenticity. Integrity means that
the data has not been modified. Authenticity means the data comes indeed from the entity that claims to have
created and signed it. Certificates are kept in special repositories called keystores.

All keystore entries (key and trusted certificate entries) are accessed via unique aliases. An alias must be
assigned for every new entry of either a key or certificate as a reference for that entity. No keystore can store an
entity if its alias already exists in that keystore and cannot store trusted certificates generated with keys in its
keystore.

Oxygen XML Developer provides two types of keystores: Java Key Store (JKS) and Public-Key Cryptography
Standards version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 keystore you should
not store a certificate without alias together with other certificates, with or without alias, as in such a case the
certificate without alias cannot be extracted from the keystore.

To configure the options for a certificate or to validate it, open the Preferences dialog box (Options > Preferences)
and go to XML > XML Signing Certificates. This opens the certificates preferences page.

Related Information:
Digital Signatures Overview on page 561

Canonicalizing Files
You can select the canonicalization algorithm to be used for a document from the dialog box that is displayed by
using the Canonicalize action that is available from the Source submenu when invoking the contextual menu in
Text mode or from the Tools menu.

Editing Documents 563

Figure 328: Canonicalization Settings Dialog Box

The Canonicalize dialog box allows you to set the following options:

• Input URL - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the
location of the input file.

• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part
of the XML syntax). It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied. This is useful if you have a signed XML document that you want to
insert into other XML documents (or you need self-signed structures that support placement within various
XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the
scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security standpoint because it requires no knowledge of the data that are
to be secured to safely sign them. A problem may occur if the signed document is moved into another XML
document that has other declarations because the Inclusive Canonicalization will copy them and the signature
will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• Output - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the

output file path where the signed XML document will be saved.
• Open in editor - If selected, the output file will be opened in the editor.

Related Information:
Digital Signatures Overview on page 561

Signing Files
You can select the type of signature to be used for documents from a signature settings dialog box. To open this
dialog box, select the Sign action from the Source submenu when invoking the contextual menu in Text mode or
from the Tools menu.

Editing Documents 564

Figure 329: Signature Settings Dialog Box

The following options are available:

Note: If Oxygen XML Developer could not find a valid certificate, a link is provided at the top of the dialog box that
opens the XML Signing Certificates preferences page where you can configure a valid certificate.

• Input - Available if the Sign action was selected from the Tools menu. Specifies the location of the input URL.
• Transformation Options - See the Digital Signature Overview section for more information about these options.

• None - If selected, no canonicalization algorithm is used.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are
a part of the XML syntax). It does not look into attribute values or element content, so the namespace
declarations required to process these are not copied. This is useful if you have a signed XML document
that you want to insert into other XML documents (or you need self-signed structures that support
placement within various XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the
scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security standpoint because it requires no knowledge of the data that
are to be secured to safely sign them. A problem may occur if the signed document is moved into another
XML document that has other declarations because the Inclusive Canonicalization will copy them and the
signature will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.

Editing Documents 565

• ID - Provides ID of the XML element to be signed.
• Envelope - If selected, the enveloped signature is used. See the Digital Signature Overview for more

information.
• Detached - If selected, the detached signature is used. See the Digital Signature Overview for more information.
• Append KeyInfo - If this option is selected, the ds:KeyInfo element will be added in the signed document.
• Signature algorithm - The algorithm used for signing the document. The following options are available: RSA

with SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
• Output - Available if the Sign action was selected from the Tools menu. Specifies the path of the output file

where the signed XML document will be saved.
• Open in editor - If selected, the output file will be opened in Oxygen XML Developer.

Related Information:
Digital Signatures Overview on page 561
Verifying Signature on page 566
Example of How to Digitally Sign XML Files or Content on page 566

Verifying Signature
You can verify the signature of a file by selecting the Verify Signature action from the Source submenu when
invoking the contextual menu in Text mode or from the Tools menu. The Verify Signature dialog box then allows
you to specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about the
problem.

Related Information:
Digital Signatures Overview on page 561
Signing Files on page 564
Example of How to Digitally Sign XML Files or Content on page 566

Example of How to Digitally Sign XML Files or Content
Suppose you want to digitally sign an XML document, but more specifically, suppose you have multiple instances
of the same element in the document and you just want to sign a specific ID. Oxygen XML Developer includes a
signature tool that allows you to digitally sign XML documents or specific content.

The Oxygen XML Developer installation directory includes a samples folder that contains a file called
personal.xml. For the purposes of this example, this file will be used to demonstrate how to digitally sign
specific content. Notice that this file has multiple person elements inside the personnel element. Suppose you
want to digitally sign the specific person element that contains the id=robert.taylor. To do this, follow this
procedure:

1. Open the personal.xml file in Oxygen XML Developer in Text editing mode.
2. Right-click anywhere in the editor and select the Sign action from the Source submenu.

The Sign dialog box is displayed.

Tip: If you want to sign a file but create a new output file so that the original file remains unchanged, use the
Sign action from the Tools menu. Selecting the action from this menu will allow you to choose an input file
and output file in the Sign dialog box.

3. If Oxygen XML Developer cannot find a valid certificate, click the link at the top of the dialog box to configure
a valid certificate. This opens the XML Signing Certificates preferences page that allows you to configure and
validate a certificate.

4. Once a valid certificate is recognized, continue to configure the Sign dialog box.
a) Select one of the Transformation Options. For the purposes of this example, select the Inclusive with

comments option.
b) Specify the appropriate XPath expression for the specific element that needs to be signed. For this

example, type /personnel/person in the XPath text box.
c) Enter the specific ID that needs to be signed. For this example, type robert.taylor in the ID field.
d) Select the Envelope option and leave the other options as their default values.

Editing Documents 566

The digital signature is added at the end of the XML document, just before the end tag. It is always added at
the end of the document, even if you only sign specific content within the document.

5. You can verify the signature by choosing the Verify Signature action from the Source submenu of the
contextual menu.

Related Information:
Digital Signatures Overview on page 561
Signing Files on page 564
Verifying Signature on page 566

Compare Files or Directories
Oxygen XML Developer provides a simple means of performing file and folder comparisons. You can see the
differences in your files and folders and merge the changes. You can also use the file comparison to compare
fragments or files inside zip-based archives.

There are two types of comparison tools: Compare Directories or Compare Files. These utilities are available
from the Tools menu or can be opened as stand-alone applications from the Oxygen XML Developer installation
folder (diffDirs.exe and diffFiles.exe).

Starting the Tools from a Command Line

The comparison tools can also be started by using command-line arguments. In the installation folder there are
two executable shells (diffFiles.bat and diffDirs.bat on Windows, diffFiles.sh and diffDirs.sh
on Unix/Linux, diffFilesMac.sh and diffDirsMac.sh on OS X). To specify files or directories to compare,
you can pass command-line arguments to each of these shells. The arguments can point to file or folder paths in
directories or archives (supported formats: zip, docx, and xlsx).

Directory Comparison Example

To start a comparison between the two directories, use the following construct: diffDirs.bat/diffDirs.sh/
diffDirsMac.sh [directory path 1] [directory path 2]. If you pass only one argument, you are
prompted to manually choose the second directory or archive.

For example, to start a comparison between two Windows directories, the command line would look like this:

diffDirs.bat "c:\documents new" "c:\documents old"

Tip: If there are spaces in the path names, surround the paths with quotes.

File Comparison Example

To start a comparison between 2 or 3 files, use the following construct: diffFiles.bat/diffFiles.sh/
diffFilesMac.sh [path to left file] [path to right file] [path to base file].

If three files are specified, the tool will start in the 3-way comparison mode. If only two files are specified, the tool
will start in the 2-way comparison mode. The first specified file will be added to the left panel in the comparison
tool, the second file to the right panel, and the optional third file will be the base (ancestor) file used for a 3-way
comparison. If you pass only one argument, you are prompted to manually choose another file.

For example, to do a 3-way comparison on Windows, the command line would look like this:

diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile

Tip: If there are spaces in the path names, surround the paths with quotes.

Compare Files
The Compare Files tool can be used to compare files or XML file fragments. The tool provides a mechanism for
comparing two files or fragments, as well as the mechanism for a three-way comparison. The utility is available
from the Tools menu or can be opened as a stand-alone application from the Oxygen XML Developer installation
folder (diffFiles.exe).

Editing Documents 567

Figure 330: Compare Files Tool

Starting the Tool from a Command Line

The file comparison tool can also be started by using command-line arguments. In the installation folder there
is an executable shell (diffFiles.bat on Windows, diffFiles.sh on Unix/Linux, diffFilesMac.sh on
OS X). To specify the files to compare, you can pass command-line arguments using the following construct:
diffFiles.bat/diffFiles.sh/diffFilesMac.sh [path to left file] [path to right file]
[path to 3-way base file].

If three files are specified, the tool will start in the 3-way comparison mode. If only two files are specified, the tool
will start in the 2-way comparison mode. The first specified file will be added to the left panel in the comparison
tool, the second file to the right panel, and the optional third file will be the base (ancestor) file used for a 3-way
comparison. If you pass only one argument, you are prompted to manually choose another file.

If you want to launch the file comparison tool from an external application with specified files and you want
the file browsing tools at the top of both panels to be hidden, you should use the -ext argument as the first
command. There are some additional arguments that are allowed and to see all the details for the command line
construct, type diffFiles.bat --help in the command line.

For example, to do a 3-way comparison on Windows, the command line might look like this:

diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile

Tip: If there are spaces in the path names, surround the paths with quotes.

Two-Way Comparisons

The Compare Files tool can be used to compare the differences between two files or XML fragments.

Compare Files

To perform a two-way comparison, follow these steps:

Editing Documents 568

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by
using the text field, the history drop-down, or the browsing tools in the Browse drop-down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used to offer
a better view of the differences.

2. To highlight the differences between the two files, click the Perform File Differencing button from the
toolbar.

3. You can use the drop-down menu on the left side of the toolbar to change the algorithm for the operation.
4. You can also use the Diff Options button to access the Files Comparison preferences page where you can

choose to ignore certain types of markup and configure various options.
5. If you are comparing XML documents using the XML Fast or XML Accurate algorithms, you can enter an

XPath 2.0 expression in the Ignore nodes by XPath text field to ignore certain nodes from the comparison.

The resulting comparison will show you differences between the two files. The line numbers on each side
and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences.
Adjacent changes are grouped into blocks of changes. This layout allows you to easily identify and focus on a
group of related changes.

Figure 331: Two-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines
connect the compared fragments in the middle section between the two panes. The highlighting colors can be
customized in the Files Comparison / Appearance preferences page, but the default colors and their shades mean
the following:

• Pink - Identifies modifications on either side.
• Gray - Identifies an addition of a node in the left side (your outgoing changes).
• Blue - Identifies an addition of a node in the right side (incoming changes).
• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.
• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Compare Fragments

To compare XML file fragments, you need to copy and paste the fragments you want to compare into each side,
without selecting a file. If a file is already selected, you need to close it using the Close (Ctrl + W (Command +
W on OS X)) button, before pasting the fragments. If you save modified fragments, a dialog box opens that allows
you to save the changes as a new document.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).
• Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most

part of the window. At the top of the overview ruler there is a success indicator that turns green where there
are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File
Differencing button.

Editing Documents 569

A variety of actions are available on the toolbar and in the various menus (these same actions are also available
in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy,
or remove changes. When you select a change, the following inline action widgets are available, depending on the
type of change:

 Append left change to right and Append right change to left
Copies the content of the selected change from one side and appends it on the other, according to the
content of the corresponding change. As a result, the side where the arrow points to will contain the changes
from both sides.

 Copy change from left to right and Copy change from right to left
Replaces the content of a change from one side with the content of the corresponding change from the other
side.

 Remove change
Rejects the change on the particular side and preserves the particular content on the other side.

Two-Way Diff Algorithms

Oxygen XML Developer offers the following two-way diff algorithms to compare files or fragments:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Characters - Computes the differences at character level, meaning that it compares two files or fragments
looking for identical characters.

• Words - Computes the differences at word level, meaning that it compares two files or fragments looking for
identical words.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• Syntax Aware - Computes differences for known file types or fragments. This algorithm splits the files or
fragments into sequences of tokens and computes the differences between them. The meaning of a token
depends on the type of compared files or fragments.

Known file types include those listed in the New dialog box, such as XML file types (XSLT files, XSL-FO files,
XSD files, RNG files, NVDL files, etc.), XQuery file types (.xquery, .xq, .xqy, .xqm extensions), DTD file types
(.dtd, .ent, .mod extensions), TEXT file type (.txt extension), or PHP file type (.php extension).

For example:

• When comparing XML files or fragments, a token can be one of the following:

• The name of an XML tag
• The < character
• The /> sequence of characters
• The name of an attribute inside an XML tag
• The = sign
• The " character
• An attribute value
• The text string between the start tag and the end tag (a text node that is a child of the XML element

corresponding to the XML tag that encloses the text string)
• When comparing plain text, a token can be any continuous sequence of characters or any continuous

sequence of whitespaces, including a new line character.
• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML Accurate.
• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two

XML files or fragments looking for identical XML nodes.

Three-Way Comparisons

Oxygen XML Developer also includes a three-way comparison feature to help you solve conflicts and merge
changes between multiple modifications. It is especially helpful for teams who have multiple authors editing and

Editing Documents 570

committing the same documents. It provides a comparison between a local change, another change, and the
original base revision. Some additional advantages include:

• Visualize and merge content that was modified by you and another member of your team.
• Marks differences correctly even when the document structure is rearranged.
• Allows you to merge XML-relevant modifications.

Figure 332: Three-Way Comparison

Compare Files

To perform a three-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by
using the text field, the history drop-down, or the browsing tools in the Browse drop-down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used to offer
a better view of the differences.

2. Click the Three-Way Comparison button on the toolbar and select the base file in the Base field. You can
specify the path by using the text field, the history drop-down, or the browsing tools in the Browse drop-
down menu.

3. To highlight the differences, click the Perform File Differencing button on the toolbar.
4. You can use the drop-down menu on the left side of the toolbar to change the algorithm for the operation.
5. You can also use the Diff Options button to access the Files Comparison preferences page where you can

choose to ignore certain types of markup and configure various options.

The resulting comparison will show you differences between the two files, as well as differences between either
of them and the base (ancestor) file. The line numbers on each side and colored marks on the right-side vertical
stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of
changes.

Figure 333: Three-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines
connect the compared fragments in the middle section between the two panes. The highlighting colors can be
customized in the Files Comparison / Appearance preferences page, but the default colors and their shades mean
the following:

• Pink - Identifies blocks of changes that include conflicts.
• Gray - Identifies your outgoing changes that do not include conflicts.
• Blue - Identifies incoming changes that do not include conflicts.

Editing Documents 571

• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.
• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).
• Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most

part of the window. At the top of the overview ruler there is a success indicator that turns green where there
are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File
Differencing button.

A variety of actions are available on the toolbar and in the various menus (these same actions are also available
in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy,
or remove changes. When you select a change, the following inline action widgets are available, depending on the
type of change:

 Append left change to right and Append right change to left
Copies the content of the selected change from one side and appends it on the other, according to the
content of the corresponding change. As a result, the side where the arrow points to will contain the changes
from both sides.

 Copy change from left to right and Copy change from right to left
Replaces the content of a change from one side with the content of the corresponding change from the other
side.

 Remove change
Rejects the change on the particular side and preserves the particular content on the other side.

Three-Way Diff Algorithms

Oxygen XML Developer offers the following three-way diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML Accurate.
• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two

XML files or fragments looking for identical XML nodes.

Second Level Comparisons

For both two-way and three-way comparisons, Oxygen XML Developer automatically performs a second level
comparison for the Lines, XML Fast, and XML Accurate algorithms. After the first comparison is finished, the
second level comparisons for the Lines algorithm is processed on text nodes using a word level comparison,
meaning that it looks for identical words. For the XML Fast and XML Accurate algorithms, the second level
comparison is processed using a syntax-aware comparison, meaning that it looks for identical tokens. This
second level comparison makes it easier to spot precise differences and you can merge or reject the precise
modifications.

Figure 334: Second Level Diff Comparison

Editing Documents 572

Note: If a modified text fragment contains XML markup (such as processing instructions, XML comments,
CData, or elements), the second level comparison will not automatically be performed. In this case you can
manually select a second level comparison by doing a word level or character level comparison.

To do a word level comparison, select Show word level details from the contextual menu or Compare menu.

Figure 335: Word Level Comparison

To do a character level comparison, select Show Character Level details from the contextual menu or Compare
menu.

Figure 336: Character Level Comparison

Related Information:
Files Comparison Preferences Page on page 122
Compare Directories on page 579

Toolbar and Contextual Menu Actions of the Compare Files Tool

The toolbar of the Compare Files tool contains operations that can be performed on the source and target files or
XML fragments. Many of the actions are also available in the contextual menu.

Figure 337: Compare Toolbar

The following actions are available:

Algorithm
This drop-down menu allows you to select one of the following diff algorithms (depending on whether it is a
two-way or three-way comparison):

Editing Documents 573

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Characters - Computes the differences at character level, meaning that it compares two files or fragments
looking for identical characters.

• Words - Computes the differences at word level, meaning that it compares two files or fragments looking
for identical words.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• Syntax Aware - Computes differences for the file types or fragments known by Oxygen XML Developer,
taking the syntax (the specific types of tokens) into consideration.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two
XML files or fragments looking for identical XML nodes.

Diff Options
Opens the Files Comparison preferences page where you can configure various options.

Three-Way Comparison
Toggle action that allows you to perform a three-way comparison between the two files displayed in the two
editing panes and a base (ancestor) file.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

 Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the
comparison, the application normalizes the content and trims its leading and trailing whitespaces.

 Synchronized scrolling
Toggles synchronized scrolling on or off so that a selected difference can be seen on both sides of the
application window. This option is on by default.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first
change block or when there are no changes.

Editing Documents 574

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor is
positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when the
cursor is positioned on the first change or when there are no changes.

 Copy All Changes from Left to Right
Copies all changes from the file in the left panel to the file in the right panel.

 Copy Change from Left to Right
Copies the selected difference from the file in the left panel to the file in the right panel.

Ignore Nodes by XPath
You can use this text field to enter an XPath expression to ignore certain nodes from the comparison. It will
be processed as XPath version 2.0. You can also enter the name of the node to ignore all nodes with the
specified name (for example, if you want to ignore all ID attributes from the document, you could simply
enter @id). This field is only available when comparing XML documents using the XML Fast or XML Accurate
algorithms.

Note: If an XPath expression is specified in the Ignore nodes by XPath option in the Diff / File Comparison
preferences page, that one is used as a default when the application is started. If you then enter an
expression in this field on the toolbar, this one will be used instead of the default. If you delete the expression
from this field, neither will be used.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Base
Available for three-way comparisons. It is the base file that will be compared with the files opened in the
left and right editors. You can specify the path to the file by using the text field, its history drop-down, or the
browsing tools in the Browse drop-down menu.

Left-Side (Source) File
You can specify the path to the file to be compared on the left side (source) by using the text field, its history
drop-down, or the browsing tools in the Browse drop-down menu.

Save
Saves the changes made in the source (left-side) file.

Reload
Reloads the source (left-side) file.

Close
Closes the source (left-side) file.

Right-Side (Target) File
You can specify the path to the file to be compared on the right side (target) by using the text field, its history
drop-down, or the browsing tools in the Browse drop-down menu.

Save
Saves the target (right-side) file.

Reload
Reloads the target (right-side) file.

Editing Documents 575

Close
Closes the target (right-side) file.

Compare Files Tool Menus

The menus in the Compare Files tool contain some of the same actions that are on the toolbar, as well as some
common actions that are identical to the same actions in the Oxygen XML Developer menus. The menu actions
include:

File Menu

Source > Open
Browses for a file that will be displayed in the left panel.

Source > Open URL
Browses for a remote file that will be displayed in the left panel.

Source > Open File from Archive
Browses an archive for a file that will be displayed in the left panel.

Source > Reload
Reloads the file in the left panel.

Source > Save
Saves the changes made to the file in the left panel.

Source > Save As
Allows you to choose a destination to save the file in the left panel.

Source > Close
Closes the file in the left panel.

Target > Open
Browses for a file that will be displayed in the right panel.

Target > Open URL
Browses for a remote file that will be displayed in the right panel.

Target > Open File from Archive
Browses an archive for a file that will be displayed in the right panel.

Target > Reload
Reloads the file in the right panel.

Target > Save
Saves the changes made to the file in the right panel.

Target > Save As
Allows you to choose a destination to save the file in the right panel.

Target > Close
Closes the file in the right panel.

Base > Open
Browses for a file that will be compared with both files in a three-way comparison.

Base > Open URL
Browses for a remote file that will be compared with both files in a three-way comparison.

Base > Open File from Archive
Browses an archive for a file that will be compared with both files in a three-way comparison.

Editing Documents 576

Close (Ctrl + W (Command + W on OS X))
Closes the application.

Edit Menu

Cut
Cut the selection from the currently focused editor panel to the clipboard.

Copy
Copy the selection from the currently focused editor panel to the clipboard.

Paste
Paste content from the clipboard into the currently focused editor panel.

Select all
Selects all content in the currently focused editor panel.

Undo
Undo changes in the currently focused editor panel.

Redo
Redo changes in the currently focused editor panel.

Find Menu

Find/Replace
Perform find/replace operations in the currently focused editor panel.

Find Next
Go to the next match using the same options as the last find operation. This action runs in both editor panels.

Find Previous
Go to the previous match using the same options as the last find operation. This action runs in both editor
panels.

Compare Menu

Three-Way Comparison
Toggle action that allows you to perform a three-way comparison between the two files displayed in the two
editing panes and a base (ancestor) file.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first
change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor is
positioned on the last change or when there are no changes.

Editing Documents 577

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when the
cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on OS X))
Jumps to the last change.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Copy All Changes from Left to Right
Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right
Copies the selected difference from the file in the left panel to the file in the right panel.

Show Word Level Details
Provides a word-level comparison of the selected change.

Show Character Level Details
Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Options Menu

Preferences
Opens the preferences dialog box that includes numerous pages of options that can be configured.

Menu Shortcut Keys
Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts available for menu
items.

Reset Global Options
Resets options to their default values. Note that this option appears only when the tool is executed as a
stand-alone application.

Import Global Options
Allows you to import an options set that you have previously exported.

Export Global Options
Allows you to export the current options set to a file.

Help Menu

Help (F1)
Opens a Help dialog box that displays the User Manual at a section that is appropriate for the context of the
current cursor position.

Editing Documents 578

Use Online Help
If this option is selected, when you select Help or press F1 while hovering over any part of the interface,
Oxygen XML Developer attempts to open the help documentation in online mode. If this option is not selected
or an internet connection fails, the help documentation is opened in offline mode.

Report problem
Opens a dialog box that allows the user to write the description of a problem that was encountered
while using the application. You can change the URL where the reported problem is sent by using the
com.oxygenxml.report.problems.url system property. The report is sent in XML format through the
report parameter of the POST HTTP method.

Support Center
Opens the Oxygen XML Developer Support Center web page in a browser.

Compare Directories
The Compare Directories tool can be used to compare and manage changes to files and folders within the
structure of your directories. The utility is available from the Tools menu or can be opened as a stand-alone
application from the Oxygen XML Developer installation folder (diffDirs.exe).

Figure 338: Compare Directories Tool

Starting the Tool from a Command Line

The directory comparison tool can also be started by using command-line arguments. In the installation folder
there is an executable shell (diffDirs.bat on Windows, diffDirs.sh on Unix/Linux, diffDirsMac.sh
on OS X). To specify the directories to compare, you can pass command-line arguments using the following
construct: diffDirs.bat/diffDirs.sh/diffDirsMac.sh [directory path 1] [directory path
2].

If you pass only one argument, you are prompted to manually choose the second directory or archive.

Editing Documents 579

For example, to start a comparison between two Windows directories, the command line would look like this:

diffDirs.bat "c:\documents new" "c:\documents old"

Tip: If there are spaces in the path names, surround the paths with quotes.

Directory Comparisons

To perform a directory comparison, follow these steps:

1. Select a folder in the left panel and the folder you want to compare it to in the right panel. You can specify the
path by using the text field, the history drop-down, or the Browse for local directory action in the Browse
drop-down menu.

Step Result: The selected directory structures are opened in the two side-by-side panels.
2. To highlight the differences between the two folders, click the Perform Directories Differencing button from

the toolbar.
3. You can also use the Diff Options button to access the Directories Comparison preferences page where you

can configure various options.

To compare the content of two archives, follow these steps:

1. Use the Browse for archive file action in the Browse drop-down menu to select the archives in the left and
right panels.

2. By default, the supported archives are not treated as directories and the comparison is not performed on the
files inside them. To make Oxygen XML Developer treat supported archives as directories, select the Look in
archives option in the Directories Comparison preferences page.

3. To highlight the differences, click the Perform Directories Differencing button from the toolbar.

The directory comparison results are presented using two tree-like structures showing the files and folders,
including their name, size, and modification date. A column that contains graphic symbols separates the two tree-
like structures. The graphic symbols can be one of the following:

• An X symbol, when a file or a folder exists in only one of the compared directories.
• A ≠symbol, when a file exists in both directories but the content differs. The same sign appears when a

collapsed folder contains differing files.

The color used for the symbol and the directory or file name can be customized in the Directories Comparison /
Appearance preferences page. You can double-click lines marked with the ≠ symbol to open a Compare Files
window, which shows the differences between the two files.

The directories that contain files that differ are expanded automatically so that you can focus directly on the
differences. You can merge the contents of the directories by using the copy actions. If you double-click (or press
Enter) on a line with a pair of files, Oxygen XML Developer starts a file comparison between the two files, using
the Compare Files tool.

Related Information:
Compare Files on page 567

Toolbar and Contextual Menu Actions of the Compare Directories Tool

The toolbar of the Compare Directories tool contains operations that can be performed on the compared
directory structure. Some of the toolbar actions are also available in the contextual menu.

Figure 339: Compare toolbar

Editing Documents 580

Toolbar Actions

Perform Directories Differencing
Looks for differences between the two directories displayed in the left and right side of the application
window.

Perform Files Differencing
Opens the Compare Files tool that allows you to compare the currently selected files.

Copy Change from Right to Left
Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left
file/folder is deleted).

Copy Change from Left to Right
Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right
file/folder is deleted).

Binary Compare
Performs a byte-level comparison on the selected files.

Diff Options
Opens the Directory Comparison preferences page where you can configure various options.

Show Only Modifications
Displays a more uncluttered file structure by hiding all identical files.

File and folder filters
Differences can be filtered using three combo boxes: Include files, Exclude files, and Exclude folders. They
come with predefined values and are editable to allow custom values. All of them accept multiple comma-
separated values and the * and ? wildcards. For example, to filter out all JPEG and GIF image files, edit the
Exclude files filter box to read *.jpeg, *.png. Each filter includes a drop-down menu with the latest 15
filters applied.

Contextual Menu Actions

Perform Files Differencing
Opens the Compare Files tool that allows you to compare the currently selected files.

Binary Compare
Performs a byte-level comparison on the selected files.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right
Copies the selected difference from the file in the left panel to the file in the right panel.

Open
If the action is invoked on a file, the selected file is opened in Oxygen XML Developer. If the action is invoked
on a directory, the selected directory is opened in the default file browser for your particular operating system.

Open in System Application
Opens the selected file in the system application that is associated with that type of file. The action is
available when launching the Compare Directories tool from the Tools menu in Oxygen XML Developer.

Show in Explorer
Opens the default file browser for your particular operating system with the selected file highlighted.

Editing Documents 581

Compare Directories Tool Menus

The menus in the Compare Directories tool contain some of the same actions that are on the toolbar, as well as
some common actions that are identical to the same actions in the Oxygen XML Developer menus. The menu
actions include:

File Menu

Close (Ctrl + W (Command + W on OS X))
Closes the application.

Compare Menu

Perform Directories Differencing
Looks for differences between the two directories displayed in the left and right side of the application
window.

Perform Files Differencing
Opens the Compare Files tool that allows you to compare the currently selected files.

Copy Change from Right to Left
Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left
file/folder is deleted).

Copy Change from Left to Right
Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right
file/folder is deleted).

Options Menu

Preferences
Opens the preferences dialog box that includes numerous pages of options that can be configured.

Menu Shortcut Keys
Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts available for menu
items.

Reset Global Options
Resets options to their default values. Note that this option appears only when the tool is executed as a
stand-alone application.

Import Global Options
Allows you to import an options set that you have previously exported.

Export Global Options
Allows you to export the current options set to a file.

Help Menu

Help (F1)
Opens a Help dialog box that displays the User Manual at a section that is appropriate for the context of the
current cursor position.

Use Online Help
If this option is selected, when you select Help or press F1 while hovering over any part of the interface,
Oxygen XML Developer attempts to open the help documentation in online mode. If this option is not selected
or an internet connection fails, the help documentation is opened in offline mode.

Report problem
Opens a dialog box that allows the user to write the description of a problem that was encountered
while using the application. You can change the URL where the reported problem is sent by using the

Editing Documents 582

com.oxygenxml.report.problems.url system property. The report is sent in XML format through the
report parameter of the POST HTTP method.

Support Center
Opens the Oxygen XML Developer Support Center web page in a browser.

Compare Images

You can use the Compare Directories tool to compare images. If you double-click a line that contains two
different images, the Compare images window is displayed. This dialog box presents the images in the left and
right sides, scaled to fit the available view area. You can use the contextual menu actions to scale the images to
their original size or scale them down to fit in the view area.

The supported image types are: GIF, JPG, JPEG, PNG, and BMP.

Compare Directories Against a Base (3-Way)
The Compare Directories Against a Base (3-way) tool allows you to perform three-way comparisons on
directories to help you identify and merge changes between multiple modifications of the same directory
structure. It is especially helpful for teams that have multiple authors contributing documents to the same
directory system. It offers information about conflicts and changes, and includes actions to easily merge, accept,
overwrite, or ignore changes to the directory system.

How to Perform 3-Way Directory Comparisons

To perform a 3-way directories comparison, follow these steps:

1. Select Compare Directories Against a Base (3-way) from the Tools menu.

Step Result: This opens a dialog box that allows you to select the 3 file sets that will be used for the
comparison.

Figure 340: Compare Directories Against a Base File Set Chooser
2. Select the file sets to be compared:

• Base directory - This is the original (base) file set before any modifications were made by your or others.
• Directory with your changes - This is the file set with changes that you have made. This file set will be

displayed in the left panel in the comparison tool.
• Directory with changes made by others - This is the file set with changes made by others that you want to

merge with your changes. This file set will be displayed in the right panel in the comparison tool.
3. Click the Compare button to compare the file sets and open the comparison and merge tool.
4. Use the features and actions described in the next section to identify and merge the changes.

Editing Documents 583

3-Way Directory Comparison and Merge Tool

Figure 341: Comparison and Merge Tool

The 3-way directory comparison and merge tool includes the following information, features, and actions:

Number of Changes and Conflicts
The first thing you see in top-left corner of the tool is grand total of all the changes made by others, changes
made by you, and the number of conflicts.

Filter Buttons
In the top-right corner you can use the toggle buttons to filter the list of modifications:

Show all files
Use this button to show all modified and unmodified files, as well as conflicts.

Show only files modified by you and others
Filters the list to show all files that have been modified, including conflicts.

Show only files modified by others
Filters the list to only show the files that were modified by others.

Show only files modified by you
Filters the list to only show the files that were modified by you.

Show only conflicting files
Filters the list to only show files that contain conflicts.

List of Files Panel
This panel shows the list of files in the compared file sets based upon the filter button that is selected. This
panel includes the following sortable columns:

• Name - The file names.

Editing Documents 584

• Status - An icon that represents the file status. Red icons indicate some sort of conflict. Gray icons
indicate modifications made by you. Blue icons indicate modifications made by others.

• Description - A description of the file status.
• Merge Action - This column provides a drop-down menu for each file that allows you to choose some

merge actions depending upon its status. A default action is always set to automatically merge the
changes made by others with your changes. If there is a conflict, the default is <Select action> and you
are required to make a selection. Click this column to access the drop-down menu where you can make a
selection. The same actions are available in the contextual menu.

You can double-click any non-binary file (or select Show modifications from the contextual menu) to open it
in the file comparison panel (the file from your file set is shown in the left panel while the file from the file set
with changes made by others is shown in the right panel).

File Comparison Panels
If you double-click any non-binary file in the top panel, the file is opened in this file comparison section. The
file from your file set is shown in the left panel and the file from the other file set is shown in the right panel.

Note: If Oxygen XML Developer does not recognize the file type, a dialog box will be displayed that allows
you to select the type of editor you want it to be associated with for this comparison (if you want Oxygen
XML Developer to remember this association, you can select the Associate file type with editor option at the
bottom of the dialog box).

This panel includes the following information and toolbar actions:

File Path
The first thing you see in this panel is the file path where merge actions will be applied if you make
changes.

Close
Closes the file comparison panel.

Algorithm Drop-Down Menu
This drop-down menu allows you to select one of the following diff algorithms to be used for file
comparisons:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking
for identical lines of text.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares
two XML files or fragments looking for identical XML nodes.

Diff Options
Opens the Files Comparison preferences page where you can configure various options.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing
the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

Synchronized scrolling
Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Editing Documents 585

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the
first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor
is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when
the cursor is positioned on the first change or when there are no changes.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Left-Side File (Your changes)
Above the panel you can see the file path and the following two buttons:

Save
Saves changes made to the file.

Reload
Reloads the file.

Right-Side File (Changes made by others)
Above the panel you can see the file path and the following two buttons:

Reload
Reloads the file.

Displaying Changes in the File Comparison Panels

The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify
the locations of the differences. Adjacent changes are grouped into blocks of changes.

Figure 342: File Comparison Panels

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines
connect the compared fragments in the middle section between the two panes. The highlighting colors
can be customized in the Files Comparison / Appearance preferences page, but the default colors and their
shades mean the following:

• Pink - Identifies modifications on either side.
• Gray - Identifies an addition of a node in the left side (your outgoing changes).
• Blue - Identifies an addition of a node in the right side (incoming changes).
• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

Editing Documents 586

• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Direct Editing Actions in the File Comparison Panels

In addition to selecting merge actions from the drop-down menus in the Merge Action column in the top
panel, you can also edit the files directly in the left pane (your local changes). The two editors are constantly
synchronized and the differences are refreshed when you save the modified document (Save button or Ctrl

+S) or when you click the Perform File Differencing button.

A variety of actions are available in the contextual menu in both editing panes. The tool also includes some
inline actions to help you merge, copy, or remove changes. When you select a change, the following inline
action widgets are available, depending on the type of change:

 Append right change to left
Copies the content of the selected change from the right side and appends it on the left side.

 Copy change from right to left
Replaces the content of a change in the left side with the content of the change in the right side.

 Remove change
Removes the change from the left side.

Any time you save manual changes (Save button or Ctrl+S), the selection in the Merge Action column in the
top panel automatically changes to Use merged and a copy of the original file is kept so that you can revert
to the original file if necessary. To discard your manual changes and revert to your original changes, select a
different action in the Merge Action drop-down menu.

Applying Changes
When you click the Apply button, all the merge actions you have selected and the changes you have made will
be processed.

If there are unresolved conflicts (conflicts where no merge action is selected in the Merge Action drop-down
menu), a dialog box will be displayed that allows you to choose how to solve the conflicts. You can choose
between the following:

• Keep your changes - If you select this option and then click Apply, your local changes will be preserved for
the unresolved conflicts.

• Overwrite your changes - If you select this option and then click Apply, your local changes will be
overwritten with the changes made by others, for the unresolved conflicts.

• Cancel - You can click the Cancel button to go back to the merge tool to resolve the conflicts individually.

Cancelling Changes
If you click the Cancel button at the bottom of the merge tool, all the changes you made in the tool will be
lost.

Related Information:
Compare Directories on page 579
Compare Files on page 567

Editing Documents 587

Document Types and Frameworks 8
Topics:

• Predefined Document Types (Frameworks)
• Other Supported Document Types

A framework is associated to an XML document type according to a set of rules. It also includes a variety of settings
that improve editing capabilities in the Author mode for its particular file type. These settings include:

• A default grammar used for validation and content completion in Text mode.
• Predefined scenarios used for transformations for the class of XML documents defined by the document type.
• XML Catalogs.
• Directories with file templates.

Oxygen XML Developer includes built-in support for many common document types. Each document type is defined in a
framework.

To see a video on configuring a framework in Oxygen XML Developer, go to https://www.oxygenxml.com/demo/
FrameworkConfiguration.html.

Predefined Document Types (Frameworks)
Oxygen XML Developer includes a variety of specialized editors, views, and features that are dynamic according
to the type of document that you open or create. The type of documents that are supported include the most
popular predefined XML frameworks that include a full set of features as well as other document types that
include more generic or common features.

Predefined Frameworks

The following predefined document types (frameworks) are fully supported in Oxygen XML Developer and each
of these document types include built-in transformation scenarios, validation, content completion and file
templates:

• DocBook 4 - A document type standard for books, articles, and other prose documents (particularly technical
documentation).

• DocBook 5 - An enhanced (version 5) document type standard designed for a variety of documents
(particularly technical documentation).

• DITA - An XML-based architecture designed for authoring, producing, and delivering technical information.
• DITA Map - A document type that collects and organizes references to DITA topics or other maps.
• XHTML - Extensible HyperText Markup Language includes the same depth of expression as HTML, but also

conforms to XML syntax.
• TEI ODD - Text Encoding Initiative One Document Does it all is an XML-conformant specification that allows

you to create TEI P5 schema in a literate programming style.
• TEI P5 - The Text Encoding Initiative guidelines is a standard for the academic community that collectively

define an XML format for text that is primarily semantic rather than presentational.
• JATS - The NISO Journal Article Tag Suite is a technical standard that defines an XML format for scientific

literature.

DocBook 4 Document Type (Framework)
DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly
technical documentation. DocBook provides a vast number of semantic element tags, divided into three broad

588

https://www.oxygenxml.com/demo/FrameworkConfiguration.html
https://www.oxygenxml.com/demo/FrameworkConfiguration.html

categories: structural, block-level, and inline. DocBook content can then be published in a variety of formats,
including HTML, PDF, WebHelp, and EPUB.

File Definition

A file is considered to be a DocBook 4 document when one of the following conditions are true:

• The root element name is book or article.
• The PUBLIC ID of the document contains the string -//OASIS//DTD DocBook XML.

Default Document Templates

There are a variety of default DocBook 4 templates available when creating new documents from templates and
they can be found in: Framework Templates > DocBook 4.

The default templates for DocBook 4 documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/
docbook/templates/Docbook 4 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected in the DocBook 4 file is docbookxi.dtd and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/4.5/dtd/.

Default XML Catalog

The default XML Catalog, catalog.xml, is stored in [OXYGEN_INSTALL_DIR]/frameworks/docbook/.

Transformation Scenarios

Oxygen XML Developer includes numerous built-in DocBook transformation scenarios that allow you to transform
DocBook 4 documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML
Chunk, and EPUB. For more information, see the DocBook 4 Transformation Scenarios on page 589 section.

Resources

•
• DocBook Specifications

Related Information:
Editing XML Documents in Text Mode on page 237

DocBook 4 Transformation Scenarios

Default transformation scenarios allow you to convert DocBook 4 to DocBook 5 documents and transform
DocBook documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk,
and EPUB. All of them are listed in the DocBook 4 section in the Configure Transformation Scenario(s) dialog box.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook 4 to WebHelp Output

DocBook 4 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 4 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation
menu.

2. Select the DocBook WebHelp Classic scenario from the DocBook 4 section.
3. Click Apply associated.

Document Types and Frameworks 589

http://docbook.org/specs/

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

WebHelp Classic with Feedback Output

To publish a DocBook 4 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 4 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system
deployment. For more information, see Deploying a Feedback-Enabled WebHelp System on page 728.

To watch our video demonstration about the feedback-enabled WebHelp system, go to https://
www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output

To publish a DocBook 4 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 4 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in
your default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the
following most commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

l10n.gentext.default.language
This parameter is used to identify the correct stemmer that differs from language to language. For example,
for English the value of this parameter is en or for French it is fr, and so on.

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or

Document Types and Frameworks 590

https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html
https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-
phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to
this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.skin.css
Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined
skin CSS from the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp
\predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web
application.

For more information about all the DocBook transformation parameters, go to http://docbook.sourceforge.net/
release/xsl/current/doc/fo/index.html.

Related Information:
WebHelp Classic Output on page 614

Document Types and Frameworks 591

https://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html

WebHelp Classic With Feedback Output on page 617
WebHelp Classic Mobile System (Deprecated) on page 804
Customizing WebHelp Classic Systems on page 780
Customizing WebHelp Classic Mobile Systems on page 805

DocBook to PDF Output Customization

When the default layout and output of the DocBook to PDF transformation needs to be customized, follow these
steps:

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/
titlepage.templates.xml and customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
 <mediaobject/>
 <title
 t:named-template="book.verso.title"
 font-size="&hsize2;"
 font-weight="bold"
 font-family="{$title.font.family}"/>
 <corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.
Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.
The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert a logo image in the XML document.
The path to the logo image must be inserted in the book/info/mediaobject element of the XML
document.

5. Apply the customization layer to the XML document.
A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML
Developer and set the customization layer in the XSL URL property of the scenario.

Related Information:
The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.
Video demonstration for creating a DocBook customization layer in Oxygen XML Developer.

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when
possible. To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as
in the following example:

h1 {
font-size:20pt;
margin-bottom:20px;

Document Types and Frameworks 592

http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
https://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
https://www.oxygenxml.com/demo/DocBook_Customization.html

font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. Open the Configure Transformation Scenario(s) dialog box, select the DocBook EPUB transformation scenario,
and click Edit.

4. In the Parameters tab, set the epub.embedded.fonts parameter to fonts/MyFont.otf. If you need to
provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.
5. Run the transformation scenario.

DocBook to DITA Transformation

Oxygen XML Developer includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation
Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the toolbar or the Document >
Transformation menu.

• To customize the transformation or change the scenario that is associated with the document, use the
Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the

toolbar or the Document > Transformation menu.
2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements
as it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert
XML comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation
errors, adjust certain attributes, or split the content into individual topics.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

Inserting an olink in DocBook Documents

The olink element is used for linking to resources outside the current DocBook document. The targetdoc
attribute is used for the document ID that contains the target element and the targetptr attribute for the ID of
the target element (the value of an id or xml:id attribute). The combination of those two attributes provides a
unique identifier to locate cross references.

For example, a Mail Administrator Guide with the document ID MailAdminGuide might contain a chapter about
user accounts, like this:

<chapter id="user_accounts">
<title>Administering User Accounts</title>
<para>blah blah</para>

You can form a cross reference to that chapter by adding an olink, as in the following example:

You may need to update your
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts
</olink>
when you get a new machine.

To use an olink to create links between documents, follow these steps:

1. Decide which documents are to be included in the domain for cross referencing.
A unique ID must be assigned to each document that will be referenced with an olink. It is usually added as
an id (or xml:id for DocBook5) attribute to the root element of the document.

Document Types and Frameworks 593

https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

2. Decide on your output hierarchy.
For creating links between documents, the relative locations of the output documents must be known. Before
going further you must decide the names and locations of the output directories for all the documents from
the domain. Each directory will be represented by an element: <dir name="directory_name">, in the
target database document.

3. Create the target database document.
Each collection of documents has a master target database document that is used to resolve all olinks from
that collection. The target database document is an XML file that is created once. It provides a means for
pulling in the target data for each document. The database document is static and all the document data is
pulled in dynamically.

Example: The following is an example of a target database document. It structures a collection of documents
in a sitemap element that provides the relative locations of the outputs (HTML in this example). Then it pulls
in the individual target data using system entity references to target data files that will be created in the next
step.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset [
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">
]>
<targetset>
 <targetsetinfo>
 Description of this target database document,
 which is for the examples in olink doc.
 </targetsetinfo>

 <!-- Site map for generating relative paths between documents -->
 <sitemap>
 <dir name="documentation">
 <dir name="guides">
 <dir name="mailuser">
 <document targetdoc="MailUserGuide"
 baseuri="userguide.html">
 &ugtargets;
 </document>
 </dir>
 <dir name="mailadmin">
 <document targetdoc="MailAdminGuide">
 &agtargets;
 </document>
 </dir>
 </dir>
 <dir name="reference">
 <dir name="mailref">
 <document targetdoc="MailReference">
 &reftargets;
 </document>
 </dir>
 </dir>
 </dir>
 </sitemap>
</targetset>

4. Generate the target data files by executing a DocBook transformation scenario.
Before applying the transformation, you need to edit the transformation scenario, go to the Parameters
tab, and make sure the value of the collect.xref.targets parameter is set to yes. The default
name of a target data file is target.db, but it can be changed by setting an absolute file path in the
targets.filename parameter.

Example: An example of a target.db file:

<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">
 <ttl>Administering User Accounts</ttl>
 <xreftext>How to administer user accounts</xreftext>
 <div element="part" href="#d5e4" number="I">
 <ttl>First Part</ttl>
 <xreftext>Part I, “First Part”</xreftext>
 <div element="chapter" href="#d5e6" number="1">
 <ttl>Chapter Title</ttl>
 <xreftext>Chapter 1, Chapter Title</xreftext>
 <div element="sect1" href="#src_chapter" number="1" targetptr="src_chapter">
 <ttl>Section1 Title</ttl>
 <xreftext>xreflabel_here</xreftext>
 </div>
 </div>
 </div>
</div>

Document Types and Frameworks 594

5. Insert olink elements in the DocBook documents.

When editing a DocBook XML document in Author mode, the Insert OLink action is available in the Link
drop-down menu from the toolbar. This action opens the Insert OLink dialog box that allows you to select
the target of an olink from the list of all possible targets from a specified target database document
(specified in the Targetset URL field). Once a Targetset URL is selected, the structure of the target documents
is presented. For each target document (targetdoc), its content is displayed, allowing you to easily identify
the appropriate targetptr. You can also use the search fields to quickly identify a target. If you already know
the values for the targetdoc and targetptr attributes, you can insert them directly in the corresponding
fields.

Example: In the following image, the target database document is called target.xml, dbadmin is selected
for the target document (targetdoc), and bldinit is selected as the value for the targetptr attribute. Notice
that you can also add XREF text into the olink by using the xreftext field.

Figure 343: Insert OLink Dialog Box

6. Process a DocBook transformation for each document to generate the output.
a) Edit the transformation scenario and set the value of the target.database.document parameter to be

the URL of the target database document.
b) Apply the transformation scenario.

DocBook 5 Document Type (Framework)
DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly
technical documentation. DocBook provides a vast number of semantic element tags, divided into three broad
categories: structural, block-level, and inline. DocBook content can then be published in a variety of formats,
including HTML, PDF, WebHelp, and EPUB.

Document Types and Frameworks 595

File Definition

A file is considered to be a DocBook 5 document when the namespace is http://docbook.org/ns/docbook.

Default Document Templates

There are a variety of default DocBook 5 templates available when creating new documents from templates and
they can be found in: Framework Templates > DocBook 5 > DocBook 5.0 and Framework Templates > DocBook
5 > DocBook 5.1.

New file templates for both DocBook 5 documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/
docbook/templates/Docbook5.0 folder.

New file templates for both DocBook 5.1 documents are located in the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/templates/Docbook5.1 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is docbookxi.rng and it is stored
in [OXYGEN_INSTALL_DIR]/frameworks/docbook/5.0/rng/ (or for DocBook 5.1 in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/5.1/rng/). Other types of schemas for various DocBook
versions are also located in various folders inside the [OXYGEN_INSTALL_DIR]/frameworks/docbook/
directory.

Transformation Scenarios

Oxygen XML Developer includes numerous built-in DocBook transformation scenarios that allow you to transform
DocBook 5 documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML
Chunk, EPUB, and Assembly (5.1). For more information, see the DocBook 5 Transformation Scenarios on page
596 section.

Resources

• DocBook 5.0 (and older) Specifications
• Docbook 5.1 Specifications
• DocBook 5.1: The Definitive Guide

Related Information:
Editing XML Documents in Text Mode on page 237
DocBook 5.1 Assembly on page 603
DocBook 5.1 Topic on page 604

DocBook 5 Transformation Scenarios

Built-in transformation scenarios allow you to transform DocBook 5 documents to a variety of outputs, such as
WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, and EPUB. Oxygen XML Developer also includes a
DocBook 5.1 transformation scenario for Assembly documents. All of them are listed in the DocBook 5 section in
the Configure Transformation Scenario(s) dialog box.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook 5 to WebHelp Output

DocBook 5 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 5 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation
menu.

Document Types and Frameworks 596

http://docbook.org/specs/
http://docbook.org/specs/docbook-v5.1-csprd02.html
http://tdg.docbook.org/tdg/5.1/docbook.html

2. Select the DocBook WebHelp Classic scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

WebHelp Classic with Feedback Output

To publish a DocBook 5 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 5 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system
deployment. For more information, see Deploying a Feedback-Enabled WebHelp System.

To watch our video demonstration about the feedback-enabled WebHelp system, go to https://
www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output

To publish a DocBook 5 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in
your default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the
following most commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

l10n.gentext.default.language
This parameter is used to identify the correct stemmer that differs from language to language. For example,
for English the value of this parameter is en or for French it is fr, and so on.

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

Document Types and Frameworks 597

https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html
https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-
phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to
this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.skin.css
Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined
skin CSS from the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp
\predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web
application.

For more information about all the DocBook transformation parameters, go to http://docbook.sourceforge.net/
release/xsl/current/doc/fo/index.html.

Document Types and Frameworks 598

https://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html

Related Information:
WebHelp Classic Output on page 614
WebHelp Classic With Feedback Output on page 617
WebHelp Classic Mobile System (Deprecated) on page 804
Customizing WebHelp Classic Systems on page 780
Customizing WebHelp Classic Mobile Systems on page 805

DocBook to PDF Output Customization

When the default layout and output of the DocBook to PDF transformation needs to be customized, follow these
steps:

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/
titlepage.templates.xml and customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
 <mediaobject/>
 <title
 t:named-template="book.verso.title"
 font-size="&hsize2;"
 font-weight="bold"
 font-family="{$title.font.family}"/>
 <corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.
Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.
The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert a logo image in the XML document.
The path to the logo image must be inserted in the book/info/mediaobject element of the XML
document.

5. Apply the customization layer to the XML document.
A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML
Developer and set the customization layer in the XSL URL property of the scenario.

Related Information:
The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.
Video demonstration for creating a DocBook customization layer in Oxygen XML Developer.

Show Comments and Tracked Changes in DocBook 5 PDF Output

To include comments and tracked changes (stored within your DocBook 5 documents) in the PDF output, follow
these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DocBook PDF (Show Change Tracking and Comments) in the DocBook 5 section.
3. If you need to configure the transformation, click the Edit or Duplicate button, make your changes to the

scenario, and click OK.
4. Click the Apply Associated button to run the transformation scenario.

Result: Comment threads and tracked changes will now appear in the PDF output. Details about each
comment or change will be available in the footer section for each page.

Document Types and Frameworks 599

http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
https://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
https://www.oxygenxml.com/demo/DocBook_Customization.html

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when
possible. To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as
in the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. Open the Configure Transformation Scenario(s) dialog box, select the DocBook EPUB transformation scenario,
and click Edit.

4. In the Parameters tab, set the epub.embedded.fonts parameter to fonts/MyFont.otf. If you need to
provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.
5. Run the transformation scenario.

DocBook to DITA Transformation

Oxygen XML Developer includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation
Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the toolbar or the Document >
Transformation menu.

• To customize the transformation or change the scenario that is associated with the document, use the
Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the

toolbar or the Document > Transformation menu.
2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements
as it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert
XML comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation
errors, adjust certain attributes, or split the content into individual topics.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

Inserting an olink in DocBook Documents

The olink element is used for linking to resources outside the current DocBook document. The targetdoc
attribute is used for the document ID that contains the target element and the targetptr attribute for the ID of
the target element (the value of an id or xml:id attribute). The combination of those two attributes provides a
unique identifier to locate cross references.

Document Types and Frameworks 600

https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

For example, a Mail Administrator Guide with the document ID MailAdminGuide might contain a chapter about
user accounts, like this:

<chapter id="user_accounts">
<title>Administering User Accounts</title>
<para>blah blah</para>

You can form a cross reference to that chapter by adding an olink, as in the following example:

You may need to update your
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts
</olink>
when you get a new machine.

To use an olink to create links between documents, follow these steps:

1. Decide which documents are to be included in the domain for cross referencing.
A unique ID must be assigned to each document that will be referenced with an olink. It is usually added as
an id (or xml:id for DocBook5) attribute to the root element of the document.

2. Decide on your output hierarchy.
For creating links between documents, the relative locations of the output documents must be known. Before
going further you must decide the names and locations of the output directories for all the documents from
the domain. Each directory will be represented by an element: <dir name="directory_name">, in the
target database document.

3. Create the target database document.
Each collection of documents has a master target database document that is used to resolve all olinks from
that collection. The target database document is an XML file that is created once. It provides a means for
pulling in the target data for each document. The database document is static and all the document data is
pulled in dynamically.

Example: The following is an example of a target database document. It structures a collection of documents
in a sitemap element that provides the relative locations of the outputs (HTML in this example). Then it pulls
in the individual target data using system entity references to target data files that will be created in the next
step.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset [
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">
]>
<targetset>
 <targetsetinfo>
 Description of this target database document,
 which is for the examples in olink doc.
 </targetsetinfo>

 <!-- Site map for generating relative paths between documents -->
 <sitemap>
 <dir name="documentation">
 <dir name="guides">
 <dir name="mailuser">
 <document targetdoc="MailUserGuide"
 baseuri="userguide.html">
 &ugtargets;
 </document>
 </dir>
 <dir name="mailadmin">
 <document targetdoc="MailAdminGuide">
 &agtargets;
 </document>
 </dir>
 </dir>
 <dir name="reference">
 <dir name="mailref">
 <document targetdoc="MailReference">
 &reftargets;
 </document>
 </dir>
 </dir>
 </dir>
 </sitemap>
</targetset>

4. Generate the target data files by executing a DocBook transformation scenario.

Document Types and Frameworks 601

Before applying the transformation, you need to edit the transformation scenario, go to the Parameters
tab, and make sure the value of the collect.xref.targets parameter is set to yes. The default
name of a target data file is target.db, but it can be changed by setting an absolute file path in the
targets.filename parameter.

Example: An example of a target.db file:

<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">
 <ttl>Administering User Accounts</ttl>
 <xreftext>How to administer user accounts</xreftext>
 <div element="part" href="#d5e4" number="I">
 <ttl>First Part</ttl>
 <xreftext>Part I, “First Part”</xreftext>
 <div element="chapter" href="#d5e6" number="1">
 <ttl>Chapter Title</ttl>
 <xreftext>Chapter 1, Chapter Title</xreftext>
 <div element="sect1" href="#src_chapter" number="1" targetptr="src_chapter">
 <ttl>Section1 Title</ttl>
 <xreftext>xreflabel_here</xreftext>
 </div>
 </div>
 </div>
</div>

5. Insert olink elements in the DocBook documents.

When editing a DocBook XML document in Author mode, the Insert OLink action is available in the Link
drop-down menu from the toolbar. This action opens the Insert OLink dialog box that allows you to select
the target of an olink from the list of all possible targets from a specified target database document
(specified in the Targetset URL field). Once a Targetset URL is selected, the structure of the target documents
is presented. For each target document (targetdoc), its content is displayed, allowing you to easily identify
the appropriate targetptr. You can also use the search fields to quickly identify a target. If you already know
the values for the targetdoc and targetptr attributes, you can insert them directly in the corresponding
fields.

Example: In the following image, the target database document is called target.xml, dbadmin is selected
for the target document (targetdoc), and bldinit is selected as the value for the targetptr attribute. Notice
that you can also add XREF text into the olink by using the xreftext field.

Document Types and Frameworks 602

Figure 344: Insert OLink Dialog Box

6. Process a DocBook transformation for each document to generate the output.
a) Edit the transformation scenario and set the value of the target.database.document parameter to be

the URL of the target database document.
b) Apply the transformation scenario.

DocBook 5.1 Assembly
The DocBook Assembly document type was introduced with DocBook 5.1 and it is used to define the hierarchy
and relationships for a collection of resources. It is especially helpful for topic-oriented authoring scenarios
since it assembles a set of resources (such as DocBook 5.1 topics) to form a hierarchical structure for a larger
publication.

An Assembly document usually has four major parts:

• Resources - Identifies a collection of resources (such as topics). An Assembly may identify one or more
collections.

• Structure - Identifies an artifact to be assembled. A document in this case is the particular collection of
resources (such as topics) that forms the documentation. Within the structure element, an output
element can be used to identify the type of output to be generated and module elements can be used to
identify the resources to be included. An Assembly may identify one or more structures.

• Relationships - Identifies relationships between resources. These relationships may be manifested in any
number of structures during assembly. An Assembly may identify any number of relationships.

• Transformations - Identifies transformations that can be applied during assembly. An Assembly may identify
any number of transformations.

For detailed information about the DocBook Assembly document type, see DocBook 5.1: The Definitive Guide -
DocBook Assemblies.

Document Types and Frameworks 603

http://tdg.docbook.org/tdg/5.1/ch06.html
http://tdg.docbook.org/tdg/5.1/ch06.html

File Definition

A file is considered to be an Assembly when the root name is assembly.

Default Document Templates

A default Assembly document template is available when creating new documents from templates and it can be
found in: Framework Templates > DocBook 5 > DocBook 5.1.

The default template for DocBook Assembly documents is located in the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/templates/Docbook5.1 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is docbookxi.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/5.1/rng/.

Transformation Scenarios

Oxygen XML Developer includes a built-in transformation scenario that can be applied on an Assembly file to
generate an assembled (merged) DocBook file. The scenarios is called DocBook Assembly and is found in the
DocBook 5 section in the Configure Transformation Scenario(s) dialog box.

Resources

• DocBook 5.1: The Definitive Guide - DocBook Assemblies
• Docbook 5.1 Specifications
• Sample files: [OXYGEN_INSTALL_DIR]/samples/docbook/v5/assembly/

DocBook 5.1 Topic
The DocBook Topic document type was introduced with DocBook 5.1 and it is used as a modular unit of
documentation. It is similar to the concept of the DITA Topic and can be used as modular resources in
conjunction with DocBook 5.1 Assembly documents.

For detailed information about the DocBook Topic document type, see DocBook 5.1: The Definitive Guide - Topic.

File Definition

A DocBook file is considered to be a Topic when the root name is topic.

Default Document Templates

A default Topic document template is available when creating new documents from templates and it can be found
in: Framework Templates > DocBook 5 > DocBook 5.1.

The default template for DocBook Assembly documents is located in the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/templates/Docbook5.1 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is docbookxi.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/docbook/5.1/rng/.

Transformation Scenarios

Since DocBook Topics are modular resources, they are assembled and transformed in the DocBook Assembly
transformation process. You can also use any of the built-in DocBook transformation scenarios to transform
individual DocBook Topics to a variety of outputs, such as PDF, HTML, EPUB, and more. They are found in the
DocBook 5 section in the Configure Transformation Scenario(s) dialog box.

Document Types and Frameworks 604

http://tdg.docbook.org/tdg/5.1/ch06.html
http://docbook.org/specs/docbook-v5.1-csprd02.html
http://tdg.docbook.org/tdg/5.1/topic.html

Resources

• DocBook 5.1: The Definitive Guide - Topic
• Docbook 5.1 Specifications
• Sample files: [OXYGEN_INSTALL_DIR]/samples/docbook/v5/assembly/

Related Information:
DocBook 5.1 Assembly on page 603

DocBook Targetset Document Type (Framework)
DocBook Targetset documents are used to resolve cross references with the DocBook olink.

File Definition

A file is considered to be a Targetset when the root name is targetset.

Default Document Templates

A default Map document template is available when creating new documents from templates and it can be found
in: Framework Templates > DocBook Targetset.

The default template for DocBook Targetset documents is located in the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/templates/Targetset folder.

Default Schema for Validation and Content Completion

The default schema, targetdatabase.dtd, for this type of document is stored in [OXYGEN_INSTALL_DIR]/
frameworks/docbook/xsl/common/.

Resources

• DocBook Specifications

DITA Topics Document Type (Framework)
The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and
delivering technical information. It divides content into small, self-contained topics that you can reuse in various
deliverables. The extensibility of DITA permits organizations to define specific information structures while still
using standard tools to work with them. DITA content is created as topics, each an individual XML file. Typically,
each topic has a defined primary objective and structure, and DITA also includes several specialized topic types
(task, concept, reference, glossary entry).

File Definition

A file is considered to be a DITA topic document when one of the following conditions are true:

• The root element name is one of the following: concept, task, reference, dita, or topic.
• The PUBLIC ID of the document is a PUBLIC ID for the elements listed above.
• The root element of the file has an attribute named DITAArchVersion for the “http://dita.oasis-open.org/

architecture/2005/” namespace. This enhanced case of matching is only applied when the Enable DTD/
XML Schema processing in document type detection option is selected from the Document Type Association
preferences page.

Default Document Templates

There are a variety of default DITA topic templates available when creating new documents from templates and
they can be found in various folders inside: Framework Templates > DITA.

The default templates for DITA topic documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/
dita/templates/topic folder.

Document Types and Frameworks 605

http://tdg.docbook.org/tdg/5.1/topic.html
http://docbook.org/specs/docbook-v5.1-csprd02.html
http://docbook.org/specs/

Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the DITA documents are stored in the various folders
inside DITA-OT-DIR/dtd/ or DITA-OT-DIR/schema/.

Default XML Catalogs

The default XML Catalogs for the DITA topic document type are as follows:

• DITA-OT-DIR/catalog-dita.xml
• [OXYGEN_INSTALL_DIR]/frameworks/dita/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/dita/plugin/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/dita/styleguide/catalog.xml

Transformation Scenarios

Oxygen XML Developer includes built-in transformation scenarios that allow you to transform individual DITA
Topics to a XHTML or PDF output. They can be found in the DITA section in the Configure Transformation
Scenario(s) dialog box.

Resources

• DITA Specifications
• DITA Style Guide Best Practices for Authors
• Oxygen Video Tutorial: DITA Editing

Related Information:
Editing XML Documents in Text Mode on page 237

DITA Map Document Type (Framework)
DITA maps are documents that collect and organize references to DITA topics to indicate the relationships
between the topics. They can be used as a container for topics used to transform a collection of content into
a publication and they offer a sequence and structure to the topics. They can also serve as outlines or tables
of contents for DITA deliverables and as build manifests for DITA projects. DITA maps allow scalable reuse of
content across multiple contexts. Maps can reference topics or other maps, and can contain a variety of content
types and metadata.

File Definition

A file is considered to be a DITA map document when one of the following conditions are true:

• The root element name is one of the following: map, bookmap.
• The public ID of the document is -//OASIS//DTD DITA Map or -//OASIS//DTD DITA BookMap.
• The root element of the file has an attribute named class that contains the value map/map and a

DITAArchVersion attribute from the http://dita.oasis-open.org/architecture/2005/ namespace. This
enhanced case of matching is only applied when the Enable DTD/XML Schema processing in document type
detection option from the Document Type Association preferences page is selected.

Default Document Templates

There are a variety of default DITA map templates available when creating new documents from templates and
they can be found in various folders inside: Framework Templates > DITA Map.

The default templates for DITA map documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/
sita/templates/map folder.

Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the DITA map document are stored in the various folders
inside DITA-OT-DIR/dtd/ or DITA-OT-DIR/schema/.

Document Types and Frameworks 606

https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html
https://www.oxygenxml.com/demo/DITA_Editing.html

Default XML Catalogs

The default XML Catalogs for the DITA map document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/dita/catalog.xml
• DITA-OT-DIR/catalog-dita.xml

Transformation Scenarios

Oxygen XML Developer includes numerous built-in transformation scenarios that allow you to transform DITA
maps to a variety of outputs, such as WebHelp, PDF, ODF, XHTML, EPUB, and CHM. For more information, see the
DITA Map Transformation Scenarios on page 607 section.

Resources

• DITA Specifications
• DITA Style Guide Best Practices for Authors
• Oxygen Video Tutorial: DITA Maps Manager

Related Information:
Editing XML Documents in Text Mode on page 237

DITA Map Transformation Scenarios

The following types of transformations scenarios are available for DITA maps:

• Predefined transformation scenarios allow you to transform a DITA map to a variety of outputs, such as
WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word.

• Run DITA-OT Integrator - Use this transformation scenario if you want to integrate a DITA-OT plugin. This
scenario runs an Ant task that integrates all the plugins from the DITA-OT/plugins directory.

• DITA Map Metrics Report - Use this type of transformation scenario if you want to generate a DITA map
statistics report. They contain information such as:

• The number of processed maps and topics.
• Content reuse percentage.
• Number of elements, attributes, words, and characters used in the entire DITA map structure.
• DITA conditional processing attributes used in the DITA maps.
• Words count.
• Information types such as number of containing maps, bookmaps, or topics.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DITA Map to WebHelp Output

DITA maps can be transformed into a variety of WebHelp systems designed to suit your specific needs. This
section contains the procedures for obtaining the output for the variants of the WebHelp system.

Related Information:
WebHelp System Output on page 720

WebHelp Responsive Output

To publish a DITA map as a WebHelp Responsive system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

Document Types and Frameworks 607

https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html
https://www.oxygenxml.com/demo/DITA_Maps_Manager.html

• Templates Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Responsive transformation is complete, the output is automatically opened in
your default browser.

Parameters for Customizing WebHelp Responsive Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

editlink.web.author.url
Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the topic
title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where
they can make changes that can be saved to a file server. The value should be set as the custom URL of
the main DITA map. For example, a GitHub custom URL might look like this: https://getFileContent/
oxyengxml/userguide/master/UserGuide.ditamap.

editlink.web.author.url
This parameter needs to be used in conjunction with editlink.remote.ditamap.url to add an Edit link
next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML
Web Author where they can make changes that can be saved to a file server. The value should be set as the
URL of the Web Author installation. For example: https://www.oxygenxml.com/webapp-demo-aws/
app/oxygen.html.

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

Document Types and Frameworks 608

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Parameters Specific to WebHelp Responsive Output

webhelp.enable.search.autocomplete
Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

webhelp.fragment.after.body
In the generated output it displays a given XHTML fragment after the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search
In the generated output it displays a given XHTML fragment after the search field. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.toc_or_tiles
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

Document Types and Frameworks 609

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

webhelp.fragment.before.body
In the generated output it displays a given XHTML fragment before the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title
In the generated output it displays a given XHTML fragment before the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search
In the generated output it displays a given XHTML fragment before the search field. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles
In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.before.top_menu
In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.footer
In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head
In the generated output it displays a given XHTML fragment as a page header. The value of the parameter can
be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome
In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.merge.nested.topics.related.links
Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links
will be moved from the topic content to the related links component and all of the links from the same group
(for example, Related Tasks, Related References, Related Information) are merged into a single group. The
default value is yes.

webhelp.show.breadcrumb
Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links
Specifies if child links will be generated in the output for all topics that have subtopics. The default value is
no.

webhelp.show.indexterms.link
Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles
Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this
parameter should be set to no.

webhelp.show.main.page.toc
Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

webhelp.show.navigation.links
Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link
Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

webhelp.show.related.links
Specifies if the related links component will be presented in the WebHelp Responsive output. The default
value is yes. The webhelp.merge.nested.topics.related.links parameter can used in conjunction with this one
to merge the related links from nested topics into the links in the parent topic.

Document Types and Frameworks 610

webhelp.show.side.toc
Specifies if a side table of contents will be presented on the right side of each topic in the output. The default
value is yes.

webhelp.show.top.menu
Specifies if a menu will be presented at the topic of the main page in the output. The default value is yes.

webhelp.top.menu.depth
Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 2.

Related Information:
Customizing the WebHelp Responsive Output on page 744
WebHelp Responsive System on page 721

WebHelp Responsive with Feedback Output

To publish a DITA map as a WebHelp Responsive with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Responsive with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Templates Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation

version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Responsive with Feedback transformation is complete, your default browser
opens the installation.html file. This file contains information about the output location, system
requirements, installation instructions, and deployment of the output. Follow the instructions to complete the
system deployment.

Parameters for Customizing WebHelp Responsive with Feedback Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

editlink.web.author.url
Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the topic
title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where
they can make changes that can be saved to a file server. The value should be set as the custom URL of
the main DITA map. For example, a GitHub custom URL might look like this: https://getFileContent/
oxyengxml/userguide/master/UserGuide.ditamap.

Document Types and Frameworks 611

editlink.web.author.url
This parameter needs to be used in conjunction with editlink.remote.ditamap.url to add an Edit link
next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML
Web Author where they can make changes that can be saved to a file server. The value should be set as the
URL of the Web Author installation. For example: https://www.oxygenxml.com/webapp-demo-aws/
app/oxygen.html.

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.

Document Types and Frameworks 612

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Parameters Specific to WebHelp Responsive with Feedback Output

webhelp.enable.search.autocomplete
Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

webhelp.fragment.after.body
In the generated output it displays a given XHTML fragment after the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search
In the generated output it displays a given XHTML fragment after the search field. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.toc_or_tiles
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body
In the generated output it displays a given XHTML fragment before the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title
In the generated output it displays a given XHTML fragment before the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search
In the generated output it displays a given XHTML fragment before the search field. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles
In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.before.top_menu
In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.footer
In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head
In the generated output it displays a given XHTML fragment as a page header. The value of the parameter can
be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome
In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.merge.nested.topics.related.links
Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links
will be moved from the topic content to the related links component and all of the links from the same group

Document Types and Frameworks 613

(for example, Related Tasks, Related References, Related Information) are merged into a single group. The
default value is yes.

webhelp.show.breadcrumb
Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links
Specifies if child links will be generated in the output for all topics that have subtopics. The default value is
no.

webhelp.show.indexterms.link
Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles
Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this
parameter should be set to no.

webhelp.show.main.page.toc
Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

webhelp.show.navigation.links
Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link
Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

webhelp.show.related.links
Specifies if the related links component will be presented in the WebHelp Responsive output. The default
value is yes. The webhelp.merge.nested.topics.related.links parameter can used in conjunction with this one
to merge the related links from nested topics into the links in the parent topic.

webhelp.show.side.toc
Specifies if a side table of contents will be presented on the right side of each topic in the output. The default
value is yes.

webhelp.show.top.menu
Specifies if a menu will be presented at the topic of the main page in the output. The default value is yes.

webhelp.top.menu.depth
Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 2.

Related Information:
Customizing the WebHelp Responsive Output on page 744
WebHelp Responsive with Feedback System on page 725

WebHelp Classic Output

To publish a DITA map as a WebHelp Classic system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Classic scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Skins Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.

Document Types and Frameworks 614

4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

To further customize this transformation, you can edit various parameters, including the following most
commonly used ones:

Parameters for Customizing WebHelp Classic Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.body.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <body> section of every WebHelp page.

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,

Document Types and Frameworks 615

then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

webhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

webhelp.head.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <head> section of every WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.

Document Types and Frameworks 616

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Related Information:
Customizing WebHelp Classic Systems on page 780
WebHelp Classic System on page 769

WebHelp Classic With Feedback Output

To publish a DITA map as a WebHelp Classic with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Classic with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Skins Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation

version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system
deployment.

To watch our video demonstration about the feedback-enabled WebHelp system, go to https://
www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

Parameters for Customizing WebHelp Classic with Feedback Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

Document Types and Frameworks 617

https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html
https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

webhelp.body.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <body> section of every WebHelp page.

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

webhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

webhelp.head.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <head> section of every WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

Document Types and Frameworks 618

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Related Information:
Customizing WebHelp Classic Systems on page 780
WebHelp Classic with Feedback System on page 772

WebHelp Classic Mobile Output

To publish a DITA map as a WebHelp Classic Mobile system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Classic Mobile scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic Mobile transformation is complete, the output is automatically opened
in your default browser.

Document Types and Frameworks 619

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

Parameters for Customizing WebHelp Classic Mobile Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

Document Types and Frameworks 620

webhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

webhelp.head.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <head> section of every WebHelp page.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Related Information:
Customizing WebHelp Classic Mobile Systems on page 805
WebHelp Classic Mobile System (Deprecated) on page 804

DITA Map to PDF Output Customization

Oxygen XML Developer comes bundled with the DITA Open Toolkit that provides a mechanism for converting
DITA maps to PDF output. There are numerous ways that you can customize the PDF output and the topics in this
section discuss some of those possibilities.

Creating a DITA Map to PDF Transformation Scenario

To create a DITA Map to PDF transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map PDF and click the Edit button (or use the Duplicate button if your framework is read-only).
3. Use the various tabs to configure the transformation scenario. In the Parameters tab, you can use a variety

of parameters to customize the output. For example, the following parameters are just a few of the most
commonly used ones:

• show.changes.and.comments - If set to yes, user comments, replies to comments, and tracked
changes are published in the PDF output.

Document Types and Frameworks 621

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

• customization.dir - Specifies the path to a customization directory.
4. Click OK and then the Apply Associated button to run the transformation scenario.

Creating a Customization Directory for PDF Output

DITA Open Toolkit PDF output can be customized in several ways:

• Creating a DITA Open Toolkit plugin that adds extensions to the PDF plugin. More details can be found in the
DITA Open Toolkit Documentation.

• Creating a customization directory and using it from the PDF transformation scenario. A small example of this
procedure can be found below.

How to Create a Customization Directory for PDF Output

The following procedure explains how to do a basic customization of the PDF output by setting up a
customization directory. An example of a common use case is embedding a company logo image in the front
matter of the book.

1. Copy the entire directory: DITA-OT-DIR\plugins\org.dita.pdf2\Customization to another location
(for instance, C:\Customization).

2. Copy your logo image to: C:\Customization\common\artwork\logo.png.
3. Rename C:\Customization\catalog.xml.orig to: C:\Customization\catalog.xml.
4. Open the catalog.xml in Oxygen XML Developer and uncomment this line:

 <!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

It now looks like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: C:\Customization\fo\xsl\custom.xsl.orig to: C:\Customization\fo\xsl
\custom.xsl

6. Open the custom.xsl file in Oxygen XML Developer and create the template called
createFrontCoverContents for DITA-OT 2.4.4 (or createFrontMatter_1.0 for DITA-OT 1.8.5).

Tip: You can copy the same template from DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\front-
matter.xsl and modify it in whatever way necessary to achieve your specific goal. This new template in the
custom.xsl file will override the same template from DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo
\front-matter.xsl.

DITA OT 2.4.4 Example:

For example, if you are using DITA OT 2.4.4, the custom.xsl could look like this:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="2.0">

<xsl:template name="createFrontCoverContents">
 <!-- set the title -->
 <fo:block xsl:use-attribute-sets="__frontmatter__title">
 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/mainbooktitle ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains
 (@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>

 <!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/booktitlealt ')]"/>
 <fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/bookmeta ')]"/>

Document Types and Frameworks 622

http://www.dita-ot.org/

 </fo:block>

 <!-- Load the image logo -->
 <fo:block text-align="center" width="100%">
 <fo:external-graphic
 src="url({concat($artworkPrefix,
 '/Customization/OpenTopic/common/artwork/logo.png')})"
 />
 </fo:block>
 </xsl:template>

</xsl:stylesheet>

DITA OT 1.8.5 Example:

For example, if you are using DITA OT 1.8.5, the custom.xsl could look like this:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="1.1">

<xsl:template name="createFrontMatter_1.0">
 <fo:page-sequence master-reference="front-matter"
 xsl:use-attribute-sets="__force__page__count">
 <xsl:call-template name="insertFrontMatterStaticContents"/>
 <fo:flow flow-name="xsl-region-body">
 <fo:block xsl:use-attribute-sets="__frontmatter">
 <!-- set the title -->
 <fo:block xsl:use-attribute-sets="__frontmatter__title">
 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/mainbooktitle ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains
 (@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>

 <!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/booktitlealt ')]"/>

 <fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/bookmeta ')]"/>
 </fo:block>

 <fo:block text-align="center" width="100%">
 <fo:external-graphic src="url({concat($artworkPrefix,
 '/Customization/OpenTopic/common/artwork/logo.png')})"/>
 </fo:block>

 </fo:block>

 <!--<xsl:call-template name="createPreface"/>-->

 </fo:flow>
 </fo:page-sequence>
 <xsl:call-template name="createNotices"/>
 </xsl:template>
</xsl:stylesheet>

7. Edit the DITA Map PDF transformation scenario and in the Parameters tab, set the customization.dir
parameter to C:\Customization.

Tip: For other specific examples, see DITA-OT 2.3 Documentation - PDF Customization Plugin.

Related Information:
Automatic PDF plugin customization generator by Jarno Elovirta.
DITA-OT 1.8 Documentation - PDF Customization Plugin
DITA-OT 2.3 Documentation - PDF Customization Plugin

Document Types and Frameworks 623

http://www.dita-ot.org/2.3/dev_ref/pdf-customization-example.html
http://dita-generator-hrd.appspot.com/pdf-plugin/
http://www.dita-ot.org/1.8/readme/dita2pdf-customization.html
http://www.dita-ot.org/2.3/dev_ref/pdf-customization-example.html

Customizing the Header and Footer in PDF Output

The XSLT stylesheet DITA-OT-DIR/plugins/org.dita.pdf2/xsl/fo/static-content.xsl contains
templates that output the static header and footers for various parts of the PDF such as the prolog, table of
contents, front matter, or body.

The templates for generating a footer for pages in the body are called insertBodyOddFooter or
insertBodyEvenFooter.

These templates get the static content from resource files that depend on the language used for generating the
PDF. The default resource file is DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common/vars/en.xml.
These resource files contain variables (such as Body odd footer) that can be set to specific user values.

Instead of modifying these resource files directly, they can be overwritten with modified versions of the resources
in a PDF customization directory as explained in Creating a Customization Directory for PDF Output.

Adding a Watermark to PDF Output

To add a watermark to the PDF output of a DITA map transformation, create a DITA-OT customization directory
and use it from a DITA Map to PDF transformation scenario, as in the following procedure:

1. Copy the entire directory: DITA-OT-DIR\plugins\org.dita.pdf2\Customization to another location
(for instance, C:\Customization).

2. Copy your watermark image (for example, watermark.png) to: C:\Customization\common\artwork
\watermark.png.

3. Rename the C:\Customization\catalog.xml.orig file to: C:\Customization\catalog.xml.
4. Open the catalog.xml in Oxygen XML Developer and uncomment this line:

<!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

The uncommented line should look like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: C:\Customization\fo\xsl\custom.xsl.orig to: C:\Customization\fo\xsl
\custom.xsl

6. Open the C:\Customization\fo\xsl\custom.xsl file in Oxygen XML Developer to overwrite two XSLT
templates:

• The first template is located in the XSLT stylesheet DITA-OT-DIR\plugins\org.dita.pdf2\xsl
\fo\static-content.xsl and we override it specifying a watermark image for every page in the PDF
content, using a block-container element that references the watermark image file:

<fo:static-content flow-name="odd-body-header">
 <fo:block-container absolute-position="absolute"
 top="-2cm" left="-3cm" width="21cm" height="29.7cm"
 background-image="{concat($artworkPrefix,
'/Customization/OpenTopic/common/artwork/watermark.png')}">
 <fo:block/>
 </fo:block-container>
 <fo:block xsl:use-attribute-sets="__body__odd__header">
 <xsl:call-template name="insertVariable">
 <xsl:with-param name="theVariableID" select="'Body odd header'"/>
 <xsl:with-param name="theParameters">
 <prodname>
 <xsl:value-of select="$productName"/>
 </prodname>
 <heading>
 <fo:inline xsl:use-attribute-sets="__body__odd__header__heading">
 <fo:retrieve-marker retrieve-class-name="current-header"/>
 </fo:inline>
 </heading>
 <pagenum>
 <fo:inline xsl:use-attribute-sets="__body__odd__header__pagenum">
 <fo:page-number/>
 </fo:inline>
 </pagenum>
 </xsl:with-param>
 </xsl:call-template>
 </fo:block>
 </fo:static-content>

</xsl:template>

Document Types and Frameworks 624

• The second template that we override is located in the XSLT stylesheet DITA-OT-DIR\plugins
\org.dita.pdf2\xsl\fo\commons.xsl and is used for styling the first page of the output. We
also override it by copying the original template content in our custom.xsl and adding the block-
container element that references the watermark image file:

<xsl:template name="createFrontMatter_1.0">
 <fo:page-sequence master-reference="front-matter"
xsl:use-attribute-sets="__force__page__count">
 <xsl:call-template name="insertFrontMatterStaticContents"/>
 <fo:flow flow-name="xsl-region-body">
 <fo:block-container absolute-position="absolute"
 top="-2cm" left="-3cm" width="21cm" height="29.7cm"
 background-image="{concat($artworkPrefix,
'/Customization/OpenTopic/common/artwork/watermark.png')}">
 <fo:block/>
 </fo:block-container>
 <fo:block xsl:use-attribute-sets="__frontmatter">
 <!-- set the title -->
 <fo:block xsl:use-attribute-sets="__frontmatter__title">
 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains
(@class,' bookmap/mainbooktitle ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains
(@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>

 <!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains
(@class,' bookmap/booktitlealt ')]"/>

 <fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains
(@class,' bookmap/bookmeta ')]"/>
 </fo:block>

 </fo:block>

 <!--<xsl:call-template name="createPreface"/>-->

 </fo:flow>
 </fo:page-sequence>
 <xsl:if test="not($retain-bookmap-order)">
 <xsl:call-template name="createNotices"/>
 </xsl:if>
 </xsl:template>

7. Edit your DITA Map PDF transformation scenario. In the Parameters tab, set the customization.dir parameter
to C:\Customization.

Force Page Breaks Between Two Block Elements in PDF Output

Suppose that in your DITA content you have two block elements, such as two paragraphs:

<p>First para</p>
<p>Second para</p>

and you want to force a page break between them in the PDF output.

Here is how you can implement a DITA Open Toolkit plugin that would achieve this:

1. Define your custom processing instruction that marks the place where a page break should be inserted in the
PDF, for example:

<p>First para</p>
 <?pagebreak?>
<p>Second para</p>

2. Locate the DITA Open Toolkit distribution and in the plugins directory create a new plugin folder (for
example, DITA-OT-DIR/plugins/pdf-page-break).

3. In this new folder, create a new plugin.xml file with the following content:

<plugin id="com.yourpackage.pagebreak">
 <feature extension="package.support.name" value="Force Page Break Plugin"/>

Document Types and Frameworks 625

 <feature extension="package.support.email" value="support@youremail.com"/>
 <feature extension="package.version"value="1.0.0"/>
 <feature extension="dita.xsl.xslfo" value="pageBreak.xsl" type="file"/>
</plugin>

The most important feature in the plugin is that it will add a new XSLT stylesheet to the XSL processing that
produces the PDF content.

4. In the same folder, create an XSLT stylesheet named pageBreak.xsl with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"version="1.0">
 <xsl:template match="processing-instruction('pagebreak')">
 <fo:block break-after="page"/>
 </xsl:template>
</xsl:stylesheet>

Customizing note Images in PDF

To customize the images that appear next to each type of note in the PDF output, use a PDF customization folder
with the following procedure:

1. Copy the DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common/vars/en.xml file to the
[CUSTOMIZATION_DIR]\common\vars folder.

2. Edit the copied en.xml file and modify, for example, the path to the image for <note> element with the type
attribute set to notice from:

<variable id="notice Note Image
 Path">Configuration/OpenTopic/cfg/common/artwork/important.png</variable>

to:

<variable id="notice Note Image
 Path">Customization/OpenTopic/common/artwork/notice.gif</variable>

3. Add your custom notice image to [CUSTOMIZATION_DIR]\common\artwork\notice.gif.
4. Edit the DITA Map PDF transformation scenario and in the Parameters tab set the path for the

customization.dir property to point to the customization folder.

Show Comments and Tracked Changes in PDF Output

To include comments and tracked changes (stored within your DITA topics) in the PDF output, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map PDF and click the Edit button (or use the Duplicate button if your framework is read-only).
3. In the Parameters tab, set the value of the show.changes.and.comments parameter to yes.
4. Click OK and then the Apply Associated button to run the transformation scenario.

Result: Comment threads and tracked changes will now appear in the PDF output. Details about each
comment or change will be available in the footer section for each page.

Set a Font for PDF Output Generated with FO Processor

When a DITA map is transformed to PDF using an FO processor and it contains some Unicode characters that
cannot be rendered by the default PDF fonts, a font that is capable of rendering these characters must be
configured and embedded in the PDF result.

The settings that must be modified for configuring a font for the built-in FO processor are detailed in Add a Font
to the Built-in FO Processor.

DITA OT PDF Font Mapping

The DITA OT contains a file DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml
that maps logical fonts used in the XSLT stylesheets to physical fonts that will be used by the FO processor to
generate the PDF output.

The XSLT stylesheets used to generate the XSL-FO output contain code like this:

<xsl:attribute name="font-family">monospace</xsl:attribute>

Document Types and Frameworks 626

The font-family is defined to be monospace, but monospace is just an alias. It is not a physical font
name. Therefore, another stage in the PDF generation takes this monospace alias and looks in the font-
mappings.xml.

If it finds a mapping like this:

<aliases>
 <alias name="monospace">Monospaced</alias>
 </aliases>

then it looks to see if the Monospaced has a logical-font definition and if so, it will use the physical-font specified
there:

<logical-font name="Monospaced">
 <physical-font char-set="default">
 <font-face>Courier New, Courier</font-face>
 </physical-font>
............
</logical-font>

Important:

If no alias mapping is found for a font-family specified in the XSLT stylesheets, the processing defaults to
Helvetica.

Related Information:

DITA Map to PDF WYSIWYG Transformation

Oxygen XML Developer comes bundled with a DITA OT plugin that allows you to convert DITA maps to PDF using
a CSS layout processor. Oxygen XML Developer also comes bundled with a built-in CSS-based PDF processing
engine called Chemistry. For those who are familiar with CSS, this makes it very easy to style and customize the
PDF output of your DITA projects without having to work with xsl:fo customizations.

Oxygen XML Developer supports the following processors (not included in the Oxygen XML Developer installation
kit):

• Oxygen Chemistry - A built-in processor that is bundled with Oxygen XML Developer.
• Prince Print with CSS - A third-party component that needs to be purchased from http://www.princexml.com.
• Antenna House Formatter - A third-party component that needs to be purchased from http://

www.antennahouse.com/antenna1/formatter/.

The DITA-OT plugin is located in the following directory: DITA-OT-DIR/plugins/com.oxygenxml.pdf.css.

Although it includes a set of CSS files in its css subfolder, when this plugin is used in Oxygen XML Developer, the
CSS files located in the ${frameworks} directory take precedence.

Creating the Transformation Scenario

To create an DITA Map to PDF WYSIWYG transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map PDF - WYSIWYG.
3. In the Parameters tab, configure the following parameters:

• css.processor.type (if you want to use the built-in Oxygen Chemistry processor) - Set the value as
chemistry.

• css.processor.path.prince (if you are using the Prince Print with CSS processor) - Specifies the
path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default
settings, you can leave this blank.

• css.processor.path.antenna-house (if you are using the Antenna House Formatter processor) -
Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed
Antenna House using its default settings, you can leave this blank.

• show.changes.and.comments - When set to yes, user comments, replies to comments, and tracked
changes are published in the PDF output. The default value is no.

Document Types and Frameworks 627

http://www.princexml.com/
http://www.antennahouse.com/antenna1/formatter/
http://www.antennahouse.com/antenna1/formatter/

• dita.css.list - Allows you to specify a list of CSS URLs to be used by the PDF processor. The files
must have URL syntax and be separated using semicolons.

• args.css - Allows you to specify a list of CSS URLs to be used in addition to those specified in the
dita.css.list parameter.

4. Click OK and run the transformation scenario.

Customizing the Styles (for Output and Editing)

If you need to change the styles in the associated CSS, make sure you install Oxygen XML Developer in a folder
where you have full read and write privileges (for instance, your user home directory). This is due to the fact that
the installed files are usually placed in a read-only folder (for instance, in Windows, Oxygen XML Developer is
installed in the Program Files folder where the users do not have change rights).

To change the styles of an element you need to create an additional CSS file that will store the customization
rules. Once you have created this file, you need to instruct the editor how to use this additional CSS.

• Use the args.css parameter that allows you to specify a list of CSS URLs to be used in addition to the
dita.css.list parameter:

1. Configure a DITA map to PDF WYSIWYG transformation scenario, as described in the procedure above.
2. In the Parameters tab, specify the path to your custom CSS files in the args.css parameter.
3. Click OK and run the transformation scenario.

This method is appropriate if you just want to apply the styling customization to the output.

How to Make Remote Resources Appear in the Output When Using the Prince Processor

If your documentation references external resources (such as images that are stored on a Web-based repository)
and your system is behind an HTTP(S) proxy, you may find that they do not appear in the output when using the
Prince Print with CSS processor. To solve this, follow this procedure:

1. Edit the build.xml file that is located in DITA-OT-DIR/plugins/com.oxygenxml.pdf.css.
2. There are two instances in the file where a pair of arguments are commented out:

 <!-- Please remove the comment wrapping the following two arguments
 if you are behind a proxy and your documentation refers remote resources,
 for example images.

 Note: You also need to remove the backslash '\' that appears before the
 property name: "http-proxy". That backslash is there because a sequence of
 two dashes ('-') is not permited inside a comment.
 -->
 <!--
 <arg value="-\-http-proxy=${http.proxyHost}:${http.proxyPort}"/>
 <arg value="-\-http-proxy=${https.proxyHost}:${https.proxyPort}"/>
 -->

3. Remove the comment in both instances.
4. Make sure you also remove the slash that appears before the property name http-proxy in each instance.

Step Result: The arguments should now look like this:

 <arg value="--http-proxy=${http.proxyHost}:${http.proxyPort}"/>
 <arg value="--http-proxy=${https.proxyHost}:${https.proxyPort}"/>

5. Save the build.xml file.
6. Run the DITA map to PDF WYSIWYG transformation scenario.

Result: Your external resources should now appear in your output.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DITA Map to MS Office Word Transformation

Oxygen XML Developer comes bundled with a DITA OT plugin that allows you to convert DITA maps to Microsoft
Office Word documents.

Document Types and Frameworks 628

Creating the Transformation Scenario

To create an DITA Map to MS Office Word transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map MS Office Word.
3. In the Parameters tab, configure the following parameters:

• css.processor.path.prince (if you are using the Prince Print with CSS processor) - Specifies the
path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default
settings, you can leave this blank.

• css.processor.path.antenna-house (if you are using the Antenna House Formatter processor) -
Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed
Antenna House using its default settings, you can leave this blank.

• show.changes.and.comments - When set to yes, user comments, replies to comments, and tracked
changes are published in the PDF output. The default value is no.

• dita.css.list - Allows you to specify a list of CSS URLs to be used by the PDF processor. The files
must have URL syntax and be separated using semicolons.

• args.css - Allows you to specify a list of CSS URLs to be used in addition to those specified in the
dita.css.list parameter.

4. Click OK and run the transformation scenario.

Customizing the Styles (for Output and Editing)

If you need to change the styles in the associated CSS, make sure you install Oxygen XML Developer in a folder
where you have full read and write privileges (for instance, your user home directory). This is due to the fact that
the installed files are usually placed in a read-only folder (for instance, in Windows, Oxygen XML Developer is
installed in the Program Files folder where the users do not have change rights).

To change the styles of an element you need to create an additional CSS file that will store the customization
rules. Once you have created this file, you need to instruct the editor how to use this additional CSS.

• Use the args.css parameter that allows you to specify a list of CSS URLs to be used in addition to the
dita.css.list parameter:

1. Configure a DITA map to PDF WYSIWYG transformation scenario, as described in the procedure above.
2. In the Parameters tab, specify the path to your custom CSS files in the args.css parameter.
3. Click OK and run the transformation scenario.

This method is appropriate if you just want to apply the styling customization to the output.

How to Make Remote Resources Appear in the Output When Using the Prince Processor

If your documentation references external resources (such as images that are stored on a Web-based repository)
and your system is behind an HTTP(S) proxy, you may find that they do not appear in the output when using the
Prince Print with CSS processor. To solve this, follow this procedure:

1. Edit the build.xml file that is located in DITA-OT-DIR/plugins/com.oxygenxml.pdf.css.
2. There are two instances in the file where a pair of arguments are commented out:

 <!-- Please remove the comment wrapping the following two arguments
 if you are behind a proxy and your documentation refers remote resources,
 for example images.

 Note: You also need to remove the backslash '\' that appears before the
 property name: "http-proxy". That backslash is there because a sequence of
 two dashes ('-') is not permited inside a comment.
 -->
 <!--
 <arg value="-\-http-proxy=${http.proxyHost}:${http.proxyPort}"/>
 <arg value="-\-http-proxy=${https.proxyHost}:${https.proxyPort}"/>
 -->

3. Remove the comment in both instances.
4. Make sure you also remove the slash that appears before the property name http-proxy in each instance.

Document Types and Frameworks 629

Step Result: The arguments should now look like this:

 <arg value="--http-proxy=${http.proxyHost}:${http.proxyPort}"/>
 <arg value="--http-proxy=${https.proxyHost}:${https.proxyPort}"/>

5. Save the build.xml file.
6. Run the DITA map to PDF WYSIWYG transformation scenario.

Result: Your external resources should now appear in your output.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

Compiled HTML Help (CHM) Output Format

To perform a Compiled HTML Help (CHM) transformation, Oxygen XML Developer needs Microsoft HTML
Help Workshop to be installed on your computer. Oxygen XML Developer automatically detects HTML Help
Workshop and uses it.

Note: HTML Help Workshop might fail if the files used for transformation contain accents in their names, due
to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce the CHM
output but the .hhp (HTML Help Project) file is already generated, you can manually try to build the CHM output
using HTML Help Workshop.

Changing the Output Encoding

Oxygen XML Developer uses the htmlhelp.locale parameter to correctly display specific characters of
different languages in the output of the Compiled HTML Help (CHM) transformation. By default, the DITA Map
CHM transformation scenario that comes bundled with Oxygen XML Developer has the htmlhelp.locale
parameter set to en-US.

To customize this parameter, follow this procedure:

1. Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu.

2. Select the DITA Map CHM transformation scenario and click the Edit button.
3. In the Parameter tab, search for the htmlhelp.locale parameter and change its value to the desired

language tag.

Note: The format of the htmlhelp.locale parameter is LL-CC, where LL represents the language code
(en, for example) and CC represents the country code (US, for example). The language codes are contained
in the ISO 639-1 standard and the country codes are contained in the ISO 3166-1 standard. For further
details about language tags, go to http://www.rfc-editor.org/rfc/rfc5646.txt.

Kindle Output Format

Oxygen XML Developer requires KindleGento generate Kindle output from DITA maps. To install KindleGen for use
by Oxygen XML Developer, follow these steps:

1. Go to www.amazon.com/kindleformat/kindlegen and download the zip file that matches your operating
system.

2. Unzip the file on your local disk.
3. Start Oxygen XML Developer and open a DITA map.
4. Click the Configure Transformation Scenario(s) button.
5. Select the DITA Map Kindle transformation and press the Edit button to edit it.
6. Go to Parameters tab and set the kindlegen.executable parameter as the path to the KindleGen directory.
7. Accept the changes.

XHTML Document Type (Framework)
The Extensible HyperText Markup Language (XHTML), is a markup language that has the same depth of
expression as HTML, but also conforms to XML syntax.

Document Types and Frameworks 630

http://www.rfc-editor.org/rfc/rfc5646.txt
http://www.amazon.com/gp/feature.html/?docId=1000765211

File Definition

A file is considered to be an XHTML document when the root element name is html.

Default Document Templates

There are a variety of default XHTML templates available when creating new documents from templates and they
can be found in: Framework Templates > XHTML.

The default templates for XHTML documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/
xhtml/templates/ folder.

Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the XHTML file are stored in the following locations:

• XHTML 1.0 - [OXYGEN_INSTALL_DIR]/frameworks/xhtml/dtd/ or [OXYGEN_INSTALL_DIR]/
frameworks/xhtml/nvdl/.

• XHTML 1.1 - [OXYGEN_INSTALL_DIR]/frameworks/xhtml11/dtd/ or [OXYGEN_INSTALL_DIR]/
frameworks/xhtml11/schema/.

• XHTML 5 - [OXYGEN_INSTALL_DIR]/frameworks/xhtml/xhtml5 (epub3)/.

Default XML Catalogs

The default XML Catalogs for the XHTML document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/xhtml/dtd/xhtmlcatalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/relaxng/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/nvdl/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/xhtml11/dtd/xhtmlcatalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/xhtml11/schema/xhtmlcatalog.xml
• [OXYGEN_INSTALL_DIR]/xhtml5 (epub3)/catalog-compat.xml

Transformation Scenarios

Oxygen XML Developer includes built-in transformation scenarios that allow you to transform XHTML documents
to several types of DITA document types (topic, task, concept, reference). They can be found in the XHTML
section in the Configure Transformation Scenario(s) dialog box.

Resources

• XHTML Specifications

Related Information:
Editing XHTML Documents on page 535
Editing XML Documents in Text Mode on page 237

TEI P5 Document Type (Framework)
The TEI (Text Encoding Initiative) document type is an international and interdisciplinary standard that enables
libraries, museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for
online research, teaching, and preservation.

File Definition

A file is considered to be a TEI P5 document when one of the following conditions are true:

• The document namespace is http://www.tei-c.org/ns/1.0.
• The public ID of the document is -//TEI P5.

Document Types and Frameworks 631

https://www.w3.org/TR/xhtml-basic/

Default Document Templates

There are a variety of default TEI P5 templates available when creating new documents from templates and they
can be found in: Framework Templates > TEI P5.

The default templates for TEI P5 documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/tei/
templates/TEI P5 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected in the TEI P5 document is tei_all.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

Default XML Catalogs

The default XML Catalogs for the TEI P5 document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/dtd/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/dtd/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/stylesheet/catalog.xml

Transformation Scenarios

Oxygen XML Developer includes built-in transformation scenarios that allow you to transform TEI P5 documents
to a variety of outputs, such as PDF, XHTML, EPUB, DOCX, and ODT. They can be found in the TEI P5 section in the
Configure Transformation Scenario(s) dialog box.

Resources

•
• TEI: P5 Guidelines

Related Information:
Editing XML Documents in Text Mode on page 237

Customization of TEI Frameworks Using the Compiled Sources

The following procedure describes how to update to the latest stable version of TEI Schema and TEI XSL, already
integrated in the TEI framework for Oxygen XML Developer.

1. Go to https://code.google.com/p/oxygen-tei/;
2. Go to Downloads;
3. Download the latest uploaded .zip file;
4. Unpack the .zip file and copy its content in the Oxygen XML Developer frameworks folder.

TEI ODD Document Type (Framework)
The TEI ODD (Text Encoding Initiative - One Document Does it all) document type is a TEI XML-conformant
specification format that allows you to create a custom TEI P5 schema in a literate programming fashion. A
system of XSLT stylesheets called Roma was created by the TEI Consortium for manipulating the ODD files.

File Definition

A file is considered to be a TEI ODD document when the following conditions are true:

• The file extension is .odd.
• The document namespace is http://www.tei-c.org/ns/1.0.

Default Document Templates

There is a default TEI ODD document template available when creating new documents from templates and they
can be found in: Framework Templates > TEI ODD.

Document Types and Frameworks 632

http://www.tei-c.org/Guidelines/P5/index.xml
https://code.google.com/p/oxygen-tei/
http://wiki.tei-c.org/index.php/Roma

The default template is located in the [OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI ODD
folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected in the TEI ODD document is tei_odds.rng and it is
stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

Default XML Catalogs

The default XML Catalogs for the TEI ODD document type are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/catalog.xml

Transformation Scenarios

Oxygen XML Developer includes built-in transformation scenarios that allow you to transform TEI ODD
documents to a variety of outputs, such as PDF, XHTML, EPUB, DOCX, ODT, RNG, DTD, and XML Schema. They
can be found in the TEI ODD section in the Configure Transformation Scenario(s) dialog box.

Resources

•
• TEI: Getting Started with ODD

Related Information:
Editing XML Documents in Text Mode on page 237

jTEI Document Type (Framework)
The jTEI (Journal of the Text Encoding Initiative) document type is highly restrictive customization (only about 80
elements are included) of the TEI P5 framework.

File Definition

A file is considered to be a jTEI document when the root element is named TEI, it is in the namespace http://
www.tei-c.org/ns/1.0, and the @rend attribute is set to "jTEI".

Default Document Templates

There is a default jTEI Article template available when creating new documents from templates and they can be
found in: Framework Templates > TEI JTEI.

The default template is located in the [OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI jTEI
folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is tei_jtei.rng and it is stored in
[OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

Default XML Catalogs

The default XML Catalogs for jTEI are as follows:

• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/dtd/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/dtd/catalog.xml
• [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/stylesheet/catalog.xml

Document Types and Frameworks 633

http://www.tei-c.org/Guidelines/Customization/odds.xml

Transformation Scenarios

Oxygen XML Developer includes built-in transformation scenarios that allow you to transform jTEI documents to
PDF and ODT. They can be found in the TEI JTEI section in the Configure Transformation Scenario(s) dialog box.

Resources

•
• jTEI Article Guidelines

Related Information:
Editing XML Documents in Text Mode on page 237

JATS Document Type (Framework)
The JATS (NISO Journal Article Tag Suite) document type is a technical standard that defines an XML format for
scientific literature.

File Definition

A file is considered to be a JATS document when the PUBLIC ID of the document contains the string -//NLM//
DTD.

Default Document Templates

There are some default JATS templates available when creating new documents from templates and they can be
found in: Framework Templates > JATSKit - NISO JATS and NLM BITS

The default templates for JATS documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/jats/
templates/ folder.

Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the JATS document are stored in
[OXYGEN_INSTALL_DIR]/frameworks/jats/lib/schemas/.

Default XML Catalog

The default XML Catalog, jatskit-catalog.xml, is stored in [OXYGEN_INSTALL_DIR]/frameworks/jats/
lib/schemas/.

Transformation Scenarios

Oxygen XML Developer includes built-in transformation scenarios that allow you to transform JATS documents
to a variety of outputs, such as PDF, HTML, and EPUB. They can be found in the JATSKit section in the Configure
Transformation Scenario(s) dialog box.

Resources

•
• NLM Journal Archiving and Interchange Tag Suite

Related Information:
Editing XML Documents in Text Mode on page 237

EPUB Document Type (Framework)
EPUB is an e-book file format that is a ZIP archive and can be downloaded and read on devices such as phones,
tablets, computers, or e-readers. Oxygen XML Developer includes an Archive Browser view that allows you to view
the contents and structure of this type of file.

Three distinct frameworks are supported for the EPUB document type:

Document Types and Frameworks 634

http://www.tei-c.org/Guidelines/Customization/jTEI/index.xml
https://dtd.nlm.nih.gov/

• NCX - A declarative global navigation definition.
• OCF - The Open Container Format (OCF) defines a mechanism by which all components of an Open

Publication Structure (OPS) can be combined into a single file system entity.
• OPF - The Open Packaging Format (OPF) defines the mechanism by which all components of a published

work that conforms to the Open Publication Structure (OPS) standard (including metadata, reading order, and
navigational information) are packaged in an OPS Publication.

Note: Oxygen XML Developer supports both OPF 2.0 and OPF 3.0.

File Definition

A file is considered to be an EPUB document if it has a file extension of .epub.

Default Document Templates

There are a variety of default EPUB templates available when creating new documents from templates and they
can be found the following folders in Framework Templates: NCX, OCF, OPF 2.0, and OPF 3.0.

The default templates for the NCX document types are located in the [OXYGEN_INSTALL_DIR]/frameworks/
ncx/templates folder.

The default templates for the OCF document types are located in the [OXYGEN_INSTALL_DIR]/frameworks/
ocf/templates folder.

The default template for the OPF 2.0 document type is located in the [OXYGEN_INSTALL_DIR]/frameworks/
opf/templates/2.0 folder.

The default template for the OPF 3.0 document type is located in the [OXYGEN_INSTALL_DIR]/frameworks/
opf/templates/3.0 folder.

Related Information:
Working with Archive Files on page 846

Other Supported Document Types
Along with the fully supported predefined frameworks (document types), Oxygen XML Developer also provides
limited support (including file templates) for editing a variety of other document types. All the specialized views,
editors, actions, and options are dynamic according to the type of file that is opened or created. Other document
types that are supported in Oxygen XML Developer include:

• EPUB (NCX, OCF, OPF 2.0 & 3.0) - A standard for e-book files.
• OOXML - An XML-based file format for representing spreadsheets, charts, presentations, and word processing

documents.
• ODF - An free and open-source XML-based file format for electronic office documents, such as spreadsheets,

charts, presentations, and word processing documents.
• DocBook Targetset - For resolving cross-references when using olinks.
• Ant Build Scripts - A tool for automating software build processes, written in Java and primarily intended for

use with Java.
• XSLT Stylesheets - A document type that provides a visual mode for editing XSLT stylesheets.
• WSDL - Web Services Description Language is an XML language for describing the functionality offered by a

web service.
• Schematron - For making assertions about the presence or absence of patterns in XML documents. This

document type applies to the ISO Schematron version.
• Schematron Quick Fixes (SQF) - An extension of the ISO standard Schematron, allows developers to define

Quick Fixes for Schematron errors.
• StratML (Part 1 & 2) - Part 1 and 2 of the Strategy Markup Language specification.
• XProc - A document type for processing XProc script files.
• XML Schema - Documents that provide support for editing annotations.
• SVG - Scalable Vector Graphics is a language for describing two-dimensional graphics in XML.

Document Types and Frameworks 635

• XLIFF (1.2 & 2.0) - XML Localization Interchange File Format is a standard for passing data between tools
during a localization process.

• XQuery - The common query language for XML.
• CSS - Cascading Style Sheets is a language used for describing the look and formatting of a document.
• LESS - A dynamic style sheet language that can be compiled into CSS.
• Relax NG Schema - A schema language that specifies a pattern for the structure and content of an XML

document.
• NVDL Schema - Namespace Validation Dispatching Language allows you to specify sections of XML

documents to be validated against various schemas.
• JSON - JavaScript Object Notation is a lightweight data-interchange format.
• Markdown - A lightweight markup language with plain text formatting syntax that can be converted to HTML or

DITA.
• JavaScript - Programming language of HTML and the Web.
• XMLSpec - A markup language for W3C specifications and other technical reports.
• DITAVAL - DITA conditional processing profile to identify the values you want to conditionally process for a

particular output, build, or other purpose.
• Daisy - A technical standard for digital audio books, periodicals, and computerized text. It is designed to be an

audio substitute for print material.
• EAD - Encoded Archival Description is an XML standard for encoding archival finding aids.
• KML - Keyhole Markup Language is an XML notation for expressing geographic visualization in maps and

browsers.
• Maven Project & Settings - Project or settings file for Maven build automation tool that is primarily used for

Java projects.
• Oasis XML Catalog - An XML Catalog document that describes a mapping between external entity references

and locally-cached equivalents.
• Other Non-XML Files- Oxygen XML Developer also includes a simple text editor and a variety of helpful features

for creating and editing non-XML files.

Document Types and Frameworks 636

Transforming Documents 9
Topics:

• Transformation Scenarios
• WebHelp System Output

XML documents can be transformed into a variety of user-friendly output formats that can be viewed by other users.
This process is known as a transformation.

Oxygen XML Developer allows you to use transformation scenarios to publish XML content in various output formats
(such as WebHelp, PDF, CHM, EPUB, JavaHelp, Eclipse Help, XHTML, etc.)

For transformations that are not included in your installed version of Oxygen XML Developer, simply install the
tool chain required to perform the specific transformation and process the files in accordance with the processor
instructions. A multitude of target formats are possible. The basic condition for transformation to any format is that
your source document is well-formed.

Note: You need to use the appropriate stylesheet according to the source definition and the desired output. For
example, if you want to transform into an HTML format using a DocBook stylesheet, your source XML document should
conform with the DocBook DTD.

Transformation Scenarios
A transformation scenario is a set of complex operations and settings that gives you the possibility to obtain
outputs of multiple types (XML, HTML, PDF, EPUB, etc.) from the same source of XML files and stylesheets.

Executing a transformation scenario implies multiple actions, such as:

• Validating the input file.
• Obtaining intermediate output files (for example, formatting objects for the XML to PDF transformation).
• Using transformation engines to produce the output.

Before transforming an XML document in Oxygen XML Developer, you need to define a transformation scenario
to apply to that document. A scenario is a set of values for various parameters that define a transformation. It is
not related to a particular document, but rather to a document type. Types of transformation scenarios include:

• Scenarios that Apply to XML Files - This type of scenario contains the location of an XSLT stylesheet that is
applied on the edited XML document, as well as other transformation parameters.

• Scenarios that Apply to XSLT Files - This type of scenario contains the location of an XML document that the
edited XSLT stylesheet is applied to, as well as other transform parameters.

• Scenarios that Apply to XQuery Files - This type of scenario contains the location of an XML source, that the
edited XQuery file is applied to, as well as other transform parameters. When the XML source is a native XML
database, the XML source field of the scenario is empty because the XML data is read with XQuery-specific
functions, such as document(). When the XML source is a local XML file, the URL of the file is specified in
the XML input field of the scenario.

• Scenarios that Apply to SQL Files - This type of scenario specifies a database connection for the database
server that runs the SQL file that is associated with the scenario. The data processed by the SQL script is
located in the database.

• Scenarios that Apply to XProc Files - This type of scenario contains the location of an XProc script, as well as
other transform parameters.

• DITA-OT Scenarios - This type of scenario provides the parameters for an Ant transformation that executes a
DITA-OT build script. Oxygen XML Developer includes a built-in version of Ant and a built-in version of DITA-OT,
although you can also set other versions in the scenario.

637

• ANT Scenarios - This type of scenario contains the location of an Ant build script, as well as other transform
parameters.

Note:

Status messages generated during the transformation process are displayed in the Information view.

Built-in Transformation Scenarios
Oxygen XML Developer included preconfigured built-in transformation scenarios that are used for common
transformations. They can be found in the various sections in the Configure Transformation Scenario(s) dialog
box. All the predefined document types (frameworks) that are included in Oxygen XML Developer have various
transformation scenarios in their specific sections, including the most popular frameworks, such as DITA,
DocBook, TEI, XHTML, JATS, OOXML, and more.

To obtain the desired output, use one of the following actions from the toolbar:

• Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X))
• Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X))

Then choose one of the built-in scenarios for the current document and click the Apply Associated button.

Note:

• You can apply a transformation even if the current document is not associated with a transformation scenario.
• If the document contains an xml-stylesheet processing instruction that refers to an XSLT stylesheet

(commonly used to display the document in web browsers), Oxygen XML Developer prompts you to associate
the document with a built-in transformation scenario.

• The default transformation scenario is suggested based on the processing instruction from the edited
document.

Related Information:
Creating New Transformation Scenarios on page 669
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook 4 Transformation Scenarios

Default transformation scenarios allow you to convert DocBook 4 to DocBook 5 documents and transform
DocBook documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk,
and EPUB. All of them are listed in the DocBook 4 section in the Configure Transformation Scenario(s) dialog box.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook 4 to WebHelp Output

DocBook 4 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 4 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation
menu.

2. Select the DocBook WebHelp Classic scenario from the DocBook 4 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

Transforming Documents 638

WebHelp Classic with Feedback Output

To publish a DocBook 4 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 4 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system
deployment. For more information, see Deploying a Feedback-Enabled WebHelp System.

To watch our video demonstration about the feedback-enabled WebHelp system, go to https://
www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output

To publish a DocBook 4 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 4 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in
your default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the
following most commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

l10n.gentext.default.language
This parameter is used to identify the correct stemmer that differs from language to language. For example,
for English the value of this parameter is en or for French it is fr, and so on.

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code

Transforming Documents 639

https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html
https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-
phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to
this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.skin.css
Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined
skin CSS from the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp
\predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web
application.

For more information about all the DocBook transformation parameters, go to http://docbook.sourceforge.net/
release/xsl/current/doc/fo/index.html.

Related Information:
WebHelp Classic Output on page 614
WebHelp Classic With Feedback Output on page 617

Transforming Documents 640

https://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html

WebHelp Classic Mobile System (Deprecated) on page 804
Customizing WebHelp Classic Systems on page 780
Customizing WebHelp Classic Mobile Systems on page 805

DocBook to PDF Output Customization

When the default layout and output of the DocBook to PDF transformation needs to be customized, follow these
steps:

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/
titlepage.templates.xml and customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
 <mediaobject/>
 <title
 t:named-template="book.verso.title"
 font-size="&hsize2;"
 font-weight="bold"
 font-family="{$title.font.family}"/>
 <corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.
Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.
The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert a logo image in the XML document.
The path to the logo image must be inserted in the book/info/mediaobject element of the XML
document.

5. Apply the customization layer to the XML document.
A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML
Developer and set the customization layer in the XSL URL property of the scenario.

Related Information:
The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.
Video demonstration for creating a DocBook customization layer in Oxygen XML Developer.

DocBook to DITA Transformation

Oxygen XML Developer includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation
Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the toolbar or the Document >
Transformation menu.

• To customize the transformation or change the scenario that is associated with the document, use the
Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the

toolbar or the Document > Transformation menu.
2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Transforming Documents 641

http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
https://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
https://www.oxygenxml.com/demo/DocBook_Customization.html
https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements
as it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert
XML comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation
errors, adjust certain attributes, or split the content into individual topics.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when
possible. To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as
in the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. Open the Configure Transformation Scenario(s) dialog box, select the DocBook EPUB transformation scenario,
and click Edit.

4. In the Parameters tab, set the epub.embedded.fonts parameter to fonts/MyFont.otf. If you need to
provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.
5. Run the transformation scenario.

DocBook 5 Transformation Scenarios

Built-in transformation scenarios allow you to transform DocBook 5 documents to a variety of outputs, such as
WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, and EPUB. Oxygen XML Developer also includes a
DocBook 5.1 transformation scenario for Assembly documents. All of them are listed in the DocBook 5 section in
the Configure Transformation Scenario(s) dialog box.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook 5 to WebHelp Output

DocBook 5 documents can be transformed into several types of WebHelp systems.

WebHelp Classic Output

To publish a DocBook 5 document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation
menu.

2. Select the DocBook WebHelp Classic scenario from the DocBook 5 section.
3. Click Apply associated.

Transforming Documents 642

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

WebHelp Classic with Feedback Output

To publish a DocBook 5 document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 5 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system
deployment. For more information, see Deploying a Feedback-Enabled WebHelp System.

To watch our video demonstration about the feedback-enabled WebHelp system, go to https://
www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

WebHelp Classic Mobile Output

To publish a DocBook 5 document as a WebHelp Classic Mobile system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic Mobile scenario from the DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic Mobile transformation is complete, the output is automatically opened in
your default browser.

Customizing WebHelp Transformation Scenarios

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the
following most commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

l10n.gentext.default.language
This parameter is used to identify the correct stemmer that differs from language to language. For example,
for English the value of this parameter is en or for French it is fr, and so on.

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or

Transforming Documents 643

https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html
https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-
phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to
this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.skin.css
Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined
skin CSS from the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp
\predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web
application.

For more information about all the DocBook transformation parameters, go to http://docbook.sourceforge.net/
release/xsl/current/doc/fo/index.html.

Related Information:
WebHelp Classic Output on page 614

Transforming Documents 644

https://www.oxygenxml.com/webhelp-skin-builder
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html
http://docbook.sourceforge.net/release/xsl/current/doc/fo/index.html

WebHelp Classic With Feedback Output on page 617
WebHelp Classic Mobile System (Deprecated) on page 804
Customizing WebHelp Classic Systems on page 780
Customizing WebHelp Classic Mobile Systems on page 805

DocBook to PDF Output Customization

When the default layout and output of the DocBook to PDF transformation needs to be customized, follow these
steps:

1. Create a custom version of the DocBook title spec file.

You should start from a copy of the file [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/fo/
titlepage.templates.xml and customize it. The instructions for the spec file can be found here.

An example of spec file:

<t:titlepage-content t:side="recto">
 <mediaobject/>
 <title
 t:named-template="book.verso.title"
 font-size="&hsize2;"
 font-weight="bold"
 font-family="{$title.font.family}"/>
 <corpauthor/>
 ...
</t:titlepage-content>

2. Generate a new XSLT stylesheet from the title spec file from the previous step.
Apply [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/template/titlepage.xsl to the title
spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer.
The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl
should be imported with an element like this:

<xsl:import href="dir-name/mytitlepages.xsl"/>

4. Insert a logo image in the XML document.
The path to the logo image must be inserted in the book/info/mediaobject element of the XML
document.

5. Apply the customization layer to the XML document.
A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML
Developer and set the customization layer in the XSL URL property of the scenario.

Related Information:
The book DocBook XSL: The Complete Guide by Bob Stayton contains more details about customizing the PDF
output.
Video demonstration for creating a DocBook customization layer in Oxygen XML Developer.

Show Comments and Tracked Changes in DocBook 5 PDF Output

To include comments and tracked changes (stored within your DocBook 5 documents) in the PDF output, follow
these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DocBook PDF (Show Change Tracking and Comments) in the DocBook 5 section.
3. If you need to configure the transformation, click the Edit or Duplicate button, make your changes to the

scenario, and click OK.
4. Click the Apply Associated button to run the transformation scenario.

Result: Comment threads and tracked changes will now appear in the PDF output. Details about each
comment or change will be available in the footer section for each page.

Transforming Documents 645

http://www.sagehill.net/docbookxsl/TitlePagePrint.html#PrintTitlepageSpecfile
https://www.oxygenxml.com/demo/DocBook_Customization.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
http://www.sagehill.net/docbookxsl/PrintCustomEx.html
https://www.oxygenxml.com/demo/DocBook_Customization.html

DocBook to DITA Transformation

Oxygen XML Developer includes a built-in transformation scenario that is designed to convert DocBook content to
DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.

To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:

• To apply the transformation scenario to a newly opened file, use the Apply Transformation
Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the toolbar or the Document >
Transformation menu.

• To customize the transformation or change the scenario that is associated with the document, use the
Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the

toolbar or the Document > Transformation menu.
2. Select the DocBook to DITA transformation scenario in the DocBook 4 or DocBook 5 section.
3. Click the Apply associated button to run the transformation.

Step Result: The transformation will convert as many of the DocBook elements into equivalent DITA elements
as it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert
XML comments so that you can see which elements could not be converted.

4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation
errors, adjust certain attributes, or split the content into individual topics.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DocBook to EPUB Transformation

The EPUB specification recommends the use of OpenType fonts (recognized by their .otf file extension) when
possible. To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

@font-face {
font-family: "MyFont";
font-weight: bold;
font-style: normal;
src: url(fonts/MyFont.otf);
}

2. In the CSS, specify where this font is used. To set it as default for h1 elements, use the font-family rule, as
in the following example:

h1 {
font-size:20pt;
margin-bottom:20px;
font-weight: bold;
font-family: "MyFont";
text-align: center;
}

3. Open the Configure Transformation Scenario(s) dialog box, select the DocBook EPUB transformation scenario,
and click Edit.

4. In the Parameters tab, set the epub.embedded.fonts parameter to fonts/MyFont.otf. If you need to
provide more files, use commas to separate their file paths.

Note: The html.stylesheet parameter allows you to include a custom CSS in the output EPUB.
5. Run the transformation scenario.

DITA Map Transformation Scenarios

The following types of transformations scenarios are available for DITA maps:

• Predefined transformation scenarios allow you to transform a DITA map to a variety of outputs, such as
WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word.

Transforming Documents 646

https://sourceforge.net/projects/dita-ot/files/Plug-in_%20dockbook2dita/

• Run DITA-OT Integrator - Use this transformation scenario if you want to integrate a DITA-OT plugin. This
scenario runs an Ant task that integrates all the plugins from the DITA-OT/plugins directory.

• DITA Map Metrics Report - Use this type of transformation scenario if you want to generate a DITA map
statistics report. They contain information such as:

• The number of processed maps and topics.
• Content reuse percentage.
• Number of elements, attributes, words, and characters used in the entire DITA map structure.
• DITA conditional processing attributes used in the DITA maps.
• Words count.
• Information types such as number of containing maps, bookmaps, or topics.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

DITA Map to WebHelp Output

DITA maps can be transformed into a variety of WebHelp systems designed to suit your specific needs. This
section contains the procedures for obtaining the output for the variants of the WebHelp system.

Related Information:
WebHelp System Output on page 720

WebHelp Responsive Output

To publish a DITA map as a WebHelp Responsive system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Templates Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Responsive transformation is complete, the output is automatically opened in
your default browser.

Parameters for Customizing WebHelp Responsive Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

Transforming Documents 647

editlink.web.author.url
Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the topic
title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where
they can make changes that can be saved to a file server. The value should be set as the custom URL of
the main DITA map. For example, a GitHub custom URL might look like this: https://getFileContent/
oxyengxml/userguide/master/UserGuide.ditamap.

editlink.web.author.url
This parameter needs to be used in conjunction with editlink.remote.ditamap.url to add an Edit link
next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML
Web Author where they can make changes that can be saved to a file server. The value should be set as the
URL of the Web Author installation. For example: https://www.oxygenxml.com/webapp-demo-aws/
app/oxygen.html.

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq

Transforming Documents 648

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Parameters Specific to WebHelp Responsive Output

webhelp.enable.search.autocomplete
Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

webhelp.fragment.after.body
In the generated output it displays a given XHTML fragment after the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search
In the generated output it displays a given XHTML fragment after the search field. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.toc_or_tiles
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body
In the generated output it displays a given XHTML fragment before the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title
In the generated output it displays a given XHTML fragment before the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search
In the generated output it displays a given XHTML fragment before the search field. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles
In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.before.top_menu
In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.footer
In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head
In the generated output it displays a given XHTML fragment as a page header. The value of the parameter can
be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

Transforming Documents 649

webhelp.fragment.welcome
In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.merge.nested.topics.related.links
Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links
will be moved from the topic content to the related links component and all of the links from the same group
(for example, Related Tasks, Related References, Related Information) are merged into a single group. The
default value is yes.

webhelp.show.breadcrumb
Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links
Specifies if child links will be generated in the output for all topics that have subtopics. The default value is
no.

webhelp.show.indexterms.link
Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles
Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this
parameter should be set to no.

webhelp.show.main.page.toc
Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

webhelp.show.navigation.links
Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link
Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

webhelp.show.related.links
Specifies if the related links component will be presented in the WebHelp Responsive output. The default
value is yes. The webhelp.merge.nested.topics.related.links parameter can used in conjunction with this one
to merge the related links from nested topics into the links in the parent topic.

webhelp.show.side.toc
Specifies if a side table of contents will be presented on the right side of each topic in the output. The default
value is yes.

webhelp.show.top.menu
Specifies if a menu will be presented at the topic of the main page in the output. The default value is yes.

webhelp.top.menu.depth
Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 2.

Related Information:
Customizing the WebHelp Responsive Output on page 744
WebHelp Responsive System on page 721

WebHelp Responsive with Feedback Output

To publish a DITA map as a WebHelp Responsive with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Responsive with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Templates Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

Transforming Documents 650

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation

version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Responsive with Feedback transformation is complete, your default browser
opens the installation.html file. This file contains information about the output location, system
requirements, installation instructions, and deployment of the output. Follow the instructions to complete the
system deployment.

Parameters for Customizing WebHelp Responsive with Feedback Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

editlink.web.author.url
Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the topic
title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where
they can make changes that can be saved to a file server. The value should be set as the custom URL of
the main DITA map. For example, a GitHub custom URL might look like this: https://getFileContent/
oxyengxml/userguide/master/UserGuide.ditamap.

editlink.web.author.url
This parameter needs to be used in conjunction with editlink.remote.ditamap.url to add an Edit link
next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML
Web Author where they can make changes that can be saved to a file server. The value should be set as the
URL of the Web Author installation. For example: https://www.oxygenxml.com/webapp-demo-aws/
app/oxygen.html.

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

Transforming Documents 651

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Parameters Specific to WebHelp Responsive with Feedback Output

webhelp.enable.search.autocomplete
Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

webhelp.fragment.after.body
In the generated output it displays a given XHTML fragment after the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.main.page.search
In the generated output it displays a given XHTML fragment after the search field. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.toc_or_tiles
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

Transforming Documents 652

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

webhelp.fragment.before.body
In the generated output it displays a given XHTML fragment before the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title
In the generated output it displays a given XHTML fragment before the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search
In the generated output it displays a given XHTML fragment before the search field. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles
In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

webhelp.fragment.before.top_menu
In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.footer
In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head
In the generated output it displays a given XHTML fragment as a page header. The value of the parameter can
be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome
In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.merge.nested.topics.related.links
Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links
will be moved from the topic content to the related links component and all of the links from the same group
(for example, Related Tasks, Related References, Related Information) are merged into a single group. The
default value is yes.

webhelp.show.breadcrumb
Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links
Specifies if child links will be generated in the output for all topics that have subtopics. The default value is
no.

webhelp.show.indexterms.link
Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles
Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this
parameter should be set to no.

webhelp.show.main.page.toc
Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

webhelp.show.navigation.links
Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link
Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

webhelp.show.related.links
Specifies if the related links component will be presented in the WebHelp Responsive output. The default
value is yes. The webhelp.merge.nested.topics.related.links parameter can used in conjunction with this one
to merge the related links from nested topics into the links in the parent topic.

Transforming Documents 653

webhelp.show.side.toc
Specifies if a side table of contents will be presented on the right side of each topic in the output. The default
value is yes.

webhelp.show.top.menu
Specifies if a menu will be presented at the topic of the main page in the output. The default value is yes.

webhelp.top.menu.depth
Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 2.

Related Information:
Customizing the WebHelp Responsive Output on page 744
WebHelp Responsive with Feedback System on page 725

WebHelp Classic Output

To publish a DITA map as a WebHelp Classic system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Classic scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Skins Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic transformation is complete, the output is automatically opened in your
default browser.

To further customize this transformation, you can edit various parameters, including the following most
commonly used ones:

Parameters for Customizing WebHelp Classic Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

Transforming Documents 654

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.body.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <body> section of every WebHelp page.

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

webhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

webhelp.head.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <head> section of every WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

Transforming Documents 655

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Related Information:
Customizing WebHelp Classic Systems on page 780
WebHelp Classic System on page 769

WebHelp Classic With Feedback Output

To publish a DITA map as a WebHelp Classic with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Classic with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Skins Tab - This tab contains a set of predefined skins that you can use for the layout of your WebHelp
system output.

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.

Transforming Documents 656

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

• Output Tab - This tab allows you to configure options that are related to the location where the output is
generated.

4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation

version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Classic with Feedback transformation is complete, your default browser opens
the installation.html file. This file contains information about the output location, system requirements,
installation instructions, and deployment of the output. Follow the instructions to complete the system
deployment.

To watch our video demonstration about the feedback-enabled WebHelp system, go to https://
www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html.

Parameters for Customizing WebHelp Classic with Feedback Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.body.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <body> section of every WebHelp page.

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>

Transforming Documents 657

https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html
https://www.oxygenxml.com/demo/Feedback_Enabled_WebHelp.html

 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

webhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

webhelp.head.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <head> section of every WebHelp page.

webhelp.logo.image.target.url
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

webhelp.logo.image
Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

webhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

webhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq

Transforming Documents 658

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Related Information:
Customizing WebHelp Classic Systems on page 780
WebHelp Classic with Feedback System on page 772

WebHelp Classic Mobile Output

To publish a DITA map as a WebHelp Classic Mobile system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the toolbar.
2. Select the DITA Map WebHelp Classic Mobile scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options
in the following tabs:

• Parameters Tab - This tab includes numerous parameters that can be set to customize your WebHelp
system output. See the Parameters section below for details about the most commonly used parameters
for WebHelp Responsive transformations.

• Filters Tab - This tab allows you to filter certain content elements from the generated output.
• Advanced Tab - This tab allows you to specify some advanced options for the transformation scenario.
• Output Tab - This tab allows you to configure options that are related to the location where the output is

generated.
4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic Mobile transformation is complete, the output is automatically opened
in your default browser.

Parameters for Customizing WebHelp Classic Mobile Output

To customize a transformation scenario, you can edit various parameters, including the following most
commonly used ones:
args.default.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.
clean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are
valid and the default value is no).

fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from
Oxygen XML Developer)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the
directory of the processed DITA map. This parameter is used to specify whether or not the application should
try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed
references. The fix has no impact on your edited DITA content. Allowed values: true or false (default).

use.stemming
Controls whether or not you want to include stemming search algorithms into the published output (default
setting is false).

webhelp.copyright
Adds a small copyright text that appears at the end of the Table of Contents pane.

Transforming Documents 659

webhelp.custom.resources
The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

webhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

webhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

webhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

webhelp.head.script
URL value that specifies the location of a well-formed XHTML file containing the custom script that will be
copied in the <head> section of every WebHelp page.

webhelp.reload.stylesheet
Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase
processing time but decrease the memory footprint. The default value is false.

webhelp.search.custom.excludes.file
The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp
search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to
the output directory, and they accept wildcards such as '*' (matches zero or more characters) or '?'
(matches one character). For more information about the patterns, see https://ant.apache.org/manual/
dirtasks.html#patterns.

webhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

Transforming Documents 660

https://ant.apache.org/manual/dirtasks.html#patterns
https://ant.apache.org/manual/dirtasks.html#patterns

webhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

webhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

webhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

Related Information:
Customizing WebHelp Classic Mobile Systems on page 805
WebHelp Classic Mobile System (Deprecated) on page 804

DITA Map to PDF Output Customization

Oxygen XML Developer comes bundled with the DITA Open Toolkit that provides a mechanism for converting
DITA maps to PDF output. There are numerous ways that you can customize the PDF output and the topics in this
section discuss some of those possibilities.

Creating a DITA Map to PDF Transformation Scenario

To create a DITA Map to PDF transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map PDF and click the Edit button (or use the Duplicate button if your framework is read-only).
3. Use the various tabs to configure the transformation scenario. In the Parameters tab, you can use a variety

of parameters to customize the output. For example, the following parameters are just a few of the most
commonly used ones:

• show.changes.and.comments - If set to yes, user comments, replies to comments, and tracked
changes are published in the PDF output.

• customization.dir - Specifies the path to a customization directory.
4. Click OK and then the Apply Associated button to run the transformation scenario.

Creating a Customization Directory for PDF Output

DITA Open Toolkit PDF output can be customized in several ways:

• Creating a DITA Open Toolkit plugin that adds extensions to the PDF plugin. More details can be found in the
DITA Open Toolkit Documentation.

• Creating a customization directory and using it from the PDF transformation scenario. A small example of this
procedure can be found below.

How to Create a Customization Directory for PDF Output

The following procedure explains how to do a basic customization of the PDF output by setting up a
customization directory. An example of a common use case is embedding a company logo image in the front
matter of the book.

1. Copy the entire directory: DITA-OT-DIR\plugins\org.dita.pdf2\Customization to another location
(for instance, C:\Customization).

2. Copy your logo image to: C:\Customization\common\artwork\logo.png.
3. Rename C:\Customization\catalog.xml.orig to: C:\Customization\catalog.xml.

Transforming Documents 661

http://www.dita-ot.org/

4. Open the catalog.xml in Oxygen XML Developer and uncomment this line:

 <!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

It now looks like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: C:\Customization\fo\xsl\custom.xsl.orig to: C:\Customization\fo\xsl
\custom.xsl

6. Open the custom.xsl file in Oxygen XML Developer and create the template called
createFrontCoverContents for DITA-OT 2.4.4 (or createFrontMatter_1.0 for DITA-OT 1.8.5).

Tip: You can copy the same template from DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\front-
matter.xsl and modify it in whatever way necessary to achieve your specific goal. This new template in the
custom.xsl file will override the same template from DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo
\front-matter.xsl.

DITA OT 2.4.4 Example:

For example, if you are using DITA OT 2.4.4, the custom.xsl could look like this:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="2.0">

<xsl:template name="createFrontCoverContents">
 <!-- set the title -->
 <fo:block xsl:use-attribute-sets="__frontmatter__title">
 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/mainbooktitle ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains
 (@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>

 <!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/booktitlealt ')]"/>
 <fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains(@class,' bookmap/bookmeta ')]"/>
 </fo:block>

 <!-- Load the image logo -->
 <fo:block text-align="center" width="100%">
 <fo:external-graphic
 src="url({concat($artworkPrefix,
 '/Customization/OpenTopic/common/artwork/logo.png')})"
 />
 </fo:block>
 </xsl:template>

</xsl:stylesheet>

DITA OT 1.8.5 Example:

For example, if you are using DITA OT 1.8.5, the custom.xsl could look like this:

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 version="1.1">

<xsl:template name="createFrontMatter_1.0">
 <fo:page-sequence master-reference="front-matter"
 xsl:use-attribute-sets="__force__page__count">
 <xsl:call-template name="insertFrontMatterStaticContents"/>
 <fo:flow flow-name="xsl-region-body">
 <fo:block xsl:use-attribute-sets="__frontmatter">
 <!-- set the title -->
 <fo:block xsl:use-attribute-sets="__frontmatter__title">
 <xsl:choose>

Transforming Documents 662

 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/mainbooktitle ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains
 (@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>

 <!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/booktitlealt ')]"/>

 <fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains
 (@class,' bookmap/bookmeta ')]"/>
 </fo:block>

 <fo:block text-align="center" width="100%">
 <fo:external-graphic src="url({concat($artworkPrefix,
 '/Customization/OpenTopic/common/artwork/logo.png')})"/>
 </fo:block>

 </fo:block>

 <!--<xsl:call-template name="createPreface"/>-->

 </fo:flow>
 </fo:page-sequence>
 <xsl:call-template name="createNotices"/>
 </xsl:template>
</xsl:stylesheet>

7. Edit the DITA Map PDF transformation scenario and in the Parameters tab, set the customization.dir
parameter to C:\Customization.

Tip: For other specific examples, see DITA-OT 2.3 Documentation - PDF Customization Plugin.

Related Information:
Automatic PDF plugin customization generator by Jarno Elovirta.
DITA-OT 1.8 Documentation - PDF Customization Plugin
DITA-OT 2.3 Documentation - PDF Customization Plugin

Customizing the Header and Footer in PDF Output

The XSLT stylesheet DITA-OT-DIR/plugins/org.dita.pdf2/xsl/fo/static-content.xsl contains
templates that output the static header and footers for various parts of the PDF such as the prolog, table of
contents, front matter, or body.

The templates for generating a footer for pages in the body are called insertBodyOddFooter or
insertBodyEvenFooter.

These templates get the static content from resource files that depend on the language used for generating the
PDF. The default resource file is DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common/vars/en.xml.
These resource files contain variables (such as Body odd footer) that can be set to specific user values.

Instead of modifying these resource files directly, they can be overwritten with modified versions of the resources
in a PDF customization directory as explained in Creating a Customization Directory for PDF Output.

Adding a Watermark to PDF Output

To add a watermark to the PDF output of a DITA map transformation, create a DITA-OT customization directory
and use it from a DITA Map to PDF transformation scenario, as in the following procedure:

1. Copy the entire directory: DITA-OT-DIR\plugins\org.dita.pdf2\Customization to another location
(for instance, C:\Customization).

2. Copy your watermark image (for example, watermark.png) to: C:\Customization\common\artwork
\watermark.png.

3. Rename the C:\Customization\catalog.xml.orig file to: C:\Customization\catalog.xml.

Transforming Documents 663

http://www.dita-ot.org/2.3/dev_ref/pdf-customization-example.html
http://dita-generator-hrd.appspot.com/pdf-plugin/
http://www.dita-ot.org/1.8/readme/dita2pdf-customization.html
http://www.dita-ot.org/2.3/dev_ref/pdf-customization-example.html

4. Open the catalog.xml in Oxygen XML Developer and uncomment this line:

<!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

The uncommented line should look like this:

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: C:\Customization\fo\xsl\custom.xsl.orig to: C:\Customization\fo\xsl
\custom.xsl

6. Open the C:\Customization\fo\xsl\custom.xsl file in Oxygen XML Developer to overwrite two XSLT
templates:

• The first template is located in the XSLT stylesheet DITA-OT-DIR\plugins\org.dita.pdf2\xsl
\fo\static-content.xsl and we override it specifying a watermark image for every page in the PDF
content, using a block-container element that references the watermark image file:

<fo:static-content flow-name="odd-body-header">
 <fo:block-container absolute-position="absolute"
 top="-2cm" left="-3cm" width="21cm" height="29.7cm"
 background-image="{concat($artworkPrefix,
'/Customization/OpenTopic/common/artwork/watermark.png')}">
 <fo:block/>
 </fo:block-container>
 <fo:block xsl:use-attribute-sets="__body__odd__header">
 <xsl:call-template name="insertVariable">
 <xsl:with-param name="theVariableID" select="'Body odd header'"/>
 <xsl:with-param name="theParameters">
 <prodname>
 <xsl:value-of select="$productName"/>
 </prodname>
 <heading>
 <fo:inline xsl:use-attribute-sets="__body__odd__header__heading">
 <fo:retrieve-marker retrieve-class-name="current-header"/>
 </fo:inline>
 </heading>
 <pagenum>
 <fo:inline xsl:use-attribute-sets="__body__odd__header__pagenum">
 <fo:page-number/>
 </fo:inline>
 </pagenum>
 </xsl:with-param>
 </xsl:call-template>
 </fo:block>
 </fo:static-content>

</xsl:template>

• The second template that we override is located in the XSLT stylesheet DITA-OT-DIR\plugins
\org.dita.pdf2\xsl\fo\commons.xsl and is used for styling the first page of the output. We
also override it by copying the original template content in our custom.xsl and adding the block-
container element that references the watermark image file:

<xsl:template name="createFrontMatter_1.0">
 <fo:page-sequence master-reference="front-matter"
xsl:use-attribute-sets="__force__page__count">
 <xsl:call-template name="insertFrontMatterStaticContents"/>
 <fo:flow flow-name="xsl-region-body">
 <fo:block-container absolute-position="absolute"
 top="-2cm" left="-3cm" width="21cm" height="29.7cm"
 background-image="{concat($artworkPrefix,
'/Customization/OpenTopic/common/artwork/watermark.png')}">
 <fo:block/>
 </fo:block-container>
 <fo:block xsl:use-attribute-sets="__frontmatter">
 <!-- set the title -->
 <fo:block xsl:use-attribute-sets="__frontmatter__title">
 <xsl:choose>
 <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
 <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
 </xsl:when>
 <xsl:when test="$map//*[contains(@class,' bookmap/mainbooktitle ')][1]">
 <xsl:apply-templates select="$map//*[contains
(@class,' bookmap/mainbooktitle ')][1]"/>
 </xsl:when>
 <xsl:when test="//*[contains(@class, ' map/map ')]/@title">
 <xsl:value-of select="//*[contains(@class, ' map/map ')]/@title"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="/descendant::*[contains
(@class, ' topic/topic ')][1]/*[contains(@class, ' topic/title ')]"/>
 </xsl:otherwise>
 </xsl:choose>
 </fo:block>

Transforming Documents 664

 <!-- set the subtitle -->
 <xsl:apply-templates select="$map//*[contains
(@class,' bookmap/booktitlealt ')]"/>

 <fo:block xsl:use-attribute-sets="__frontmatter__owner">
 <xsl:apply-templates select="$map//*[contains
(@class,' bookmap/bookmeta ')]"/>
 </fo:block>

 </fo:block>

 <!--<xsl:call-template name="createPreface"/>-->

 </fo:flow>
 </fo:page-sequence>
 <xsl:if test="not($retain-bookmap-order)">
 <xsl:call-template name="createNotices"/>
 </xsl:if>
 </xsl:template>

7. Edit your DITA Map PDF transformation scenario. In the Parameters tab, set the customization.dir parameter
to C:\Customization.

Force Page Breaks Between Two Block Elements in PDF Output

Suppose that in your DITA content you have two block elements, such as two paragraphs:

<p>First para</p>
<p>Second para</p>

and you want to force a page break between them in the PDF output.

Here is how you can implement a DITA Open Toolkit plugin that would achieve this:

1. Define your custom processing instruction that marks the place where a page break should be inserted in the
PDF, for example:

<p>First para</p>
 <?pagebreak?>
<p>Second para</p>

2. Locate the DITA Open Toolkit distribution and in the plugins directory create a new plugin folder (for
example, DITA-OT-DIR/plugins/pdf-page-break).

3. In this new folder, create a new plugin.xml file with the following content:

<plugin id="com.yourpackage.pagebreak">
 <feature extension="package.support.name" value="Force Page Break Plugin"/>
 <feature extension="package.support.email" value="support@youremail.com"/>
 <feature extension="package.version"value="1.0.0"/>
 <feature extension="dita.xsl.xslfo" value="pageBreak.xsl" type="file"/>
</plugin>

The most important feature in the plugin is that it will add a new XSLT stylesheet to the XSL processing that
produces the PDF content.

4. In the same folder, create an XSLT stylesheet named pageBreak.xsl with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"version="1.0">
 <xsl:template match="processing-instruction('pagebreak')">
 <fo:block break-after="page"/>
 </xsl:template>
</xsl:stylesheet>

Customizing note Images in PDF

To customize the images that appear next to each type of note in the PDF output, use a PDF customization folder
with the following procedure:

1. Copy the DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common/vars/en.xml file to the
[CUSTOMIZATION_DIR]\common\vars folder.

2. Edit the copied en.xml file and modify, for example, the path to the image for <note> element with the type
attribute set to notice from:

<variable id="notice Note Image
 Path">Configuration/OpenTopic/cfg/common/artwork/important.png</variable>

Transforming Documents 665

to:

<variable id="notice Note Image
 Path">Customization/OpenTopic/common/artwork/notice.gif</variable>

3. Add your custom notice image to [CUSTOMIZATION_DIR]\common\artwork\notice.gif.
4. Edit the DITA Map PDF transformation scenario and in the Parameters tab set the path for the

customization.dir property to point to the customization folder.

Show Comments and Tracked Changes in PDF Output

To include comments and tracked changes (stored within your DITA topics) in the PDF output, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map PDF and click the Edit button (or use the Duplicate button if your framework is read-only).
3. In the Parameters tab, set the value of the show.changes.and.comments parameter to yes.
4. Click OK and then the Apply Associated button to run the transformation scenario.

Result: Comment threads and tracked changes will now appear in the PDF output. Details about each
comment or change will be available in the footer section for each page.

Set a Font for PDF Output Generated with FO Processor

When a DITA map is transformed to PDF using an FO processor and it contains some Unicode characters that
cannot be rendered by the default PDF fonts, a font that is capable of rendering these characters must be
configured and embedded in the PDF result.

The settings that must be modified for configuring a font for the built-in FO processor are detailed in Add a Font
to the Built-in FO Processor.

DITA OT PDF Font Mapping

The DITA OT contains a file DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml
that maps logical fonts used in the XSLT stylesheets to physical fonts that will be used by the FO processor to
generate the PDF output.

The XSLT stylesheets used to generate the XSL-FO output contain code like this:

<xsl:attribute name="font-family">monospace</xsl:attribute>

The font-family is defined to be monospace, but monospace is just an alias. It is not a physical font
name. Therefore, another stage in the PDF generation takes this monospace alias and looks in the font-
mappings.xml.

If it finds a mapping like this:

<aliases>
 <alias name="monospace">Monospaced</alias>
 </aliases>

then it looks to see if the Monospaced has a logical-font definition and if so, it will use the physical-font specified
there:

<logical-font name="Monospaced">
 <physical-font char-set="default">
 <font-face>Courier New, Courier</font-face>
 </physical-font>
............
</logical-font>

Important:

If no alias mapping is found for a font-family specified in the XSLT stylesheets, the processing defaults to
Helvetica.

Related Information:

Transforming Documents 666

DITA Map to PDF WYSIWYG Transformation

Oxygen XML Developer comes bundled with a DITA OT plugin that allows you to convert DITA maps to PDF using
a CSS layout processor. Oxygen XML Developer also comes bundled with a built-in CSS-based PDF processing
engine called Chemistry. For those who are familiar with CSS, this makes it very easy to style and customize the
PDF output of your DITA projects without having to work with xsl:fo customizations.

Oxygen XML Developer supports the following processors (not included in the Oxygen XML Developer installation
kit):

• Oxygen Chemistry - A built-in processor that is bundled with Oxygen XML Developer.
• Prince Print with CSS - A third-party component that needs to be purchased from http://www.princexml.com.
• Antenna House Formatter - A third-party component that needs to be purchased from http://

www.antennahouse.com/antenna1/formatter/.

The DITA-OT plugin is located in the following directory: DITA-OT-DIR/plugins/com.oxygenxml.pdf.css.

Although it includes a set of CSS files in its css subfolder, when this plugin is used in Oxygen XML Developer, the
CSS files located in the ${frameworks} directory take precedence.

Creating the Transformation Scenario

To create an DITA Map to PDF WYSIWYG transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button.
2. Select DITA Map PDF - WYSIWYG.
3. In the Parameters tab, configure the following parameters:

• css.processor.type (if you want to use the built-in Oxygen Chemistry processor) - Set the value as
chemistry.

• css.processor.path.prince (if you are using the Prince Print with CSS processor) - Specifies the
path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default
settings, you can leave this blank.

• css.processor.path.antenna-house (if you are using the Antenna House Formatter processor) -
Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed
Antenna House using its default settings, you can leave this blank.

• show.changes.and.comments - When set to yes, user comments, replies to comments, and tracked
changes are published in the PDF output. The default value is no.

• dita.css.list - Allows you to specify a list of CSS URLs to be used by the PDF processor. The files
must have URL syntax and be separated using semicolons.

• args.css - Allows you to specify a list of CSS URLs to be used in addition to those specified in the
dita.css.list parameter.

4. Click OK and run the transformation scenario.

Customizing the Styles (for Output and Editing)

If you need to change the styles in the associated CSS, make sure you install Oxygen XML Developer in a folder
where you have full read and write privileges (for instance, your user home directory). This is due to the fact that
the installed files are usually placed in a read-only folder (for instance, in Windows, Oxygen XML Developer is
installed in the Program Files folder where the users do not have change rights).

To change the styles of an element you need to create an additional CSS file that will store the customization
rules. Once you have created this file, you need to instruct the editor how to use this additional CSS.

• Use the args.css parameter that allows you to specify a list of CSS URLs to be used in addition to the
dita.css.list parameter:

1. Configure a DITA map to PDF WYSIWYG transformation scenario, as described in the procedure above.
2. In the Parameters tab, specify the path to your custom CSS files in the args.css parameter.
3. Click OK and run the transformation scenario.

This method is appropriate if you just want to apply the styling customization to the output.

Transforming Documents 667

http://www.princexml.com/
http://www.antennahouse.com/antenna1/formatter/
http://www.antennahouse.com/antenna1/formatter/

How to Make Remote Resources Appear in the Output When Using the Prince Processor

If your documentation references external resources (such as images that are stored on a Web-based repository)
and your system is behind an HTTP(S) proxy, you may find that they do not appear in the output when using the
Prince Print with CSS processor. To solve this, follow this procedure:

1. Edit the build.xml file that is located in DITA-OT-DIR/plugins/com.oxygenxml.pdf.css.
2. There are two instances in the file where a pair of arguments are commented out:

 <!-- Please remove the comment wrapping the following two arguments
 if you are behind a proxy and your documentation refers remote resources,
 for example images.

 Note: You also need to remove the backslash '\' that appears before the
 property name: "http-proxy". That backslash is there because a sequence of
 two dashes ('-') is not permited inside a comment.
 -->
 <!--
 <arg value="-\-http-proxy=${http.proxyHost}:${http.proxyPort}"/>
 <arg value="-\-http-proxy=${https.proxyHost}:${https.proxyPort}"/>
 -->

3. Remove the comment in both instances.
4. Make sure you also remove the slash that appears before the property name http-proxy in each instance.

Step Result: The arguments should now look like this:

 <arg value="--http-proxy=${http.proxyHost}:${http.proxyPort}"/>
 <arg value="--http-proxy=${https.proxyHost}:${https.proxyPort}"/>

5. Save the build.xml file.
6. Run the DITA map to PDF WYSIWYG transformation scenario.

Result: Your external resources should now appear in your output.

Related Information:
Editing a Transformation Scenario on page 706
Configure Transformation Scenario(s) Dialog Box on page 707

Compiled HTML Help (CHM) Output Format

To perform a Compiled HTML Help (CHM) transformation, Oxygen XML Developer needs Microsoft HTML
Help Workshop to be installed on your computer. Oxygen XML Developer automatically detects HTML Help
Workshop and uses it.

Note: HTML Help Workshop might fail if the files used for transformation contain accents in their names, due
to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce the CHM
output but the .hhp (HTML Help Project) file is already generated, you can manually try to build the CHM output
using HTML Help Workshop.

Changing the Output Encoding

Oxygen XML Developer uses the htmlhelp.locale parameter to correctly display specific characters of
different languages in the output of the Compiled HTML Help (CHM) transformation. By default, the DITA Map
CHM transformation scenario that comes bundled with Oxygen XML Developer has the htmlhelp.locale
parameter set to en-US.

To customize this parameter, follow this procedure:

1. Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu.

2. Select the DITA Map CHM transformation scenario and click the Edit button.
3. In the Parameter tab, search for the htmlhelp.locale parameter and change its value to the desired

language tag.

Note: The format of the htmlhelp.locale parameter is LL-CC, where LL represents the language code
(en, for example) and CC represents the country code (US, for example). The language codes are contained
in the ISO 639-1 standard and the country codes are contained in the ISO 3166-1 standard. For further
details about language tags, go to http://www.rfc-editor.org/rfc/rfc5646.txt.

Transforming Documents 668

http://www.rfc-editor.org/rfc/rfc5646.txt

Kindle Output Format

Oxygen XML Developer requires KindleGento generate Kindle output from DITA maps. To install KindleGen for use
by Oxygen XML Developer, follow these steps:

1. Go to www.amazon.com/kindleformat/kindlegen and download the zip file that matches your operating
system.

2. Unzip the file on your local disk.
3. Start Oxygen XML Developer and open a DITA map.
4. Click the Configure Transformation Scenario(s) button.
5. Select the DITA Map Kindle transformation and press the Edit button to edit it.
6. Go to Parameters tab and set the kindlegen.executable parameter as the path to the KindleGen directory.
7. Accept the changes.

Creating New Transformation Scenarios
Defining a transformation scenario is the first step in the process of transforming a document. This section
includes information on the types of scenarios that are available in Oxygen XML Developer and how to create
each type of transformation.

XML Transformation with XSLT
This type of transformation specifies the transformation parameters and location of an XSLT stylesheet that is
applied to the edited XML document. This scenario is useful when you develop an XML document and the XSLT
document is in its final form.

To create an XML transformation with XSLT scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select XML
transformation with XSLT.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the
toolbar or the Document > Transformation menu. Then click the New button and select XML transformation
with XSLT.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XML transformation with XSLT.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XSLT Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XSLT tab contains the following options:

Transforming Documents 669

http://www.amazon.com/gp/feature.html/?docId=1000765211

XML URL
Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the

Insert Editor Variables button, or the browsing tools in the Browse drop-down list. You can also use the
Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog

resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote
location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver. If the transformer engine is
one of the built-in XSLT 2.0 / 3.0 engines and the name of an initial template is specified in the scenario, the XML
URL field can be empty. The XML URL field can also be empty if you use external XSLT processors. Otherwise, a
value is mandatory in this field.

XSL URL
Specifies the source XSL file that the transformation will use. You can specify the path by using the text field,
its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list. You can also use the Open in editor button to open the specified file in the editor panel. This URL is
resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used
directly from its remote location.

Use "xml-stylesheet" declaration
If selected, the scenario applies the stylesheet specified explicitly in the XML document with the xml-
stylesheet processing instruction. By default, this option is deselected and the transformation applies the
XSLT stylesheet that is specified in the XSL URL field.

Transformer
This drop-down menu presents all the transformation engines available to Oxygen XML Developer for
performing a transformation. These include the built-in engines and the external engines defined in the
Custom Engines preferences page. The engine you choose is used as the default transformation engine. Also,
if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is
used in the validation process (if it provides validation support).

Advanced options
Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current transformation
scenario. To configure the same options globally, go to the Saxon-HE/PE/EE preferences page. For the current
transformation scenario, these Advanced options override the options configured in that preferences page.

Parameters
Opens a Configure parameters dialog box that allows you to configure the XSLT parameters used in the
current transformation. In this dialog box, you can also configure the parameters for additional XSLT
stylesheets. If the XSLT transformation engine is custom-defined, you can not use this dialog box to configure
the parameters sent to the custom engine. Instead, you can copy all parameters from the dialog box using
contextual menu actions and edit the custom XSLT engine to include the necessary parameters in the
command line that starts the transformation process.

Extensions
Opens a dialog box for configuring the XSLT extension JARS or classes that define extension Java functions or
extension XSLT elements used in the transformation.

Additional XSLT stylesheets
Opens a dialog box for adding XSLT stylesheets that are applied on the main stylesheet specified in the XSL
URL field. This is useful when a chain of XSLT stylesheets must be applied to the input XML document.

XSLT Parameters

The global parameters of the XSLT stylesheet used in a transformation scenario can be configured by using the
Parameters button in the XSLT tab of a new or edited transformation scenario dialog box.

The resulting dialog box includes a table that displays all the parameters of the current XSLT stylesheet, all
imported and included stylesheets, and all additional stylesheets, along with their descriptions and current values.
You can also add, edit, and remove parameters, and you can use the Filter text box to search for a specific term in
the entire parameters collection. Note that edited parameters are displayed with their name in bold.

Transforming Documents 670

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the XSLT
transformation.

Example:

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XSL stylesheet location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations: doc('${cfdu}/test.xml')//
*

2. You cannot use XSLT Functions. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

New
Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable
can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is
selected, the parameter will be evaluated as an XPath expression.

Edit
Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable can be
inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected,
the parameter will be evaluated as an XPath expression.

Unset
Resets the selected parameter to its default value. Available only for edited parameters with set values.

Delete
Removes the selected parameter from the list. It is available only for new parameters that have been added to
the list.

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related Information:
Editor Variables on page 147

XSLT Extensions

The Extensions button is used to specify the JARS and classes that contain extension functions called from the
XSLT file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the
extensions.

Tip: You can specify the path to the resources using wildcards (for example, ${oxygenHome}/lib/*.jar).

An extension function called from the XSLT file of the current transformation scenario will be searched, in the
specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to
be moved and press the Move up or Move down buttons.

Additional XSLT Stylesheets

Use the Additional XSLT Stylesheets button in the XSLT tab to display a list of additional XSLT stylesheets to
be used in the transformation and you can add files to the list or edit existing entries. The following actions are
available:

Transforming Documents 671

Add
Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog box. You can type an
editor variable in the file name field of the browser dialog box. The name of the stylesheet will be added in the
list after the current selection.

Remove
Deletes the selected stylesheet from the Additional XSLT stylesheets list.

Open
Opens the selected stylesheet in a separate view.

Up
Moves the selected stylesheet up in the list.

Down
Moves the selected stylesheet down in the list.

Advanced Saxon HE/PE/EE XSLT Transformation Options

The XSLT transformation scenario allows you to configure advanced options that are specific for the Saxon HE
(Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as
those in the Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options
for each transformation scenario, while the values set in the preferences page apply as global options. The
advanced options configured in a transformation scenario override the global options defined in the preferences
page.

Saxon-HE/PE/EE Options

The advanced options for Saxon 9.7.0.15 Home Edition (HE), Professional Edition (PE), and Enterprise Edition
(EE) are as follows:
Mode ("-im")

A Saxon-specific option that sets the initial mode for the transformation.
Template ("-it")

A Saxon-specific option that sets the name of the initial XSLT template to be executed.
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is executed for XSLT transformation and validation processes.
Debugger trace into XPath expressions (applies to debugging sessions)

Instructs the XSLT Debugger to step into XPath expressions.
Version warnings ("-versmsg")

Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
Line numbering ("-l")

Line numbers where errors occur are included in the output messages.
Expand attributes defaults ("-expand")

Specifies whether or not the attributes defined in the associated DTD or XML Schema are expanded in the
output of the transformation you are executing.

DTD validation of the source ("-dtd")
Specifies whether or not the source document will be validated against their associated DTD. You can choose
from the following:

• On - Requests DTD validation of the source file and of any files read using the document() function.
• Off - (default setting) Suppresses DTD validation.
• Recover - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for validation, since DTDs can contain
definitions of entities.

Recoverable errors ("-warnings")
Allows you to choose how dynamic errors are handled. The following options can be selected:

Transforming Documents 672

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition
(EE) only:
Register Saxon-CE extension functions and instructions

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using the Saxon
9.7.0.15 processors.

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will
use Oxygen XML Developer only for developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's website.

Allow calls on extension functions ("-ext")
If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on integrated
extension functions, including Saxon and EXSLT extension functions. This option is useful when loading
an untrusted stylesheet (such as from a remote site using http://[URL]). It ensures that the stylesheet
cannot call arbitrary Java methods and thus gain privileged access to resources on your machine.

Enable assertions ("-ea")
In XSLT 3.0, you can use the xsl:assert element to make assertions in the form of XPath expressions, causing
a dynamic error if the assertion turns out to be false. If this option is selected, XSLT 3.0 xsl:assert
instructions are enabled. If it is not selected (default), the assertions are ignored.

Saxon-EE Options

The advanced options that are specific for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
XML Schema version

Use this option to change the default XML Schema version for this transformation. To change the default
XML Schema version globally, open the Preferences dialog box (Options > Preferences) and go to XML > XML
Parser > XML Schema and use the Default XML Schema version option.

Validation of the source file ("-val")
Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

Transforming Documents 673

http://www.saxonica.com/ce/index.xml

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Enable streaming mode
Selecting this option will allow an XSLT to run in streaming mode. It is not selected by default.

Other Options

Initializer class
Equivalent to the -init Saxon command-line argument. The value is the name of a user-supplied class
that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the
initialization process, and may be used to set any options required on the configuration programmatically. It
is particularly useful for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform initialization when
running user application code.

FO Processor Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:
Perform FO Processing

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external
engine defined in Preferences) during the transformation.

Input
Choose between the following options to specify which input file to use:

• XSLT result as input - The FO processor is applied to the result of the XSLT transformation that is defined
in the XSLT tab.

• XML URL as input - The FO processor is applied to the input XML file.

Method
The output format of the FO processing. The available options depend on the selected processor type.

Processor
Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or
an external processor.

Output Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

Prompt for file
At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of
the file that stores the transformation result.

Transforming Documents 674

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc

Save As
The path of the file where the result of the transformation is stored. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in Browser/System Application
If selected, Oxygen XML Developer automatically opens the result of the transformation in a system
application associated with the file type of the result (for example, in Windows PDF files are often opened in
Acrobat Reader).

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences >
Global, and set it in the Default Internet browser field.

• Output file - When Open in Browser/System Application is selected, you can use this button to
automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can use this option to open
the file specified in this field at the end of the transformation. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in editor
When this is option is selected, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the
built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Show in results view as
You can choose to view the results in one of the following:

• XML - If this is selected, Oxygen XML Developer displays the transformation result in an XML viewer panel
at the bottom of the application window with syntax highlighting.

• SVG - If this is selected, Oxygen XML Developer displays the transformation result in an integrated SVG
viewer in the Results panel at the bottom of the application window and renders the result as an SVG
image.

• XHTML - This option is only available if Open in Browser/System Application is not selected. If selected,
Oxygen XML Developer displays the transformation result in a built-in XHTML browser panel at the bottom
of the application window.

Important: When transforming very large documents, you should be aware that selecting this option
may result in very long processing times. This drawback is due to the built-in Java XHTML browser
implementation. To avoid delays for large documents, if you want to see the XHTML result of the
transformation, you should use an external browser by selecting the Open in Browser/System Application
option instead.

• Image URLs are relative to - If Show in results view as XHTML is selected, this option specifies the
path used to resolve image paths contained in the transformation result. You can specify the path by
using the text field, the Insert Editor Variables button, or the Browse button.

XML Transformation with XQuery
This type of transformation specifies the transform parameters and location of an XQuery file that is applied to
the edited XML document.

Use the XML transformation with XQuery scenario to apply a transformation in which an XQuery file queries an
XML file for the output results.

To create an XML transformation with XQuery scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select XML
transformation with XQuery.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the
toolbar or the Document > Transformation menu. Then click the New button and select XML transformation
with XQuery.

Transforming Documents 675

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XML transformation with XQuery.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XQuery Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XQuery tab contains the following options:
XML URL

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the
Insert Editor Variables button, or the browsing tools in the Browse drop-down list. You can also use the
Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog

resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote
location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver.

XQuery URL
Specifies the source XQuery file to be used for the transformation. You can specify the path by using the text
field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-
down list. You can also use the Open in editor button to open the specified file in the editor panel. This URL
is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used
directly from its remote location.

Transformer
This drop-down menu presents all the transformation engines available to Oxygen XML Developer for
performing a transformation. These include the built-in engines and the external engines defined in the
Custom Engines preferences page. The engine you choose is used as the default transformation engine. Also,
if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is
used in the validation process (if it provides validation support).

Advanced options
Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current transformation
scenario. To configure the same options globally, go to the Saxon-HE/PE/EE preferences page. For the current
transformation scenario, these Advanced options override the options configured in that preferences page.

Parameters
Opens the Configure parameters dialog box for configuring the XQuery parameters. You can use the buttons
in this dialog box to add, edit, or remove parameters. If the XQuery transformation engine is custom-defined,
you can not use this dialog box to set parameters. Instead, you can copy all parameters from the dialog box

Transforming Documents 676

using contextual menu actions and edit the custom XQuery engine to include the necessary parameters in the
command line that starts the transformation process.

Extensions
Opens a dialog box for configuring the XQuery extension JARS or classes that define extension Java functions
or extension XSLT elements used in the transformation.

XQuery Parameters

The global parameters of the XQuery file used in a transformation scenario can be configured by using the
Parameters button in the XQuery tab.

The resulting dialog box includes a table that displays all the parameters of the current XQuery file, along with
their descriptions and current values. You can also add, edit, and remove parameters, and use the Filter text box
to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with
their name in bold.

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the
XQuery transformation.

Example:

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XQuery file location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations: doc('${cfdu}/test.xml')//
*

2. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

New
Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable
can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is
selected, the parameter will be evaluated as an XPath expression.

Edit
Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable can be
inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected,
the parameter will be evaluated as an XPath expression.

Unset
Resets the selected parameter to its default value. Available only for edited parameters with set values.

Delete
Removes the selected parameter from the list. It is available only for new parameters that have been added to
the list.

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related Information:
Editor Variables on page 147

XQuery Extensions

The Extensions button is used to specify the JAR and classes that contain extension functions called from the
XQuery file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure
the extensions.

Transforming Documents 677

An extension function called from the XQuery file of the current transformation scenario will be searched, in the
specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to
be moved and press the Move up or Move down buttons.

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon
HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as
those in the Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options
for each transformation scenario, while the values set in the preferences page apply as global options. The
advanced options configured in a transformation scenario override the global options defined in the preferences
page.

The advanced options for Saxon 9.7.0.15 Home Edition (HE), Professional Edition (PE), and Enterprise Edition
(EE) are as follows:
Recoverable errors ("-warnings")

Allows you to choose how dynamic errors are handled. The following options can be selected:

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Use linked tree model ("-tree:linked")
This option activates the linked tree model.

Enable XQuery 3.0 support ("-qversion:(1.0|3.0)")
If selected (default value), Saxon runs the XQuery transformation with the XQuery 3.0 support.

Initializer class
Equivalent to the -init Saxon command-line argument. The value is the name of a user-supplied class
that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the
initialization process, and may be used to set any options required on the configuration programmatically. It
is particularly useful for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform initialization when
running user application code.

The following advanced options are specific for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition
(EE) only:
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is used for XQuery transformation and validation scenarios.

Transforming Documents 678

Allow calls on extension functions ("-ext")
If selected, calls on external functions are allowed. Selecting this option is recommended in an environment
where untrusted stylesheets may be executed. It also disables user-defined extension elements and the
writing of multiple output files, both of which carry similar security risks.

The advanced options that are specific for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Enable XQuery update ("-update:(on|off)")
This option controls whether or not XQuery update syntax is accepted. The default value is off.

Backup files updated by XQuery ("-backup:(on|off)")
If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is
available when the Enable XQuery update option is selected.

FO Processor Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:
Perform FO Processing

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external
engine defined in Preferences) during the transformation.

Input
Choose between the following options to specify which input file to use:

• XQuery result as input - The FO processor is applied to the result of the XQuery transformation that is
defined in the XQuery tab.

• XML URL as input - The FO processor is applied to the input XML file.

Method
The output format of the FO processing. The available options depend on the selected processor type.

Processor
Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or
an external processor.

Transforming Documents 679

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc

Output Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:
Present as a sequence

Selecting this option will reduce the time necessary to fetch the full results, as it will only fetch the first chunk
of the results.

Prompt for file
At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of
the file that stores the transformation result.

Save As
The path of the file where the result of the transformation is stored. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in Browser/System Application
If selected, Oxygen XML Developer automatically opens the result of the transformation in a system
application associated with the file type of the result (for example, in Windows PDF files are often opened in
Acrobat Reader).

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences >
Global, and set it in the Default Internet browser field.

• Output file - When Open in Browser/System Application is selected, you can use this button to
automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can use this option to open
the file specified in this field at the end of the transformation. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in editor
When this is option is selected, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the
built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Show in results view as
You can choose to view the results in one of the following:

• XML - If this is selected, Oxygen XML Developer displays the transformation result in an XML viewer panel
at the bottom of the application window with syntax highlighting.

• SVG - If this is selected, Oxygen XML Developer displays the transformation result in an integrated SVG
viewer in the Results panel at the bottom of the application window and renders the result as an SVG
image.

• XHTML - This option is only available if Open in Browser/System Application is not selected. If selected,
Oxygen XML Developer displays the transformation result in a built-in XHTML browser panel at the bottom
of the application window.

Important: When transforming very large documents, you should be aware that selecting this option
may result in very long processing times. This drawback is due to the built-in Java XHTML browser
implementation. To avoid delays for large documents, if you want to see the XHTML result of the
transformation, you should use an external browser by selecting the Open in Browser/System Application
option instead.

• Image URLs are relative to - If Show in results view as XHTML is selected, this option specifies the
path used to resolve image paths contained in the transformation result. You can specify the path by
using the text field, the Insert Editor Variables button, or the Browse button.

Transforming Documents 680

DITA OT Transformation
This type of transformation specifies the parameters for an Ant transformation that executes a DITA-OT build
script. Oxygen XML Developer includes a built-in version of Ant and a built-in version of DITA-OT, but other
versions can be set in the scenario.

To create a DITA OT Transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select DITA OT
Transformation.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select DITA OT
Transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select DITA OT Transformation.

All three methods open the DITA Transformation Type dialog box that presents the list of possible outputs.

Figure 345: DITA Transformation Type Dialog Box

Select the desired type of output and click OK. This opens the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

Transforming Documents 681

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation. Some of these tabs are only available for certain output types (for example, a Skins tab is only
available for WebHelp Classic and WebHelp Classic with Feedback output types, a Templates tab is available
only for WebHelp Responsive and WebHelp Responsive with Feedback, and a FO Processor tab is available for
PDF output).

Skins Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Skins tab is available for DITA OT transformations with WebHelp Classic or WebHelp Classic with Feedback
output types and it provides a set of predefined skins that you can use as a base for your WebHelp system
output.

A skin is a collection of CSS properties that can alter the look of the output by changing colors, font types,
borders, margins, and paddings. This allows you to rapidly adapt the look and feel of your output.

Figure 346: Skins Tab

The Skins tab includes the following sections:
Predefined Skins

This sections presents the predefined skins that are included in Oxygen XML Developer. The predefined skins
cover a wide range of chromatic themes, ranging from a very light one to a high-contrast variant. To see how
the skin looks when applied on a sample documentation project that is stored on the Oxygen XML Developer
website, press the Online preview link.

Custom Skins
You can use this section to customize the look of the output.

CSS File
You can set this field to point to a custom CSS stylesheet or customized skin. A custom CSS file will
overwrite a skin selection.

Note: The output can also be styled by setting the args.css parameter in the Parameters tab. The
properties taken from the stylesheet referenced in this parameter take precedence over the properties
declared in the skin set in the Skins tab.

Create custom skin
Use this link to open the WebHelp Skin Builder tool.

Transforming Documents 682

Templates Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Templates tab is available for DITA OT transformations with WebHelp Responsive or WebHelp Responsive
with Feedback output types and it provides a set of predefined skins that you can use as a base for the layout of
your WebHelp system output.

A skin is a collection of CSS properties that can alter the look of the output by changing colors, font types,
borders, margins, and paddings. This allows you to rapidly adapt the look and feel of your output. You can choose
predefined skins in a tile style of layout or a tree style of layout, and you can also add your own customized skins.

Figure 347: Templates Tab

The Templates tab comes by default with the following predefined collections of skins:
Tiles

This sections presents the predefined skins that are arranged in a tiles style of layout. These predefined skins
include a variety of themes, ranging from a very light one to a high-contrast variant, and various styles. If you
select Choose custom skin, you can select a custom CSS stylesheet to be used as your template.

Tree
This sections presents the predefined skins that are arranged in a tree style of layout. These predefined skins
include a variety of themes, ranging from a very light one to a high-contrast variant, and various styles. If you
select Choose custom skin, you can select a custom CSS stylesheet to be used as your template.

When you add a new collection of skins, this tab will list them.

FO Processor Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab is available for DITA OT transformations with a PDF output type.

Transforming Documents 683

This tab allows you to select an FO Processor to be used for the transformation.

Figure 348: FO Processor Configuration Tab

You can choose one of the following processors:
Apache FOP

The default processor that comes bundled with Oxygen XML Developer.
XEP

The RenderX XEP processor. If XEP is already installed, Oxygen XML Developer displays the detected
installation path under the drop-down menu. XEP is considered installed if it was detected in one of the
following sources:

• XEP was configured as an external FO Processor in the FO Processors option page.
• The system property com.oxygenxml.xep.location was set to point to the XEP executable file for the

platform (for example: xep.bat on Windows).
• XEP was installed in the DITA-OT-DIR/plugins/org.dita.pdf2/lib directory of the Oxygen XML

Developer installation directory.

Antenna House
The Antenna House (AH Formatter) processor. If Antenna House is already installed, Oxygen XML
Developerdisplays the detected installation path under the drop-down menu. Antenna House is considered
installed if it was detected in one of the following sources:

• Environment variable set by Antenna House installation (the newest installation version will be used).
• Antenna House was added as an external FO Processor in the Oxygen XML Developer preferences pages.

To further customize the PDF output obtained from the Antenna House processor, follow these steps:

1. Edit the transformation scenario.
2. Open the Parameters tab.
3. Add the env.AXF_OPT parameter and point to the Antenna House configuration file.

Related Information:
FO Processors Preferences on page 107
XSL-FO Processors

Parameters Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab allows you to configure the parameters sent to the DITA-OT build file.

The table in this tab displays all the parameters that the DITA-OT documentation specifies as available for each
chosen type of transformation (for example, XHTML or PDF), along with their description and current values.

Transforming Documents 684

http://www.renderx.com/
http://www.antennahouse.com/

You can find more information about each parameter in the DITA OT Documentation. You can also add, edit, and
remove parameters, and you can use the text box to filter or search for a specific term in the entire parameters
collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

• A simple text field for simple parameter values.
• A combo box with some predefined values.
• A file chooser and an editor variable selector to simplify setting a file path as the value of a parameter.

Note: To input parameter values at runtime, use the ask editor variable in the Value column.

Below the table, the following actions are available for managing parameters:

New
Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can specify the
Value of the parameter by using the Insert Editor Variables button or the Browse button.

Unset
Resets the selected parameter to its default value. Available only for edited parameters with set values.

Edit
Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter or its
description.

Delete
Removes the selected parameter from the list. It is available only for new parameters that have been added to
the list.

Related Information:
DITA Open Toolkit Documentation

Filters Tab (DITA Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Filters tab allows you to add filters to remove certain content elements from the generated output.

You can choose one of the following options to define filters:
Use DITAVAL file

If you already have a DITAVAL file associated with the DITA map, you can specify the file to be used when
filtering content. You can specify the path by using the text field, its history drop-down, the Insert Editor
Variables button, or the browsing tools in the Browse drop-down list. You can find out more about
constructing a DITAVAL file in the DITA Documentation.

Attention: If a filter file is specified in the args.filter parameter (in the Parameters tab), that file
takes precedence over a DITAVAL file specified here.

Exclude from output all elements with any of the following attributes

By using the New, Edit, or Delete buttons at the bottom of the pane, you can configure a list of
attributes (name and value) to exclude all elements that contain any of these attributes from the output.

Advanced Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Advanced tab allows you to specify advanced options for the transformation scenario.

Transforming Documents 685

http://www.dita-ot.org/
http://www.dita-ot.org/
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/ditaval-elements.html

Figure 349: Advanced Settings Tab

You can specify the following parameters:
Custom build file

If you use a custom DITA-OT build file, you can specify the path to the customized build file. If empty, the
build.xml file from the dita.dir parameter that is configured in the Parameters tab is used. You can specify
the path by using the text field, the Insert Editor Variables button, or the Browse button.

Build target
Optionally, you can specify a build target for the build file. If no target is specified, the default init target is
used.

Additional arguments
You can specify additional command line arguments to be passed to the transformation (such as -verbose).

Ant Home
You can choose between the default or custom Ant installation to run the transformation. The default path
can be configured in the Ant preferences page.

Java Home
You can choose between the default or custom Java installation to run the transformation. The default path is
the Java installation that is used by Oxygen XML Developer.

Note: It may be possible that the used Java version is incompatible with the DITA Open Toolkit engine. For
example, DITA OT 1.8 and older requires Java 1.6 or later, while DITA OT 2.0 and newer requires Java 1.7 or
newer. Thus, if you encounter related errors running the transformation, consider installing a Java VM that is
supported by the DITA OT publishing engine and using it in the Java Home text field.

JVM Arguments
This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant. For example,
if it is set to -Xmx384m, the transformation process is allowed to use 384 megabytes of memory. When
performing a large transformation, you may want to increase the memory allocated to the Java Virtual
Machine. This will help avoid Out of Memory error messages (OutOfMemoryError).

Transforming Documents 686

Libraries
By default, Oxygen XML Developer adds libraries (as high priority) that are not transformation-dependent and
also patches for certain DITA Open Toolkit bugs. You can use this button to specify additional libraries (JAR
files or additional class paths) to be used by the Ant transformer.

Tip: You can specify the path to the additional libraries using wildcards (for example, ${oxygenHome}/
lib/*.jar).

Output Tab (DITA OT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab allows you to configure options that are related to the location where the output is generated.

Figure 350: Output Settings Tab

You can specify the following parameters:
Base directory

All the relative paths that appear as values in parameters are considered relative to the base directory. The
default value is the directory where the transformed map is located. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Temporary files directory
This directory is used to store pre-processed temporary files until the final output is obtained. You can specify
the path by using the text field, the Insert Editor Variables button, or the Browse button.

Output directory
The folder where the content of the final output is stored. You can specify the path by using the text field, the

Insert Editor Variables button, or the Browse button.

Note: If the DITA map or topic is opened from a remote location or a ZIP file, the parameters must specify
absolute paths.

Transforming Documents 687

Open in Browser/System Application
If selected, Oxygen XML Developer automatically opens the result of the transformation in a system
application associated with the file type of the result (for example, in Windows PDF files are often opened in
Acrobat Reader).

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences >
Global, and set it in the Default Internet browser field.

• Output file - When Open in Browser/System Application is selected, you can use this button to
automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can use this option to open
the file specified in this field at the end of the transformation. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in editor
When this is option is selected, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the
built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Troubleshooting DITA Transformation Errors

If a DITA transformation results in errors or warnings, the information is displayed in the message panel at the
bottom of the editor. The information includes the severity, description of the problem, the name of the resource,
and the path of the resource.

To help prevent and solve DITA transformation problems, follow these steps:

1. Validate your DITA documents by using the Validate action from the Validation toolbar drop-down
menu, the Document > Validate menu, or from the Validate menu when invoking the contextual menu in the
Project view.

2. If this action results in validation errors, solve them prior to executing the transformation. Also, you should pay
attention to the warning messages because they may identify problems in the transformation.

3. Run the DITA transformation scenario.
4. If the transformation results in errors or warnings, they are displayed in the Results panel at the bottom of the

editor. The following information is presented to help you troubleshoot the problems:

• Severity - The first column displays the following icons that indicate the severity of the problem:

• Informational - The transformation encountered a condition of which you should be aware.
• Warning - The transformation encountered a problem that should be corrected.
• Error - The transformation encountered a more severe problem, and the output is affected or cannot

be generated.
• Info - You can click the See More icon to open a web page that contains details about DITA-OT error

messages.
• Description - A description of the problem.
• Resource - The name of the transformation resource.
• System ID - The path of the transformation resource.

5. Use this information or other resources from the online DITA-OT community to solve the transformation
problems before re-executing the transformation scenario.

6. If you need to contact the Oxygen technical support team, they will need you to send the entire transformation
scenario execution log. To obtain it:

a. Go to the Options > Preferences > DITA preferences page and set the Show console output option to
Always.

b. Execute the transformation scenario again. The console output messages are displayed in the DITA OT
view.

c. Copy the entire log, save it in a text file, then send it to the Oxygen technical support team.
d. After your issue has been solved, go back to the Options > Preferences > DITA preferences page and set

the Show console output option to When build fails.

Transforming Documents 688

Ant Transformation
This type of transformation allows you to configure the options and parameters of an Ant build script.

An Ant transformation scenario is usually associated with an Ant build script. Oxygen XML Developer runs an Ant
transformation scenario as an external process that executes the Ant build script with the built-in Ant distribution
(Apache Ant version 1.8.2) that is included with the application, or optionally with a custom Ant distribution
configured in the scenario.

To create an Ant transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select ANT
transformation.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the
toolbar or the Document > Transformation menu. Then click the New button and select ANT transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select ANT transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

Options Tab (Ant Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Options tab allows you to specify the following options:
Working directory

The path of the current directory of the Ant external process. You can specify the path by using the text field,
the Insert Editor Variables button, or the Browse button.

Build file
The Ant script file that is the input of the Ant external process. You can specify the path by using the text field,
the Insert Editor Variables button, or the Browse button.

Build target
Optionally, you can specify a build target for the Ant script file. If no target is specified, the Ant target that is
specified as the default in the Ant script file is used.

Additional arguments
You can specify additional command line arguments to be passed to the transformation (such as -verbose).

Ant Home
You can choose between the default or custom Ant installation to run the transformation. The default path
can be configured in the Ant preferences page.

Transforming Documents 689

Java Home
You can choose between the default or custom Java installation to run the transformation. The default path is
the Java installation that is used by Oxygen XML Developer.

JVM Arguments
This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant. For example,
if it is set to -Xmx384m, the transformation process is allowed to use 384 megabytes of memory. When
performing a large transformation, you may want to increase the memory allocated to the Java Virtual
Machine. This will help avoid Out of Memory error messages (OutOfMemoryError).

Libraries
By default, Oxygen XML Developer adds libraries (as high priority) that are not transformation-dependent and
also patches for certain DITA Open Toolkit bugs. You can use this button to specify additional libraries (JAR
files or additional class paths) to be used by the Ant transformer.

Tip: You can specify the path to the additional libraries using wildcards (for example, ${oxygenHome}/
lib/*.jar).

Parameters Tab (Ant Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab allows you to configure the parameters that are accessible as Ant properties in the Ant build
script.

The table displays all the parameters that are available in the Ant build script, along with their description and
current values. You can also add, edit, and remove parameters, and use the Filter text box to search for a specific
term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

• A simple text field for simple parameter values.
• A combo box with some predefined values.
• A file chooser and an editor variable selector to simplify setting a file path as the value of a parameter.

Note: To input parameter values at runtime, use the ask editor variable in the Value column.

Below the table, the following actions are available for managing parameters:
New

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can specify the
Value of the parameter by using the Insert Editor Variables button or the Browse button.

Edit
Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter or its
description.

Delete
Removes the selected parameter from the list. It is available only for new parameters that have been added to
the list.

These parameters are also available for the built-in validation processor and the Content Completion Assistant.

Related Information:
Content Completion in Ant Build Files on page 375

Output Tab (Ant Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

Transforming Documents 690

Open
Allows you to specify the file to open automatically when the transformation is finished. This is usually the
output file of the Ant process. You can specify the path by using the text field, the Insert Editor Variables
button, or the Browse button.

• In System Application - The file specified in the Open text box is opened in the system application that is
set in the operating system as the default application for that type of file (for example, in Windows PDF
files are often opened in Acrobat Reader).

• In Editor - The file specified in the Open text box is opened in a new editor panel with the appropriate built-
in editor type (for example, if the result is an XML file it is opened in the built-in XML editor).

Show console output
Allows you to specify when to display the console output log. The following options are available:

• When build fails - displays the console output log if the build fails.
• Always - displays the console output log, regardless of whether or not the build fails.

XSLT Transformation
This type of transformation specifies the parameters and location of an XML document that the edited XSLT
stylesheet is applied on. This scenario is useful when you develop an XSLT document and the XML document is in
its final form.

To create an XSLT transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select XSLT
transformation.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the
toolbar or the Document > Transformation menu. Then click the New button and select XSLT transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XSLT transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XSLT Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XSLT tab contains the following options:
XML URL

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the
Insert Editor Variables button, or the browsing tools in the Browse drop-down list. You can also use the

Transforming Documents 691

Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog
resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote
location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver. If the transformer engine is
one of the built-in XSLT 2.0 / 3.0 engines and the name of an initial template is specified in the scenario, the XML
URL field can be empty. The XML URL field can also be empty if you use external XSLT processors. Otherwise, a
value is mandatory in this field.

XSL URL
Specifies the source XSL file that the transformation will use. You can specify the path by using the text field,
its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list. You can also use the Open in editor button to open the specified file in the editor panel. This URL is
resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used
directly from its remote location.

Use "xml-stylesheet" declaration
If selected, the scenario applies the stylesheet specified explicitly in the XML document with the xml-
stylesheet processing instruction. By default, this option is deselected and the transformation applies the
XSLT stylesheet that is specified in the XSL URL field.

Transformer
This drop-down menu presents all the transformation engines available to Oxygen XML Developer for
performing a transformation. These include the built-in engines and the external engines defined in the
Custom Engines preferences page. The engine you choose is used as the default transformation engine. Also,
if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is
used in the validation process (if it provides validation support).

Advanced options
Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current transformation
scenario. To configure the same options globally, go to the Saxon-HE/PE/EE preferences page. For the current
transformation scenario, these Advanced options override the options configured in that preferences page.

Parameters
Opens a Configure parameters dialog box that allows you to configure the XSLT parameters used in the
current transformation. In this dialog box, you can also configure the parameters for additional XSLT
stylesheets. If the XSLT transformation engine is custom-defined, you can not use this dialog box to configure
the parameters sent to the custom engine. Instead, you can copy all parameters from the dialog box using
contextual menu actions and edit the custom XSLT engine to include the necessary parameters in the
command line that starts the transformation process.

Extensions
Opens a dialog box for configuring the XSLT extension JARS or classes that define extension Java functions or
extension XSLT elements used in the transformation.

Additional XSLT stylesheets
Opens a dialog box for adding XSLT stylesheets that are applied on the main stylesheet specified in the XSL
URL field. This is useful when a chain of XSLT stylesheets must be applied to the input XML document.

XSLT Parameters

The global parameters of the XSLT stylesheet used in a transformation scenario can be configured by using the
Parameters button in the XSLT tab of a new or edited transformation scenario dialog box.

The resulting dialog box includes a table that displays all the parameters of the current XSLT stylesheet, all
imported and included stylesheets, and all additional stylesheets, along with their descriptions and current values.
You can also add, edit, and remove parameters, and you can use the Filter text box to search for a specific term in
the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the XSLT
transformation.

Example:

Transforming Documents 692

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

1. The doc function solves the argument relative to the XSL stylesheet location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations: doc('${cfdu}/test.xml')//
*

2. You cannot use XSLT Functions. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

New
Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable
can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is
selected, the parameter will be evaluated as an XPath expression.

Edit
Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable can be
inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected,
the parameter will be evaluated as an XPath expression.

Unset
Resets the selected parameter to its default value. Available only for edited parameters with set values.

Delete
Removes the selected parameter from the list. It is available only for new parameters that have been added to
the list.

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related Information:
Editor Variables on page 147

XSLT Extensions

The Extensions button is used to specify the JARS and classes that contain extension functions called from the
XSLT file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the
extensions.

Tip: You can specify the path to the resources using wildcards (for example, ${oxygenHome}/lib/*.jar).

An extension function called from the XSLT file of the current transformation scenario will be searched, in the
specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to
be moved and press the Move up or Move down buttons.

Additional XSLT Stylesheets

Use the Additional XSLT Stylesheets button in the XSLT tab to display a list of additional XSLT stylesheets to
be used in the transformation and you can add files to the list or edit existing entries. The following actions are
available:

Add
Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog box. You can type an
editor variable in the file name field of the browser dialog box. The name of the stylesheet will be added in the
list after the current selection.

Remove
Deletes the selected stylesheet from the Additional XSLT stylesheets list.

Transforming Documents 693

Open
Opens the selected stylesheet in a separate view.

Up
Moves the selected stylesheet up in the list.

Down
Moves the selected stylesheet down in the list.

Advanced Saxon HE/PE/EE XSLT Transformation Options

The XSLT transformation scenario allows you to configure advanced options that are specific for the Saxon HE
(Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as
those in the Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options
for each transformation scenario, while the values set in the preferences page apply as global options. The
advanced options configured in a transformation scenario override the global options defined in the preferences
page.

Saxon-HE/PE/EE Options

The advanced options for Saxon 9.7.0.15 Home Edition (HE), Professional Edition (PE), and Enterprise Edition
(EE) are as follows:
Mode ("-im")

A Saxon-specific option that sets the initial mode for the transformation.
Template ("-it")

A Saxon-specific option that sets the name of the initial XSLT template to be executed.
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is executed for XSLT transformation and validation processes.
Debugger trace into XPath expressions (applies to debugging sessions)

Instructs the XSLT Debugger to step into XPath expressions.
Version warnings ("-versmsg")

Warns you when the transformation is applied to an XSLT 1.0 stylesheet.
Line numbering ("-l")

Line numbers where errors occur are included in the output messages.
Expand attributes defaults ("-expand")

Specifies whether or not the attributes defined in the associated DTD or XML Schema are expanded in the
output of the transformation you are executing.

DTD validation of the source ("-dtd")
Specifies whether or not the source document will be validated against their associated DTD. You can choose
from the following:

• On - Requests DTD validation of the source file and of any files read using the document() function.
• Off - (default setting) Suppresses DTD validation.
• Recover - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for validation, since DTDs can contain
definitions of entities.

Recoverable errors ("-warnings")
Allows you to choose how dynamic errors are handled. The following options can be selected:

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

Transforming Documents 694

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition
(EE) only:
Register Saxon-CE extension functions and instructions

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using the Saxon
9.7.0.15 processors.

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will
use Oxygen XML Developer only for developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's website.

Allow calls on extension functions ("-ext")
If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on integrated
extension functions, including Saxon and EXSLT extension functions. This option is useful when loading
an untrusted stylesheet (such as from a remote site using http://[URL]). It ensures that the stylesheet
cannot call arbitrary Java methods and thus gain privileged access to resources on your machine.

Enable assertions ("-ea")
In XSLT 3.0, you can use the xsl:assert element to make assertions in the form of XPath expressions, causing
a dynamic error if the assertion turns out to be false. If this option is selected, XSLT 3.0 xsl:assert
instructions are enabled. If it is not selected (default), the assertions are ignored.

Saxon-EE Options

The advanced options that are specific for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
XML Schema version

Use this option to change the default XML Schema version for this transformation. To change the default
XML Schema version globally, open the Preferences dialog box (Options > Preferences) and go to XML > XML
Parser > XML Schema and use the Default XML Schema version option.

Validation of the source file ("-val")
Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Transforming Documents 695

http://www.saxonica.com/ce/index.xml

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Enable streaming mode
Selecting this option will allow an XSLT to run in streaming mode. It is not selected by default.

Other Options

Initializer class
Equivalent to the -init Saxon command-line argument. The value is the name of a user-supplied class
that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the
initialization process, and may be used to set any options required on the configuration programmatically. It
is particularly useful for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform initialization when
running user application code.

FO Processor Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:
Perform FO Processing

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external
engine defined in Preferences) during the transformation.

Input
Choose between the following options to specify which input file to use:

• XSLT result as input - The FO processor is applied to the result of the XSLT transformation that is defined
in the XSLT tab.

• XML URL as input - The FO processor is applied to the input XML file.

Method
The output format of the FO processing. The available options depend on the selected processor type.

Processor
Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or
an external processor.

Output Tab (XSLT Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:

Prompt for file
At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of
the file that stores the transformation result.

Save As
The path of the file where the result of the transformation is stored. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Transforming Documents 696

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc

Open in Browser/System Application
If selected, Oxygen XML Developer automatically opens the result of the transformation in a system
application associated with the file type of the result (for example, in Windows PDF files are often opened in
Acrobat Reader).

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences >
Global, and set it in the Default Internet browser field.

• Output file - When Open in Browser/System Application is selected, you can use this button to
automatically open the default output file at the end of the transformation.

• Other location - When Open in Browser/System Application is selected, you can use this option to open
the file specified in this field at the end of the transformation. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in editor
When this is option is selected, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the
built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Show in results view as
You can choose to view the results in one of the following:

• XML - If this is selected, Oxygen XML Developer displays the transformation result in an XML viewer panel
at the bottom of the application window with syntax highlighting.

• SVG - If this is selected, Oxygen XML Developer displays the transformation result in an integrated SVG
viewer in the Results panel at the bottom of the application window and renders the result as an SVG
image.

• XHTML - This option is only available if Open in Browser/System Application is not selected. If selected,
Oxygen XML Developer displays the transformation result in a built-in XHTML browser panel at the bottom
of the application window.

Important: When transforming very large documents, you should be aware that selecting this option
may result in very long processing times. This drawback is due to the built-in Java XHTML browser
implementation. To avoid delays for large documents, if you want to see the XHTML result of the
transformation, you should use an external browser by selecting the Open in Browser/System Application
option instead.

• Image URLs are relative to - If Show in results view as XHTML is selected, this option specifies the
path used to resolve image paths contained in the transformation result. You can specify the path by
using the text field, the Insert Editor Variables button, or the Browse button.

XProc Transformation
This type of transformation specifies the parameters and location of an XProc script.

A sequence of transformations described by an XProc script can be executed with an XProc transformation
scenario. To create an XProc transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select XProc
transformation.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the
toolbar or the Document > Transformation menu. Then click the New button and select XProc transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XProc transformation.

Transforming Documents 697

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XProc Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XProc tab contains the following options:
XProc URL

Specify the source XSL file to be used by the transformation. You can specify the path by using the text field,
its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down
list. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the
file is used directly from its remote location.

Processor
Allows you to select the XProc engine to be used for the transformation. You can select the built-in Calabash
engine or a custom engine that is configured in the Preferences dialog box.

Inputs Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Inputs tab contains a list with the ports that the XProc script uses to read input data. Use the Filter text box
to search for a specific term in the entire ports collection.

Each input port has an assigned name in the XProc script. The XProc engine reads data from the URL specified in
the URL column.

The following actions are available for managing the input ports:
New

Opens an Edit dialog box that allows you to add a new port and its URL. The built-in editor variables and
custom editor variables can be used to specify the URL.

Edit
Opens an Edit dialog box that allows you to modify the selected port and its URL. The built-in editor variables
and custom editor variables can be used to specify the URL.

Delete
Removes the selected port from the list. It is available only for new ports that have been added to the list.

Parameters Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Parameters tab presents a list of ports and parameters collected from the XProc script. The tab is divided
into three sections:
List of Ports

In this section, you can use the New and Delete buttons to add or remove ports.
List of Parameters

This section presents a list of parameters for each port and includes columns for the parameter name,
namespace URI, and its value. Use the Filter text box to search for a specific term in the entire parameters

Transforming Documents 698

collection. You can use the New and Delete buttons to add or remove parameters. You can edit the value of
each cell in this table by double-clicking the cell. You can also sort the parameters by clicking the column
headers.

Editor Variable Information
The built-in editor variables and custom editor variables can be used for specifying the URI. The message pane
at the bottom of the dialog box provides more information about the editor variables that can be used.

Outputs Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Outputs tab displays a list of output ports (along with the URL) collected from the XProc script. Use the Filter
text box to search for a specific term in the entire ports collection. You can also sort the columns by clicking the
column headers.

The following actions are available for managing the output ports:
New

Opens an Edit dialog box that allows you to add a new output port and its URL. An editor variable can be
inserted for the URL by using the Insert Editor Variables button. There is also a Show in transformation
results view option that allows you to select whether or not the results will be displayed in the output Results
view.

Edit
Opens an Edit dialog box that allows you to edit an existing output port and its URL. An editor variable can
be inserted for the URL by using the Insert Editor Variables button. There is also a Show in transformation
results view option that allows you to select whether or not the results will be displayed in the output Results
view.

Delete
Removes the selected output port from the list. It is available only for new ports that have been added to the
list.

Additional options that are available at the bottom of this tab include:
Open in Editor

If this option is selected, the XProc transformation result is automatically opened in an editor panel.
Open in Browser/System Application

If this option is selected, you can specify a file to be opened at the end of the XProc transformation in the
browser or system application that is associated with the file type. You can specify the path by using the text
field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-
down list.

Results

The result of the XProc transformation can be displayed as a sequence in an output view with two sections:

• A list with the output ports on the left side.
• The content that correspond to the selected output port on the right side.

Figure 351: XProc Transformation Results View

Transforming Documents 699

Options Tab (XProc Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Options tab displays a list of the options collected from the XProc script. The tab is divided into two sections:
List of Options

This section presents a list of options and includes columns for the option name, namespace URI, and its
value. Use the Filter text box to search for a specific term in the entire options collection. You can use the
New and Delete buttons to add or remove options. You can edit the value of each cell in this table by double-
clicking the cell. You can also sort the parameters by clicking the column headers. The names of edited
options are displayed in bold.

Editor Variable Information
The built-in editor variables and custom editor variables can be used for specifying the URI. This section
provides more information about the editor variables that can be used.

XQuery Transformation
This type of transformation specifies the parameters and location of an XML source that the edited XQuery file is
applied on.

Note: When the XML source is a native XML database, the source field of the scenario is empty because the XML
data is read with XQuery-specific functions, such as document(). When the XML source is a local XML file, the
URL of the file is specified in the input field of the scenario.

To create an XQuery transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select XQuery
transformation.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select XQuery
transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select XQuery transformation.

All three methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following
Storage options:

• Project Options - The scenario is stored in the project file and can be shared with other users. For example, if
your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder,
your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and is
not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the
transformation.

XQuery Tab

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The XQuery tab contains the following options:

Transforming Documents 700

XML URL
Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the

Insert Editor Variables button, or the browsing tools in the Browse drop-down list. You can also use the
Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog

resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote
location.

Note: If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon
preferences page, the XML input of the transformation is passed to that URI resolver.

XQuery URL
Specifies the source XQuery file to be used for the transformation. You can specify the path by using the text
field, its history drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-
down list. You can also use the Open in editor button to open the specified file in the editor panel. This URL
is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used
directly from its remote location.

Transformer
This drop-down menu presents all the transformation engines available to Oxygen XML Developer for
performing a transformation. These include the built-in engines and the external engines defined in the
Custom Engines preferences page. The engine you choose is used as the default transformation engine. Also,
if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is
used in the validation process (if it provides validation support).

Advanced options
Allows you to configure the advanced options of the Saxon HE/PE/EE engine for the current transformation
scenario. To configure the same options globally, go to the Saxon-HE/PE/EE preferences page. For the current
transformation scenario, these Advanced options override the options configured in that preferences page.

Parameters
Opens the Configure parameters dialog box for configuring the XQuery parameters. You can use the buttons
in this dialog box to add, edit, or remove parameters. If the XQuery transformation engine is custom-defined,
you can not use this dialog box to set parameters. Instead, you can copy all parameters from the dialog box
using contextual menu actions and edit the custom XQuery engine to include the necessary parameters in the
command line that starts the transformation process.

Extensions
Opens a dialog box for configuring the XQuery extension JARS or classes that define extension Java functions
or extension XSLT elements used in the transformation.

XQuery Parameters

The global parameters of the XQuery file used in a transformation scenario can be configured by using the
Parameters button in the XQuery tab.

The resulting dialog box includes a table that displays all the parameters of the current XQuery file, along with
their descriptions and current values. You can also add, edit, and remove parameters, and use the Filter text box
to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with
their name in bold.

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the
XQuery transformation.

Example:

For example, you can use expressions such as:

doc('test.xml')//entry
//person[@atr='val']

Note:

Transforming Documents 701

1. The doc function solves the argument relative to the XQuery file location. You can use full paths or editor
variables (such as ${cfdu} [current file directory]) to specify other locations: doc('${cfdu}/test.xml')//
*

2. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

New
Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable
can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is
selected, the parameter will be evaluated as an XPath expression.

Edit
Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable can be
inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected,
the parameter will be evaluated as an XPath expression.

Unset
Resets the selected parameter to its default value. Available only for edited parameters with set values.

Delete
Removes the selected parameter from the list. It is available only for new parameters that have been added to
the list.

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related Information:
Editor Variables on page 147

XQuery Extensions

The Extensions button is used to specify the JAR and classes that contain extension functions called from the
XQuery file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure
the extensions.

An extension function called from the XQuery file of the current transformation scenario will be searched, in the
specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to
be moved and press the Move up or Move down buttons.

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon
HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as
those in the Saxon HE/PE/EE preferences page but they are configured as a specific set of transformation options
for each transformation scenario, while the values set in the preferences page apply as global options. The
advanced options configured in a transformation scenario override the global options defined in the preferences
page.

The advanced options for Saxon 9.7.0.15 Home Edition (HE), Professional Edition (PE), and Enterprise Edition
(EE) are as follows:
Recoverable errors ("-warnings")

Allows you to choose how dynamic errors are handled. The following options can be selected:

• Recover silently ("silent") - Continues processing without reporting the error.
• Recover with warnings ("recover") - Issues a warning but continues processing.
• Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")
Allows you to choose how the strip whitespaces operation is handled. You can choose one of the following
values:

Transforming Documents 702

• All ("all") - Strips all whitespace text nodes from source documents before any further processing,
regardless of any xml:space attributes in the source document.

• Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further
processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are
ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• None ("none") - Strips no whitespace before further processing.

Optimization level ("-opt")
Allows you to set the optimization level. It is the value is an integer in the range of 0 (no optimization) to
10 (full optimization). This option allows optimization to be suppressed when reducing the compiling time
is important, optimization conflicts with debugging, or optimization causes extension functions with side-
effects to behave unpredictably.

Use linked tree model ("-tree:linked")
This option activates the linked tree model.

Enable XQuery 3.0 support ("-qversion:(1.0|3.0)")
If selected (default value), Saxon runs the XQuery transformation with the XQuery 3.0 support.

Initializer class
Equivalent to the -init Saxon command-line argument. The value is the name of a user-supplied class
that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the
initialization process, and may be used to set any options required on the configuration programmatically. It
is particularly useful for tasks such as registering extension functions, collations, or external object models,
especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer
when running from the command line, but the same code may be invoked to perform initialization when
running user application code.

The following advanced options are specific for Saxon 9.7.0.15 Professional Edition (PE) and Enterprise Edition
(EE) only:
Use a configuration file ("-config")

Sets a Saxon 9.7.0.15 configuration file that is used for XQuery transformation and validation scenarios.
Allow calls on extension functions ("-ext")

If selected, calls on external functions are allowed. Selecting this option is recommended in an environment
where untrusted stylesheets may be executed. It also disables user-defined extension elements and the
writing of multiple output files, both of which carry similar security risks.

The advanced options that are specific for Saxon 9.7.0.15 Enterprise Edition (EE) are as follows:
Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar
functions. It can have the following values:

• Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source
documents with strict schema-validation enabled.

• Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source
documents with schema-validation enabled but the validation will not fail if, for example, element
declarations are not found.

• Disable schema validation - This specifies that the source documents should be parsed with schema-
validation disabled.

Validation errors in the result tree treated as warnings ("-outval")
Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes
such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result
document itself.

Transforming Documents 703

Generate bytecode ("--generateByteCode:(on|off)")
If you select this option, Saxon-EE attempts to generate Java bytecode for evaluation of parts of a query
or stylesheet that are amenable to such an action. For further details regarding this option, go to http://
www.saxonica.com/documentation9.5/index.html#!javadoc.

Enable XQuery update ("-update:(on|off)")
This option controls whether or not XQuery update syntax is accepted. The default value is off.

Backup files updated by XQuery ("-backup:(on|off)")
If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is
available when the Enable XQuery update option is selected.

FO Processor Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:
Perform FO Processing

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external
engine defined in Preferences) during the transformation.

Input
Choose between the following options to specify which input file to use:

• XQuery result as input - The FO processor is applied to the result of the XQuery transformation that is
defined in the XQuery tab.

• XML URL as input - The FO processor is applied to the input XML file.

Method
The output format of the FO processing. The available options depend on the selected processor type.

Processor
Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or
an external processor.

Output Tab (XQuery Transformations)

When you create a new transformation scenario or edit an existing one, a configuration dialog box allows you to
customize the transformation with various options in several tabs.

The Output tab contains the following options:
Present as a sequence

Selecting this option will reduce the time necessary to fetch the full results, as it will only fetch the first chunk
of the results.

Prompt for file
At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of
the file that stores the transformation result.

Save As
The path of the file where the result of the transformation is stored. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in Browser/System Application
If selected, Oxygen XML Developer automatically opens the result of the transformation in a system
application associated with the file type of the result (for example, in Windows PDF files are often opened in
Acrobat Reader).

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences >
Global, and set it in the Default Internet browser field.

• Output file - When Open in Browser/System Application is selected, you can use this button to
automatically open the default output file at the end of the transformation.

Transforming Documents 704

http://www.saxonica.com/documentation9.5/index.html#!javadoc
http://www.saxonica.com/documentation9.5/index.html#!javadoc

• Other location - When Open in Browser/System Application is selected, you can use this option to open
the file specified in this field at the end of the transformation. You can specify the path by using the text
field, the Insert Editor Variables button, or the Browse button.

Open in editor
When this is option is selected, at the end of the transformation, the default output file is opened in a new
editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the
built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

Show in results view as
You can choose to view the results in one of the following:

• XML - If this is selected, Oxygen XML Developer displays the transformation result in an XML viewer panel
at the bottom of the application window with syntax highlighting.

• SVG - If this is selected, Oxygen XML Developer displays the transformation result in an integrated SVG
viewer in the Results panel at the bottom of the application window and renders the result as an SVG
image.

• XHTML - This option is only available if Open in Browser/System Application is not selected. If selected,
Oxygen XML Developer displays the transformation result in a built-in XHTML browser panel at the bottom
of the application window.

Important: When transforming very large documents, you should be aware that selecting this option
may result in very long processing times. This drawback is due to the built-in Java XHTML browser
implementation. To avoid delays for large documents, if you want to see the XHTML result of the
transformation, you should use an external browser by selecting the Open in Browser/System Application
option instead.

• Image URLs are relative to - If Show in results view as XHTML is selected, this option specifies the
path used to resolve image paths contained in the transformation result. You can specify the path by
using the text field, the Insert Editor Variables button, or the Browse button.

SQL Transformation
This type of transformation specifies a database connection for the database server that runs the SQL file
associated with the scenario. The data processed by the SQL script is located in the database.

To create an SQL transformation scenario, use one of the following methods:

• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu. Then click the New button and select SQL
transformation.

• Use the Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X)) action from the
toolbar or the Document > Transformation menu. Then click the New button and select SQL transformation.

Note: If a scenario is already associated with the edited document, selecting Apply Transformation
Scenario(s) runs the associated scenario automatically. You can check to see if transformation scenarios
are associated with the edited document by hovering your cursor over the Apply Transformation Scenario
button.

• Go to Window > Show View and select Transformation Scenarios to display this view. Click the New button
and select SQL transformation.

All three methods open the New Scenario dialog box. This dialog box allows you to configure the following
options that control the transformation:
Name

The unique name of the SQL transformation scenario.
Storage

Allows you to select one of the following storage options:

Transforming Documents 705

• Project Options - The scenario is stored in the project file and can be shared with other users. For example,
if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared
folder, your team can use the scenarios that you store in the project file.

• Global Options - The scenario is saved in the global options that are stored in the user home directory and
is not accessible to other users.

SQL URL
Allows you to specify the URL of the SQL script. You can specify the path by using the text field, its history
drop-down, the Insert Editor Variables button, or the browsing tools in the Browse drop-down list. You
can also use the Open in editor button to open the specified file in the editor panel.

Connection

Allows you to select a connection from a drop-down list. To configure a connection, use the Advanced
options button to open the Data Source preferences page.

Parameters
Allows you to add or configure parameters for the transformation.

Editing a Transformation Scenario
Editing a transformation scenario is useful if you need to configure some of its parameters.

Note: Since transformation scenarios that are associated with predefined frameworks are read-only, to edit one
of these scenarios you will need to duplicate it and edit the duplicated scenario.

To configure an existing transformation scenario, follow these steps:

1. Select the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu.

Step Result: The Configure Transformation Scenario(s) dialog box is opened.
2. Select the particular transformation scenario and click the Edit button at the bottom of the dialog box or from

the contextual menu.

Tip: You could also select the scenario and the Edit button in the Transformation Scenarios view to achieve
the same result.

Result: This will open an Edit scenario configuration dialog box that allows you to configure various options in
several tabs, depending on the type of transformation scenario that was selected.

Transformation Types

The Configure Transformation Scenario(s) dialog box contains a Type column that shows you the transformation
type for each of the listed scenarios. Each type of transformation contains includes some tabs with various
configuration options.

The following is a list of the transformation types and their particular tabs (click the name of each tab below to
see details about all the options that are available):

• DITA OT - This type of transformation includes configurable options in the following tabs:

• Skins Tab (Available for WebHelp Classic and WebHelp Classic with Feedback)
• Templates Tab (Available for WebHelp Responsive and WebHelp Responsive with Feedback)
• FO Processor Tab (Available for PDF output)
• Parameters Tab
• Filters Tab
• Advanced Tab
• Output Tab

• ANT - This type of transformation includes configurable options in the following tabs:

• Options Tab
• Parameters Tab

Transforming Documents 706

• Output Tab
• XSLT - This type of transformation includes configurable options in the following tabs:

• XSLT Tab
• FO Processor Tab
• Output Tab

• XProc - This type of transformation includes configurable options in the following tabs:

• XProc Tab
• Inputs Tab
• Parameters Tab
• Outputs Tab
• Options Tab

• XQuery - This type of transformation includes configurable options in the following tabs:

• XQuery Tab
• FO Processor Tab
• Output Tab

Related Information:
Creating New Transformation Scenarios on page 669
Duplicating a Transformation Scenario on page 707
Configure Transformation Scenario(s) Dialog Box on page 707

Duplicating a Transformation Scenario
Duplicating a transformation scenario is useful for creating a scenario that is similar to an existing one or to edit
a predefined transformation scenario.

To configure an existing transformation scenario, follow these steps:

1. Select the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action
from the toolbar or the Document > Transformation menu.

Step Result: The Configure Transformation Scenario(s) dialog box is opened.
2. Select the particular transformation scenario and click the Duplicate button at the bottom of the dialog box or

from the contextual menu.

Tip: You could also select the scenario and the Duplicate button in the Transformation Scenarios view to
achieve the same result.

Result: This will open an Edit scenario configuration dialog box that allows you to configure various options in
several tabs, depending on the type of transformation scenario that was selected. For information about all the
specific options in the various tabs, see the Transformation Types section.

Related Information:
Creating New Transformation Scenarios on page 669
Editing a Transformation Scenario on page 706

Configure Transformation Scenario(s) Dialog Box
You can use the Configure Transformation Scenarios(s) dialog box for editing exiting transformation scenarios or
creating new ones.

To open this dialog box, use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C
on OS X)) action from the toolbar or the Document > Transformation menu.

Transforming Documents 707

Figure 352: Configure Transformation Scenario(s) Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the
Settings button allows you to configure the following options:
Show all scenarios

Select this option to display all the available scenarios, regardless of the document they are associated with.
Show only the scenarios available for the editor

Select this option to only display the scenarios that Oxygen XML Developer can apply for the current
document type.

Show associated scenarios
Select this option to only display the scenarios associated with the document you are editing.

Import scenarios
This option opens the Import scenarios dialog box that allows you to select the scenarios file that contains
the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario,
Oxygen XML Developer ignores it. If a conflict appears (an imported scenario has the same name as an
existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Developer adds imported to the name of the
imported scenario.

Export selected scenarios
Use this option to export selected scenarios individually. Oxygen XML Developer creates a scenarios file
that contains the scenarios that you export. This is useful if you want to share scenarios with others or export
them to another computer.

The middle section of the dialog box displays the scenarios that you can apply to the current document. You can
view both the scenarios associated with the current document type and the scenarios defined at project level. The
following columns are used to display the transformation scenarios:

• Association - The checkboxes in this column mark whether or not a transformation scenario is associated
with the current document.

• Scenario - This column presents the names of the transformation scenarios.

Transforming Documents 708

• Type - If the Show Type contextual menu option is selected, this column displays the type of the
transformation scenario. For further details about the types of transformation scenarios that are available in
Oxygen XML Developer, see the Transformation Types section.

• Storage - If the Show Storage contextual menu option is selected, this column displays where a
transformation scenario is stored.

To sort each column you can left-click its header. The contextual menu of each header also includes the following
actions:
Show Type

Use this option to display the transformation type of each scenario.
Show Storage

Use this option to display the storage location of the scenarios.
Group by Association

Select this option to group the scenarios depending on whether or not they are associated with the current
document.

Group by Type
Select this option to group the scenarios by their type.

Group by Storage
Select this option to group the scenarios by their storage location.

Ungroup all
Select this option to ungroup all the scenarios.

Reset Layout
Select this option to restore the default settings of the layout.

The bottom section of the dialog box contains the following actions:
Association follows selection

Select this checkbox to automatically associate selected transformation scenarios with the current
document. This option can also be used for multiple selections.

Note: When this option is selected, the Association column is hidden.

New
This button allows you to create a new transformation scenario.

Edit
This button opens the Edit Scenario dialog box that allows you to configure the options of the
transformations scenario. For information about all the specific options in the various tabs, see the
Transformation Types section.

Note: If you try to edit a transformation scenario associated with a defined document type, Oxygen XML
Developer displays a warning message to inform you that this is not possible and gives you the option to
create a duplicate transformation scenario to edit instead.

Duplicate
Use this button to create a duplicate transformation scenario.

Remove
Use this button to remove transformation scenarios.

Note: Removing scenarios associated with a defined document type is not allowed.

The Edit, Duplicate, and Remove actions are also available in the contextual menu of the transformation
scenarios listed in the middle section of the dialog box (along with Import scenarios and Export selected
scenarios).

This contextual menu also contains a Change storage action that allows you to change the storage location of
a transformation scenario to Project Options or Global Options. You are also able to keep the original storage
location and make a copy of the selected scenario in the new storage location.

Transforming Documents 709

Related Information:
Editing a Transformation Scenario on page 706
Duplicating a Transformation Scenario on page 707

Apply Batch Transformations
A transformation action can be applied on a batch of selected files from the contextual menu of the Project view
without having to open the files involved in the transformation. You can apply the same scenario to a batch of
files or multiple scenarios to a single file or batch of files.

1. (Optional, but recommended) Organize the files you want to transform in logical folders.
a) Create a logical folder in the Project view by using the New > Logical Folder action from the contextual

menu of the root file.
b) Add files you want to transform to the logical folder by using the Add Files or Add Edited File actions

from the contextual menu of the logical folder.

Note: You can skip this step if the files are already in a dedicated folder that does not include any
additional files or folders. You can also manually select the individual files in the Project view each time
you want to transform them, but this can be tedious.

2. Select the files you want to transform (or the newly created logical folder) and from the contextual menu,
select Transform > Configure Transformation Scenario(s) to choose one or more transformation scenarios
to be applied on all the files in the logical folder.

3. Use Oxygen XML Developer editor variables to specify the input and output files. This ensures that each file
from the selected set of resources is processed and that the output is not overwritten by the subsequent
processing.
a) Edit the transformation scenario to make sure the appropriate editor variable is assigned for the input

file. For example, for a DocBook PDF transformation make sure the XML URL input box is set to the
${currentFileURL} editor variable. For a DITA PDF transformation make sure the args.input
parameter is set to the ${cf} editor variable.

b) Edit the transformation scenario to make sure the appropriate editor variable is assigned for the output file.
For example, for an XML transformation with XSLT, switch to the Output tab and set the path of the output
file using a construct of editor variables, such as ${cfd}/${cfn}.html.

4. Now that logical folder has been associated with one or more transformation scenarios, whenever you want to
apply the same batch transformation you can select Transform > Transform with from the contextual menu
and the same previously associated scenario(s) will be applied.

5. If you want a different type of transformation to be applied to each file inside the logical folder, associate
individual scenarios for each file and select Transform > Apply Transformation Scenario(s) from the
contextual menu of the logical folder.

Related Information:
Editor Variables on page 147

Sharing Transformation Scenarios
The transformation scenarios and their settings can be shared with other users by saving them at project
level or by exporting them to a specialized scenarios file that can then be imported. When you create a new
transformation scenario or edit an existing one, there is a Storage option to control whether the scenarios are
stored in Project Options or Global Options.

Selecting Project Options stores the scenario in the project file and can be shared with other users that have
access to the project. If your project is saved on a source versioning system (CVS, SVN, Source Safe, etc.) then
your team will have access to the scenarios that you define. When you create a scenario at the project level, the
URLs from the scenario become relative to the project URL.

Selecting Global Options stores the scenario in the global options that are stored in the user home directory.

Transforming Documents 710

You can also change the storage options on existing transformation scenarios by using the Change storage
action from the contextual menu of the list of scenarios.

Related Information:
Sharing Application Settings on page 141

Transformation Scenarios View
You can manage the transformation scenarios by using the Transformation Scenarios view. To open this view,
select Window > Show View > Transformation Scenarios.

Figure 353: Transformation Scenarios view

Oxygen XML Developer supports multiple scenarios association. To associate multiple scenarios with a
document, select the checkboxes in front of each scenario. You can also associate multiple scenarios with a
document from the Configure Transformation Scenario(s) dialog box.

The Transformation Scenarios view presents both global and project-level scenarios. By default, Oxygen XML
Developer presents the items in the following order:

1. Scenarios that match the current framework.
2. Scenarios that match the current project.
3. Scenarios that match other frameworks.

Toolbar/Contextual Menu Actions and Options

The following actions and options are available on the toolbar or in the contextual menu:

Apply selected scenarios
Select this option to run the current transformation scenario.

Debug selected scenario
Select this option to switch to the Debugger perspective and initialize it with the parameters from the scenario
(the XML, XSLT, or XQuery input, the transformation engine, the XSLT parameters).

Transforming Documents 711

New
This drop-down menu contains a list of the scenarios that you can create. Oxygen XML Developer determines
the most appropriate scenarios for the current type of file and displays them at the beginning of the list,
followed by the rest of the scenarios.

Duplicate
Adds a new scenario to the list that is a duplicate of the current scenario. It is useful for creating a scenario
that is similar to an existing one.

Edit
Opens the dialog box that allows you to configure various options in several tabs, depending on the type of
transformation scenario that was selected. For information about all the specific options in the various tabs,
see the Transformation Types section.

Remove
Removes the current scenario from the list. This action is also available by using the Delete key.

Change storage
Use this option to change the storage location of the selected scenario. You are also able to keep the original
storage location and make a copy of the selected scenario in the target storage location.

Import scenarios
This option opens the Import scenarios dialog box that allows you to select the scenarios file that contains
the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario,
Oxygen XML Developer ignores it. If a conflict appears (an imported scenario has the same name as an
existing one), you can choose between two options:

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Developer adds imported to the name of the
imported scenario.

Export selected scenarios
Use this option to export transformation and validation scenarios individually. Oxygen XML Developer creates
a scenarios file that contains the scenarios that you export.

Settings
This drop-down menu allows you to configure the following options (many of these options are also available
if you right-click the name of a column):

Show all scenarios
Select this option to display all the available scenarios, regardless of the document they are associated
with.

Show only the scenarios available for the editor
Select this option to only display the scenarios that Oxygen XML Developer can apply for the current
document type.

Show associated scenarios
Select this option to only display the scenarios associated with the document you are editing.

Change storage
Use this option to change the storage location of the selected scenario to Project Options or Global
Options. You are also able to keep the original storage location and make a copy of the selected scenario
in the new storage location.

Import scenarios
This option opens the Import scenarios dialog box that allows you to select the scenarios file that
contains the scenarios you want to import. If one of the scenarios you import is identical to an existing
scenario, Oxygen XML Developer ignores it. If a conflict appears (an imported scenario has the same
name as an existing one), you can choose between two options:

Transforming Documents 712

• Keep or replace the existing scenario.
• Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Developer adds imported to the name of the
imported scenario.

Export selected scenarios
Use this option to export selected scenarios individually. Oxygen XML Developer creates a scenarios
file that contains the scenarios that you export. This is useful if you want to share scenarios with others or
export them to another computer.

Show Type
Use this option to display the transformation type of each scenario.

Show Storage
Use this option to display the storage location of the scenarios.

Group by Association
Select this option to group the scenarios depending on whether or not they are associated with the current
document.

Group by Type
Select this option to group the scenarios by their type.

Group by Storage
Select this option to group the scenarios by their storage location.

Ungroup all
Select this option to ungroup all the scenarios.

Reset Layout
Select this option to restore the default settings of the layout.

Related Information:
Editing a Transformation Scenario on page 706
Creating New Transformation Scenarios on page 669

Debugging PDF Transformations
To debug a DITA PDF transformation scenario using the XSLT Debugger follow these steps:

1. Open the Preferences dialog box (Options > Preferences), go to XML > XML Catalog, click Add, and select the
file located at DITA-OT-DIR\plugins\org.dita.pdf2\cfg\catalog.xml.

2. Open the map and create a DITA Map PDF transformation scenario.
3. Edit the scenario, go to the Parameters tab and change the value of the clean.temp parameter to no.
4. Run the transformation scenario.
5. Open the stage1.xml file located in the temporary directory and format and indent it.
6. Create a transformation scenario for this XML file by associating the topic2fo_shell_fop.xsl stylesheet

located at DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\topic2fo_shell_fop.xsl. If you are
specifically using the RenderX XEP or Antenna House FO processors to build the PDF output, you should use
the XSL stylesheets topic2fo_shell_xep.xsl or topic2fo_shell_axf.xsl located in the same folder.

7. In the transformation scenario edit the XSLT Processor combo box choose the Saxon EE XSLT processor (the
same processor used when the DITA OT transformation is executed).

8. In the transformation scenario, edit the Parameters list and set the parameter locale with the value en_GB and
the parameter customizationDir.url to point either to your customization directory or to the default DITA OT
customization directory. Its value should have a URL syntax like this: file://c:/path/to/DITA-OT-DIR/
plugins/org.dita.pdf2/cfg.

9. Debug the transformation scenario.

Transforming Documents 713

Configuring Calabash with XEP
To generate PDF output from your XProc pipeline (when using the Calabash XProc processor), follow these steps:

1. Open the [OXYGEN_INSTALL_DIR]/lib/xproc/calabash/engine.xml file.
2. Uncomment the <system-property name="com.xmlcalabash.fo-processor"

value="com.xmlcalabash.util.FoXEP"/> system property.
3. Uncomment the <system-property name="com.renderx.xep.CONFIG" file="../../../tools/

xep/xep.xml"/> system property. Edit the file attribute to point to the configuration file that is usually
located in the XEP installation folder.

4. Uncomment the references to the XEP libraries. Edit them to point to the matching library names from the XEP
installation directory.

5. Restart Oxygen XML Developer.

Integration of an External XProc Engine
The Javadoc documentation of the XProc API is available for download from the application website as a zip file:
xprocAPI.zip.

To create an XProc integration project, follow these steps:

1. Move the oxygen.jar file from [OXYGEN_INSTALL_DIR]/lib to the lib folder of your project.
2. Implement the ro.sync.xml.transformer.xproc.api.XProcTransformerInterface interface.
3. Create a Java archive (JAR) from the classes you created.
4. Create a engine.xml file according with the engine.dtd file. The attributes of the engine element are as

follows:

1. name - The name of the XProc engine.
2. description - A short description of the XProc engine.
3. class - The complete name of the class that implements

ro.sync.xml.transformer.xproc.api.XProcTransformerInterface.
4. version - The version of the integration.
5. engineVersion - The version of the integrated engine.
6. vendor - The name of the vendor / implementer.
7. supportsValidation - true if the engine supports validation (otherwise, false).

The engine element has only one child, runtime. The runtime element contains several library
elements with the name attribute containing the relative or absolute location of the libraries necessary to run
this integration.

5. Create a folder with the name of the integration in the [OXYGEN_INSTALL_DIR]/lib/xproc.
6. Place the engine.xml and all the libraries necessary to run the new integration in that folder.

XSLT Processors
This section explains how to configure an XSLT processor and extensions for such a processor in Oxygen XML
Developer.

Supported XSLT Processors

Oxygen XML Developer includes the following XSLT processors:

• Xalan 2.7.1 - Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML
document types. It implements XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath)
Version 1.0.

• Saxon 6.5.5 - Saxon 6.5.5 is an XSLT processor that implements the Version 1.0 XSLT and XPath with a
number of powerful extensions. This version of Saxon also includes many of the new features that were first
defined in the XSLT 1.1 working draft, but for conformance and portability reasons these are not available if
the stylesheet header specifies version="1.0".

• Saxon 9.7.0.15 Home Edition (HE), Professional Edition (PE) - Saxon-HE/PE implements the basic
conformance level for XSLT 2.0 / 3.0 and XQuery 1.0. The term basic XSLT 2.0 / 3.0 processor is defined in

Transforming Documents 714

https://www.oxygenxml.com/InstData/Editor/SDK/xprocAPI.zip
http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/saxon6.5.5/
http://saxon.sf.net/

the draft XSLT 2.0 / 3.0 specifications. It is a conformance level that requires support for all features of the
language other than those that involve schema processing. The HE product remains open source, but removes
some of the more advanced features that are present in Saxon-PE.

• Saxon 9.7.0.15 Enterprise Edition (EE) - Saxon EE is the schema-aware edition of Saxon and it is one of the
built-in processors included in Oxygen XML Developer. Saxon EE includes an XML Schema processor, and
schema-aware XSLT, XQuery, and XPath processors.

The validation in schema aware transformations is done according to the W3C XML Schema 1.0 or 1.1. This
can be configured in Preferences.

Note: Oxygen XML Developer implements a Saxon framework that allows you to create Saxon configuration
files. Two templates are available: Saxon collection catalog and Saxon configuration. Both of these templates
support content completion, element annotation, and attribute annotation.

Note: Saxon can use the ICU-J localization library (saxon9-icu.jar) to add support for sorting and date/
number formatting in a wide variety of languages. This library is not included in the Oxygen XML Developer
installation kit. However, Saxon will use the default collation and localization support available in the currently
used JRE. To enable this capability, follow these steps:

1. Download Saxon 9.7.0.15 Professional Edition (PE) or Enterprise Edition (EE) from http://
www.saxonica.com.

2. Unpack the downloaded archive.
3. Create a new XSLT transformation scenario (or edit an existing one). In the XSLT tab, click the Extensions

button to open the list of additional libraries used by the transformation process.
4. Click Add and browse to the folder where you unpacked the downloaded archive and choose the saxon9-

icu.jar file.

Note that the saxon9-icu.jar should NOT be added to the application library folder because it will conflict
with another version of the ICU-J library that comes bundled with Oxygen XML Developer.

• Saxon-CE (Client Edition) is Saxonica's implementation of XSLT 2.0 for use on web browsers. Oxygen
XML Developer provides support for editing stylesheets that contain Saxon-CE extension functions and
instructions. This support improves the validation, content completion, and syntax highlighting.

Note: Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will
use Oxygen XML Developer only for developing the Saxon-CE stylesheet, leaving the execution part to a web
browser. See more details about executing such a stylesheet on Saxonica's website.

Note: A specific template, named Saxon-CE stylesheet, is available in the New document wizard.
• Xsltproc (libxslt) - Libxslt is the XSLT C library developed for the Gnome project. Libxslt is based on libxml2,

the XML C library developed for the Gnome project. It also implements most of the EXSLT set of processor-
portable extensions, functions, and some of Saxon's evaluate and expression extensions. The libxml2 version
included in Oxygen XML Developer is 2.7.6 and the Libxslt version is 1.1.26.

Oxygen XML Developer uses Libxslt through its command line tool (Xsltproc). The XSLT processor
is included in the distribution kit of the stand-alone version for Windows and Mac OS X. Since there are
differences between various Linux distributions, on Linux you must install Libxslt on your machine as a
separate application and set the PATH variable to contain the Xsltproc executable.

Note: The Xsltproc processor can be configured from the XSLTPROC options page.

CAUTION: There is a known problem where file paths that contain spaces are not handled correctly in
the LIBXML processor. For example, the built-in XML Catalog files of the predefined document types
(DocBook, TEI, DITA, etc.) are not handled properly by LIBXML if Oxygen XML Developer is installed in
the default location on Windows (C:\Program Files). This is because the built-in XML catalog files are
stored in the [OXYGEN_INSTALL_DIR]/frameworks subdirectory of the installation directory, and in
this case it contains a space character.

• MSXML 4.0 - MSXML 4.0 is available only on Windows platforms. It can be used for transformation and
validation of XSLT stylesheets.

Oxygen XML Developer uses the Microsoft XML parser through its command line tool msxsl.exe.

Since msxsl.exe is only a wrapper, Microsoft Core XML Services (MSXML) must be installed on the
computer. Otherwise, you will get a corresponding warning. You can get the latest Microsoft XML parser from
Microsoft web-site.

Transforming Documents 715

http://www.saxonica.com/
http://www.saxonica.com
http://www.saxonica.com
http://www.saxonica.com/ce/index.xml
http://xmlsoft.org/XSLT/
http://msdn.microsoft.com/xml/
http://microsoft.com/en-us/download/details.aspx?id=21714
http://www.microsoft.com/downloads/details.aspx?FamilyId=3144B72B-B4F2-46DA-B4B6-C5D7485F2B42&displaylang=en

• MSXML .NET - MSXML .NET is available only on Windows platforms. It can be used for transformation and
validation of XSLT stylesheets.

Oxygen XML Developer performs XSLT transformations and validations using the .NET Framework XSLT
implementation (System.Xml.Xsl.XslTransform class) through the nxslt command line utility. The nxslt
version included in Oxygen XML Developer is 1.6.

You should have the .NET Framework version 1.0 already installed on your system. Otherwise, you will get the
following warning: MSXML.NET requires .NET Framework version 1.0 to be installed. Exit
code: 128.

You can get the .NET Framework version 1.0 from the Microsoft website.
• .NET 1.0 - A transformer based on the System.Xml 1.0 library available in the .NET 1.0 and .NET 1.1

frameworks from Microsoft (http://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system. Otherwise,
you will get the following warning: MSXML.NET requires .NET Framework version 1.0 to be
installed. Exit code: 128.

You can get the .NET Framework version 1.0 from the Microsoft website.
• .NET 2.0 - A transformer based on the System.Xml 2.0 library available in the .NET 2.0 Framework from

Microsoft. It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system. Otherwise, you will get the
following warning: MSXML.NET requires .NET Framework version 2.0 to be installed. Exit
code: 128.

You can get the .NET Framework version 2.0 from the Microsoft website.

For information about configuring the XSLT preferences, see the XSLT options section.

Configuring Custom XSLT Processors

Oxygen XML Developer allows you to configure custom processors to be used for running XSLT and XQuery
transformations.

To add a new custom processor, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-FO-XQuery > Custom Engines.
2. Click the New button at the bottom of the dialog box.
3. Configure the parameters for the custom engine.
4. Click OK.

Note:

The output messages of a custom processor are displayed in an output view at the bottom of the application
window. If an output message follows the format of an Oxygen XML Developer linked message, clicking it
highlights the location of the message in an editor panel containing the file referenced in the message.

Related Information:
Custom Engines Preferences on page 111

Configuring the XSLT Processor Extensions Paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a
literal result element, which the stylesheet simply transfers to the result tree, an extension element performs
an action. The extension is usually used because the XSLT stylesheet fails in providing adequate functions for
accomplishing a more complex task.

The DocBook extensions for Xalan and Saxon are included in the [OXYGEN_INSTALL_DIR]\frameworks
\docbook\xsl\extensions folder.

For more information about how to use extensions, see the following links:

• Xalan - http://xml.apache.org/xalan-j/extensions.html
• Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html
• Saxon 9.7.0.15 - http://www.saxonica.com/documentation9.5/index.html#!extensibility

Transforming Documents 716

http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-4e21-b05a-009d06457787&displaylang=en
http://msdn.microsoft.com/xml/
http://www.microsoft.com/downloads/details.aspx?FamilyID=9655156b-356b-4a2c-857c-e62f50ae9a55&DisplayLang=en
http://xml.apache.org/xalan-j/extensions.html
http://saxon.sourceforge.net/saxon6.5.5/extensions.html
http://www.saxonica.com/documentation9.5/index.html#!extensibility

To set an XSLT processor extension (a directory or a jar file), use the Extensions button in the Edit scenario
dialog box.

Note: The old way of setting an extension (using the parameter -Dcom.oxygenxml.additional.classpath) was
deprecated, and instead you should use the extension mechanism of the XSLT transformation scenario.

XSL-FO Processors
This section explains how to apply XSL-FO processors when transforming XML documents to various output
formats in Oxygen XML Developer.

Built-in XSL-FO Processor

The Oxygen XML Developer installation package is distributed with the Apache FOP that is a Formatting Objects
processor for rendering your XML documents to PDF. FOP is a print and output independent formatter driven
by XSL Formatting Objects. FOP is implemented as a Java application that reads a formatting object tree and
renders the resulting pages to a specified output.

Other FO processors can be configured in the Preferences dialog box.

Add a Font to the Built-in FO Processor - Simple Version

If the font that must be set to Apache FOP is one of the fonts that are installed in the operating system you
should follow the next steps for creating and setting a FOP configuration file that looks for the font that it needs
in the system fonts. It is a simplified version of the procedure for setting a custom font in Apache FOP.

1. Register the font in FOP configuration. (This is not necessary for DITA PDF transformations, skip to the next
step)
a) Create a FOP configuration file that specifies that FOP should look for fonts in the installed fonts of the

operating system.

<fop version="1.0">
 <renderers>
 <renderer mime="application/pdf">
 <fonts>
 <auto-detect/>
 </fonts>
 </renderer>
 </renderers>
</fop>

b) Open the Preferences dialog box (Options > Preferences), go to XML > XSLT/FO/XQuery > FO Processors,
and enter the path of the FOP configuration file in the Configuration file text field.

2. Set the font on the document content.
This is done usually with XSLT stylesheet parameters and depends on the document type processed by the
stylesheet.

• For DocBook documents you can start with the predefined scenario called DocBook PDF, edit the XSLT
parameters and set the font name (in our example the font family name is Arial Unicode MS) to the
parameters body.font.family and title.font.family.

• For TEI documents you can start with the predefined scenario called TEI PDF, edit the XSLT parameters and
set the font name (in our example Arial Unicode MS) to the parameters bodyFont and sansFont.

• For DITA transformations to PDF using DITA-OT you should modify the following two files:

• DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml - The font-face
element included in each element physical-font having the attribute char-set="default"
must contain the name of the font (Arial Unicode MS in our example)

• DITA-OT-DIR/plugins/org.dita.pdf2/fop/conf/fop.xconf - An element auto-detect
must be inserted in the element fonts, which is inside the element renderer that has the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .
 <fonts>
 <auto-detect/>
 </fonts>
 . . .
</renderer>

Transforming Documents 717

http://xml.apache.org/fop/index.html

Add a Font to the Built-in FO Processor

If an XML document is transformed to PDF using the built-in Apache FOP processor but it contains some Unicode
characters that cannot be rendered by the default PDF fonts, then a special font that is capable to render these
characters must be configured and embedded in the PDF result.

Important: If this special font is installed in the operating system, there is a simple way of telling FOP to look for
it. See the simplified procedure for adding a font to FOP.

1. Locate the font.

First, find out the name of a font that has the glyphs for the special characters you used. One font that covers
most characters, including Japanese, Cyrillic, and Greek, is Arial Unicode MS.

On Windows the fonts are located into the C:\Windows\Fonts directory. On Mac, they are placed in /
Library/Fonts. To install a new font on your system, is enough to copy it in the Fonts directory.

2. Generate a font metrics file from the font file.
a) Open a terminal.
b) Change the working directory to the Oxygen XML Developer install directory.
c) Create the following script file in the Oxygen XML Developer installation directory.

For OS X and Linux create a file ttfConvert.sh:

#!/bin/sh

export LIB=lib
export CP=$LIB/fop.jar
export CP=$CP:$LIB/avalon-framework-4.2.0.jar
export CP=$CP:$LIB/xercesImpl.jar
export CP=$CP:$LIB/commons-logging-1.1.3.jar
export CP=$CP:$LIB/commons-io-1.3.1.jar
export CP=$CP:$LIB/xmlgraphics-commons-1.5.jar
export CP=$CP:$LIB/xml-apis.jar
export CMD="java -cp $CP org.apache.fop.fonts.apps.TTFReader"
export FONT_DIR='.'

$CMD $FONT_DIR/Arialuni.ttf Arialuni.xml

For Windows create a file ttfConvert.bat:

@echo off
set LIB=lib
set CP=%LIB%\fop.jar
set CP=%CP%;%LIB%\avalon-framework-4.2.0.jar
set CP=%CP%;%LIB%\xercesImpl.jar
set CP=%CP%;%LIB%\commons-logging-1.1.3.jar
set CP=%CP%;%LIB%\commons-io-1.3.1.jar
set CP=%CP%;%LIB%\xmlgraphics-commons-1.5.jar
set CP=%CP%;%LIB%\xml-apis.jar
set CMD=java -cp "%CP%" org.apache.fop.fonts.apps.TTFReader
set FONT_DIR=C:\Windows\Fonts
%CMD% %FONT_DIR%\Arialuni.ttf Arialuni.xml

The paths specified in the file are relative to the Oxygen XML Developer installation directory. If you decide
to create it in other directory, change the file paths accordingly.

The FONT_DIR can be something different on your system. Check that it points to the correct font directory.
If the Java executable is not in the PATH, specify the full path of the executable.

If the font has bold and italic variants, convert them too by adding two more lines to the script file:

• for OS X and Linux:

$CMD $FONT_DIR/Arialuni-Bold.ttf Arialuni-Bold.xml
$CMD $FONT_DIR/Arialuni-Italic.ttf Arialuni-Italic.xml

• for Windows:

%CMD% %FONT_DIR%\Arialuni-Bold.ttf Arialuni-Bold.xml
%CMD% %FONT_DIR%\Arialuni-Italic.ttf Arialuni-Italic.xml

d) Run the script.
On Linux and OS X, run the command sh ttfConvert.sh from the command line. On Windows, run the
command ttfConvert.bat from the command line or double-click the file ttfConvert.bat.

Transforming Documents 718

3. Register the font in FOP configuration. (This is not necessary for DITA PDF transformations, skip to the next
step)
a) Create a FOP configuration file that specifies the font metrics file for your font.

<fop version="1.0">
 <base>./</base>
 <font-base>file:/C:/path/to/FOP/font/metrics/files/</font-base>
 <source-resolution>72</source-resolution>
 <target-resolution>72</target-resolution>
 <default-page-settings height="11in" width="8.26in"/>
 <renderers>
 <renderer mime="application/pdf">
 <filterList>
 <value>flate</value>
 </filterList>
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 </renderer>
 </renderers>
</fop>

The embed-url attribute points to the font file to be embedded. Specify it using the URL convention. The
metrics-url attribute points to the font metrics file with a path relative to the base element. The triplet
refers to the unique combination of name, weight, and style (italic) for each variation of the font. In our
case is just one triplet, but if the font had variants, you would have to specify one for each variant. Here is
an example for Arial Unicode if it had italic and bold variants:

<fop version="1.0">
 ...
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 <font metrics-url="Arialuni-Bold.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Bold.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="bold"/>

 <font metrics-url="Arialuni-Italic.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni-Italic.ttf">
 <font-triplet name="Arialuni" style="italic"
 weight="normal"/>

 </fonts>
 ...
</fop>

More details about the FOP configuration file are available on the FOP website.
b) Open the Preferences dialog box (Options > Preferences), go to XML > XSLT/FO/XQuery > FO Processors,

and enter the path of the FOP configuration file in the Configuration file text field.
4. Set the font on the document content.

This is usually done with XSLT stylesheet parameters and depends on the document type processed by the
stylesheet.

DocBook Example: For DocBook documents, you can start with the predefined scenario called DocBook PDF,
edit the XSLT parameters, and set the font name (in our example Arialuni) to the parameters body.font.family
and title.font.family.

TEI Example: For TEI documents, you can start with the predefined scenario called TEI PDF, edit the XSLT
parameters, and set the font name (in our example Arialuni) to the parameters bodyFont and sansFont.

DITA Example: For DITA to PDF transformations using DITA-OT modify the following two files:

• DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml - The font-face element
included in each element physical-font having the attribute char-set="default" must contain
the name of the font (Arialuni in our example)

Transforming Documents 719

• DITA-OT-DIR/plugins/org.dita.pdf2/fop/conf/fop.xconf - An element font must
be inserted in the element fonts, which is inside the element renderer that has the attribute
mime="application/pdf":

<renderer mime="application/pdf">
 . . .
 <fonts>
 <font metrics-url="Arialuni.xml" kerning="yes"
 embed-url="file:/Library/Fonts/Arialuni.ttf">
 <font-triplet name="Arialuni" style="normal"
 weight="normal"/>

 </fonts>
 . . .
</renderer>

Adding Libraries to the Built-in FO Processor (XML with XSLT and FO)

Adding Hyphenation Support for XML with XSLT Transformation Scenarios

You can extend the functionality of the built-in FO processor by dropping additional libraries in the
[OXYGEN_INSTALL_DIR]/lib/fop directory.

To add support for hyphenation, follow these steps:

1. Create a folder called fop in the [OXYGEN_INSTALL_DIR]/lib folder.
2. Download the compiled JAR from OFFO.
3. Copy the fop-hyph.jar file into the [OXYGEN_INSTALL_DIR]/lib/fop folder.
4. Restart Oxygen XML Developer.

Adding Support for PDF Images

To add support for PDF images, follow these steps:

1. Create a folder called fop in the [OXYGEN_INSTALL_DIR]/lib folder.
2. Download the fop-pdf-images JAR libraries.
3. Copy the libraries into the [OXYGEN_INSTALL_DIR]/lib/fop folder.
4. Restart Oxygen XML Developer.

Adding Libraries to the Built-in FO Processor (DITA-OT)

To use additional libraries with the DITA-OT publishing engine, you need to edit the transformation scenario and
add the path to the new libraries in the Libraries section of the Advanced tab.

Adding Hyphenation Support for DITA-OT Transformation Scenarios

1. Download the pre-compiled JAR from OFFO.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab. Click the Libraries button and add

the path to the fop-hyph.jar library.

Adding Support for PDF Images

1. Download the fop-pdf-images JAR libraries.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab. Click the Libraries button and add

the path to the libraries.

WebHelp System Output
Oxygen XML Developer allows you to obtain WebHelp Classic and WebHelp Responsive outputs. This section
contains information about the WebHelp system, its variants, and ways to customize it to better fit your specific
needs.

Transforming Documents 720

https://sourceforge.net/projects/offo/
https://xmlgraphics.apache.org/fop/fop-pdf-images.html#download
https://sourceforge.net/projects/offo/
https://xmlgraphics.apache.org/fop/fop-pdf-images.html

Table 34: WebHelp System Feature Matrix

WebHelp System Variants
Features Responsive

w/ Feedback
Responsive Classic w/

Feedback
Classic Classic

Mobile

Desktop Systems

Mobile Devices

Predefined Skins

Predefined Templates

Search Capabilities

Modern Layout

Adaptable to Any Screen
Size

Comments Section

DITA Documents

DocBook Documents

Tri-Pane Frames or
Frameless Version

WebHelp Responsive System
WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include
platform independence, ability to update content continuously, and it can be viewed using a regular web browser.
The Oxygen XML Developer WebHelp system includes several variants to suit your specific needs. The WebHelp
Responsive variant features a very flexible layout, is designed to adapt to any screen size, and is available for
DITA document types.

This type of WebHelp system can be generated by using the DITA Map WebHelp Responsive transformation
scenario.

Layout

The layout of the WebHelp Responsive system is platform independent and is able to adapt to any screen size.
It is highly customizable and relies on a template mechanism that allows you to control the position of various
functional template components to suit your particular requirements.

You can select from several different styles of layouts (for example, by default, you can select either a tiles or tree
style of layout). Furthermore, each of these layouts include a collection of skins that you can choose from, or you
can customize your own.

Transforming Documents 721

Figure 354: WebHelp Responsive Output on a Normal Screen

Figure 355: WebHelp Responsive Output on a Narrow Screen

WebHelp Responsive Search Engine
Search Rules

Transforming Documents 722

Rules that are applied during a search include:

• You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers" will
only return results if both words are found consecutively and exactly as they are typed in the search field). This
type of search is known as a phrase search.

• Boolean Search is supported using the following operators: and, or, not. When there are two adjacent search
terms without an operator, or is used as the default search operator (for example, grow flowers is the same as
grow or flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate
keywords: grow and flowers).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for
example, content inside a keywords element weighs more than an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".")
characters count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored).
This rule does not apply to CJK (Chinese, Japanese, Korean) languages.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that matches
the search criteria. These scores are then translated into a 5-star rating scheme and the stars are displayed to the
right of each result. The search results are sorted depending on the following:

• Search entries that satisfy the phrase search criterion are presented first.
• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The

search ranking order, sorted by relevance is as follows:

• The search term is included in a meta keyword
• The search term is in the title of the page
• The search term is in bold text in a paragraph
• The search term is in normal text in a paragraph

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For
information about editing these values, see Editing Scoring Values of Tag Elements in Search Results on page
753.

Excluded Terms

To improve performance, the Search feature excludes certain stop words. For example, the English version of
such stop words include: a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their,
then, there, these, they, this, to, was, will, with.

WebHelp Search Results Page

When you enter search terms in the Search field, the results are displayed in a results page. When you click on a
result, the topic is opened in the main pane and the search results are highlighted. The Search field also includes
an autocomplete feature.

Transforming Documents 723

Figure 356: WebHelp Responsive Search Results Page

Autocomplete Suggestions in the Search Text Field

When you are typing in the search text field, proposals are presented to help you to compute the search query.
The information proposed when you are typing is collected from:

• The search queries from the history of the previous searches.
• The titles collected from your documentation.
• Documentation index terms and keywords. For example, in a DITA topic, the keywords and index terms are

specified in the topic prolog section like this:

<prolog>
 <metadata>
 <keywords><indexterm>databases</indexterm></keywords>
 <keyword>installing</keyword>
 <keyword>uninstalling</keyword>
 <keyword>prerequisites</keyword>
 </metadata>
</prolog>

Missing Terms

If you enter multiple search terms (other than stop words), for any result that the search engine found at least one
term but not one or more of the other terms, the Missing terms will be listed below each result.

Browser Compatibility

This output format is compatible with the most recent versions of the following common browsers:

• Edge
• Internet Explorer (IE 9 or newer)
• Chrome
• Firefox
• Safari
• Opera

Transforming Documents 724

WebHelp Responsive with Feedback System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include
platform independence, ability to update content continuously, and it can be viewed using a regular web browser.
The Oxygen XML Developer WebHelp system includes several variants to suit your specific needs. The WebHelp
Responsive with Feedback variant features a very flexible layout, is designed to adapt to any screen size, and
includes a feedback system that allows your users to make comments and allows you to manage and reply to
them. This variant is available for DITA document types.

This type of WebHelp system can be generated by using the DITA Map WebHelp Responsive with Feedback
transformation scenario and following the instructions for deploying the system.

Layout

The layout of the WebHelp Responsive with Feedback system is platform independent and is able to adapt to any
screen size. It is highly customizable and relies on a template mechanism that allows you to control the position
of various functional template components to suit your particular requirements.

You can select from several different styles of layouts (for example, by default, you can select either a tiles or tree
style of layout). Furthermore, each of these layouts include a collection of skins that you can choose from, or you
can customize your own.

The WebHelp Responsive with Feedback system also contains a Comments section at the bottom of the pane.
This section is where you can interact with users through a comment system.

Figure 357: WebHelp Output

Managing Comments

To add a new comment, click the Add New Comment button, or click Reply to add a comment to an existing
thread. You can click on the Log in button on the right side of this bar to be authenticated as a user and your user

Transforming Documents 725

name will be included in any comments that you add. If you do not have a user name, you can click on the Sign Up
button to create a new user.

After you log in, your name and user name are displayed in the Comments bar, along with the Log off and Edit
buttons. Click the Edit button to open the User Profile dialog box where you can customize the following options:

• Your Name - You can use this field to edit the initial name that you used to create your user profile.
• Your email address - You can use this field to edit the initial email address that you used to create your profile.
• You can choose to receive an email in the following situations:

• When a comment is left on a page that you commented on.
• When a comment is left on any topic in the WebHelp Classic system.
• When a reply is left to one of my comments.

• New Password - Allows you to enter a new password for your user account.

Note: The Current Password field from the top of the User Profile is mandatory if you want to save the
changes you make.

If you are an administrator, you can manage user information and comments. For more information, see
Managing Users and Comments in a Feedback-Enabled WebHelp System on page 730.

WebHelp Responsive Search Engine
Search Rules

Rules that are applied during a search include:

• You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers" will
only return results if both words are found consecutively and exactly as they are typed in the search field). This
type of search is known as a phrase search.

• Boolean Search is supported using the following operators: and, or, not. When there are two adjacent search
terms without an operator, or is used as the default search operator (for example, grow flowers is the same as
grow or flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate
keywords: grow and flowers).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for
example, content inside a keywords element weighs more than an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".")
characters count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored).
This rule does not apply to CJK (Chinese, Japanese, Korean) languages.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that matches
the search criteria. These scores are then translated into a 5-star rating scheme and the stars are displayed to the
right of each result. The search results are sorted depending on the following:

• Search entries that satisfy the phrase search criterion are presented first.
• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The

search ranking order, sorted by relevance is as follows:

• The search term is included in a meta keyword
• The search term is in the title of the page
• The search term is in bold text in a paragraph
• The search term is in normal text in a paragraph

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For
information about editing these values, see Editing Scoring Values of Tag Elements in Search Results on page
753.

Transforming Documents 726

Excluded Terms

To improve performance, the Search feature excludes certain stop words. For example, the English version of
such stop words include: a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their,
then, there, these, they, this, to, was, will, with.

WebHelp Search Results Page

When you enter search terms in the Search field, the results are displayed in a results page. When you click on a
result, the topic is opened in the main pane and the search results are highlighted. The Search field also includes
an autocomplete feature.

Figure 358: WebHelp Responsive Search Results Page

Autocomplete Suggestions in the Search Text Field

When you are typing in the search text field, proposals are presented to help you to compute the search query.
The information proposed when you are typing is collected from:

• The search queries from the history of the previous searches.
• The titles collected from your documentation.
• Documentation index terms and keywords. For example, in a DITA topic, the keywords and index terms are

specified in the topic prolog section like this:

<prolog>
 <metadata>
 <keywords><indexterm>databases</indexterm></keywords>
 <keyword>installing</keyword>
 <keyword>uninstalling</keyword>
 <keyword>prerequisites</keyword>
 </metadata>
</prolog>

Missing Terms

If you enter multiple search terms (other than stop words), for any result that the search engine found at least one
term but not one or more of the other terms, the Missing terms will be listed below each result.

Browser Compatibility

Transforming Documents 727

This output format is compatible with the most recent versions of the following common browsers:

• Edge
• Internet Explorer (IE 9 or newer)
• Chrome
• Firefox
• Safari
• Opera

Deploying a Feedback-Enabled WebHelp System

System Requirements

The feedback-enabled WebHelp system of Oxygen XML Developer requires a standard server deployment. You
can request this from your server admin and it needs the following system components:

• A Web server (such as Apache Web Server)
• A MySQL or MariaDB database server
• A database admin tool (such as phpMyAdmin)
• PHP Version 5.1.6 or later

Oxygen XML WebHelp system supports most of the recent versions of the following browsers: Chrome, Firefox,
Edge, Internet Explorer, Safari, Opera.

Create WebHelp with Feedback Database

The WebHelp with Feedback system needs a database to store user details and the actual feedback, and a user
added to it with all privileges. After this is created, you should have the following information:

• Database name
• Username
• Password

Exactly how you create the database and user depends on your web host and your particular needs.

Example:

The following procedure uses phpMyAdmin to create a MySQL database for the feedback system and a MySQL
user with privileges for that database. The feedback system uses these credentials to connect to the database.

Using phpMyAdmin to create a database:

1. Access the phpMyAdmin instance running on your server.
2. Click Databases (in the right frame) and then create a database. You can give it any name you want (for

example comments).
3. Create a user with connection privileges for this database.
4. Under localhost, in the right frame, click Privileges and then at the bottom of the page click the reload the

privileges link.

Deploying the WebHelp with Feedback Output

If you have a web server configured with PHP and MySQL, you can deploy the WebHelp with Feedback output by
following these steps:

1. Connect to your server using an FTP client.
2. Locate the home directory (from now on, referred to as DOCUMENT_ROOT) of your server.
3. Copy the transformation output folder into the DOCUMENT_ROOT folder.
4. Rename it to something relevant (for example, myProductWebHelp).
5. Open the output folder (for example, http://[YOUR_SERVER]/myProductWebHelp/). You are redirected

to the installation wizard. Proceed with the installation as follows:

a. Verify that the prerequisites are met.
b. Press Start Installation.

Transforming Documents 728

c. Configure the Deployment Settings section. Default values are provided, but you should adjust them as
needed.

Tip: You can change some of the options later. The installation creates a config.php file in
[OXYGEN_WEBHELP_INSTALL_DIR]/feedback/resources/php/config/config.php where all
your configuration options are stored.

d. Configure the MySql Database Connection Settings section. Use the information (database name,
username, password) from the Create WebHelp with Feedback Database section to fill-in the appropriate
text boxes.

Warning: Selecting the Create new database structure option will overwrite any existing data in the
selected database, if it already exists. Therefore, it is useful the first time you install the WebHelp
with Feedback system, but you do not want to select this option on subsequent deployments.

e. If you are using a domain (such as OpenLDAP or Active Directory) to manage users in your organization,
select the Enable LDAP Autehntication option. This will allow you to configure the LDAP server, which will
provide information and credentials for users who will access the WebHelp system. Also, this will allow you
to choose which of the domain users will have administrator privileges.

f. If the Create new database structure option is selected, the Create WebHelp Administrator Account
section becomes available. Here you can set the administrator account data. The administrator is able to
moderate new posts and manage WebHelp users.

The same database can be used to store comments for multiple WebHelp with Feedback deployments. If
a topic is available in multiple deployments and there are comments associated with it, you can choose to
display the comments in all deployments that share the database. To do this, select the Display comments
from other products option. In the Display comments from section, a list with the deployments sharing the
same database is displayed. Select the deployments allowed to share common feedback.

Note: You can restrict the displayed comments of a product depending on its version. If you have two
products that use the same database and you restrict one of them to display comments starting from a
certain version, the comments of the other product are also displayed from the specified version onwards.

g. Press Next Step.
h. Remove the installation folder from your web server.

Important: When you publish subsequent iterations of your WebHelp with Feedback system, you will
not upload the /install folder in the output, as you only need it uploaded the first time you create the
installation. On subsequent uploads, you will just upload the other output files.

i. In your Web browser, go to your WebHelp with Feedback system main page.

Testing Your WebHelp with Feedback System

To test your system, create a user and post a comment. Check to see if the notification emails are delivered to
your email inbox.

Note: To read debug messages generated by the system:

1. Enable JavaScript logging by doing one of the following:

• Open the log.js file, locate the var log= new Log(Level.NONE); line, and change the logging level
to: Level.INFO, Level.DEBUG, Level.WARN, or Level.ERROR.

• Append ?log=true to the WebHelp URL.
2. Inspect the PHP and Apache server log files.

Documentation Product ID and Version

When you run a WebHelp with Feedback transformation scenario, by default you are prompted for a
documentation product ID and version number. This is needed when multiple WebHelp systems are deployed on
the same server. Think of your WebHelp output as a product. If you have three different WebHelp outputs, you
have three different products (each with their own unique documentation product ID). This identifier is included in
a configuration file so that comments are tied to a particular output (product ID and version number).

Note: The WebHelp with Feedback installation includes a configuration option (Display comments from other
products) that allows you to choose to have comments visible in other specified products.

Transforming Documents 729

Related Information:
Managing Users and Comments in a Feedback-Enabled WebHelp System on page 730

Refreshing the Content of a Feedback-Enabled WebHelp System

It is common to update the content of an existing installation of a WebHelp with Feedback system on a regular
basis. In this case, reinstalling the whole system is not a viable option since it might result in the loss of the
comments associated with your topics. Also, reconfiguring the system every time you want to refresh it may be
time consuming.

Fortunately, you can refresh just the content without losing the comments or the initial system configuration. To
do so, follow these steps:

1. Execute the transformation scenario that produces the WebHelp with Feedback output directory.
2. Go to the output directory (specified in the Output tab of the transformation scenario), locate the \feedback

\resources\php\config\config.php file, and delete it.
3. Locate the \feedback\install directory and delete it.
4. Copy the remaining structure of the output folder and paste it into your WebHelp with Feedback system

installation directory, overwriting the existing content.

Managing Users and Comments in a Feedback-Enabled WebHelp System

When you installed the WebHelp with Feedback system the first time (assuming the Create new database
structure option was selected), you should have been prompted to create an administrator account (or a user
named administrator was created by default). As an administrator, you have access to manage comments
posted in your feedback-enabled WebHelp system. You can also manage the user information (such as role,
status, or notification options).

To manage comments and user information, follow these steps:

1. At the bottom of each specific topic there is a Comments navigation bar and on the right side there is a Log
in button. Click this button and log in with your administrator credentials. This gives you access to an Admin
Panel button.

2. Click the Admin Panel button to display an administration page.

Figure 359: Administrative Page
3. Use this page to manage the following options:

Delete Orphaned Comments
Allows you to delete comments that are no longer associated with a topic in your WebHelp system.

Delete Pending Users
Allows you to delete user accounts that you do not wish to activate.

View All Posts
Allows you to view all the comments that are associated with topics in your WebHelp system.

Export Comments
Allows you to export all posts associated with topics in your WebHelp system into an XML file.

Set Version
Use this action to display comments starting with a particular version.

Transforming Documents 730

Manage User Information
To edit the details for a user, click on the corresponding row. This opens a window that allows you to
customize the following information associated with the user:

Name
The full name of the user.

Level
Use this field to modify the privilege level (role) for the selected user. You can choose from the
following:

• User - Regular user, able to post comments and receive e-mail notifications.
• Moderator - In addition to the regular User rights, this type of user has access to the Admin Panel

where a moderator can view, delete, export comments, and set the version of the feedback-enabled
WebHelp system.

• Admin - Full administrative privileges. Can manage WebHelp-specific settings, users, and their
comments.

Company
The name of the organization associated with the user.

E-Mail
The contact email address for the user. This is also the address where the WebHelp system sends
notifications.

WebHelp Notification
When selected, the user receives notifications when comments are posted anywhere in your feedback-
enabled WebHelp system.

Reply Notification
When selected, the user receives notifications when comments are posted as a reply to one of their
comments.

Page Notification
When selected, the user receives notifications when comments are posted on a topic where they
previously posted a comment.

Date
The date the user registered is displayed.

Status
Use this drop-down list to change the status of the user. You can choose from the following:

• Created - The user is created but does not yet have any rights for the feedback-enabled WebHelp
system.

• Validated - The user is able to use the feedback-enabled WebHelp system.
• Suspended - The user has no rights for the feedback-enabled WebHelp system.

Warning: The key used for identifying the page a comment is attached to is the relative file path to the
output page. Since the output file and folder names mirror the source, any change to the file name (or its
folder) in the source will affect the comments associated with that WebHelp page. If you change the file
name or path, the comment history for that topic will become orphaned (a change to the topic ID does not
affect the comment history).

WebHelp Responsive Template Mechanism

The WebHelp Responsive template mechanism is the base of the system and it is responsible for defining its
output. It consists of a set of HTML template files and other additional resources (such as images, CSS, and
JavaScript files). Each of the HTML template files contain one or more template components (such as title, table
of contents, search input, etc.) whose placement inside the template will define the final layout of the output.

This mechanism allows you to create multiple layouts simply by creating templates that define the location of
where the various components will be displayed.

Transforming Documents 731

Creating WebHelp Responsive Templates

To create a new WebHelp Responsive template, follow these steps:

1. Locate the following folder in your DITA-OT directory (DITA-OT-DIR):

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/

2. Duplicate the bootstrap folder and rename it to whatever you want your new template to be identified as (for
example, myTemplate).

3. Customize the structure of the new template according to your needs. For example, if you only want to keep
one of the template variants, open the myTemplate/variants folder and delete all of its subdirectories,
except for that one (for instance, the tiles directory). Keep in mind that the structure of the template
directory is important. The names of folders at certain levels correspond to the names of templates and skins,
while components and resources are defined and referenced in certain files or folders at specific locations
within the directory structure. For more information, see WebHelp Responsive Template Directory Structure on
page 732.

4. You can also customize the structure of the skins within the template variants. For example, if you only want
to keep one of the skins in the tiles variant, open the myTemplate/variants/tiles folder and delete
all of its subdirectory skins, except for that one (for instance, the light directory). You can also edit the
skin.css file that is located in the skin directory to customize the styling. If your customization of the CSS
file requires additional resources (such as images, fonts, or other CSS files), they need to be placed in the
resources folder at the same level with the skin.css file.

5. To customize the components that appear in the WebHelp Responsive output, you can modify the HTML
template files that define the output. For more information, see WebHelp Responsive Template Files on page
734.

Related Information:
Customizing the WebHelp Responsive Output on page 744

WebHelp Responsive Template Directory Structure

A certain directory structure is required for the WebHelp Responsive templates. The names of folders at certain
levels correspond to the names of template variants and skins, components are defined in specific files, and
various resources need to be located in specific locations within the directory structure.

The templates are stored in DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita.

Transforming Documents 732

Figure 360: Templates Directory Structure

At the first level of the template directory we can find the following predefined files and folders:

• resources Folder - Contains all additional resources used by the template, such as images, CSS, and
JavaScript files.

• variants Folder - Contains the template variants, including folders for each skin. See Template Variants and
Skins on page 733.

• Template Files - The HTML template files that are used to generate the output:

• wt_index.html - Used to produce the main home page of the WebHelp Responsive output. See WebHelp
Responsive Main Page Template on page 734.

• wt_topic.html - Used to generate the HTML pages associated with individual topics. See WebHelp
Responsive Topic Template on page 736.

• wt_search.html - Used to generate the HTML page that presents the search results. See WebHelp
Responsive Search Results Template on page 737.

• wt_terms.html - Used to generate the HTML page that presents the documentation index. See WebHelp
Responsive Index Terms Template on page 737.

After the transformation scenario is executed, the resources and variants folders are copied in the /oxygen-
webhelp/template/ folder within the output directory (defined in the Output tab of the transformation
scenario).

Template Variants and Skins

You could think of a template as being a set of WebHelp components that are placed in a predefined HTML
layout. You can have multiple variants of the template. A WebHelp template variant is an instance of the template
with a specific set of parameters. For example, you could have two variants of the WebHelp main page, one that
displays the topics in a tiles style of layout, and another one that displays the topics in a tree style.

Each variant has its own directory that corresponds to the name of the variant. The name of the variant is
displayed in the user interface when the variants are displayed (for example, in the templates tab of the
transformation scenario).

Each variant directory may contain the following resources:

Transforming Documents 733

• Skin Directories - These folders represent skin templates for the current variant.
• params.properties File - This file specifies the values for the parameters imposed by the variant.
• resources Folder - This is an optional directory that contains resources that are specific to the current

variant (such as images, CSS files, etc.) They will be copied to the output directory.

Skins

A variant skin represents a CSS file that allows you to alter the styling of the template. The CSS associated with a
skin must be named skin.css and it must be stored as a first child of the skin directory.

Each skin might need additional resources (images, fonts) that must be stored in the resources directory in
the root folder for that particular skin. The name of the skin directory is displayed in the user interface when you
choose a skin (in the templates tab of the transformation scenario).

Each skin directory can also contain a skin.png preview image that will be displayed in the user interface and a
properties file that contains a URL for the online preview of the skin. This image file must be stored as a first child
of the skin directory.

For information about creating or customizing skins, see Create or Customize a WebHelp Responsive Skin on page
746.

WebHelp Responsive Template Files

The HTML pages that comprise the output of a WebHelp Responsive system are obtained after processing HTML
template files. These files correspond to the type of page they generate in the output.

There are four types of template pages and corresponding HTML template files:

1. Main Page Template (wt_index.html file) - Used to produce the main home page of the WebHelp
Responsive output.

2. Topic Template (wt_topic.html file) - Used to generate the HTML pages associated with individual topics.
3. Search Results Template (wt_search.html file) - Used to generate the HTML page that presents the search

results.
4. Index Terms Template (wt_terms.html file) - Used to generate the HTML page that presents the

documentation index.

The HTML template files are located in the following directory:

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/

WebHelp Responsive Main Page Template

The Main Page Template is used to generate the home page of the WebHelp Responsive output. The name of the
template file is wt_index.html and it is located in the following directory:

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/

The main function of the home page is to display top level information and provide links that help you easily
navigate to any of the top level topics of the publication. These links can be rendered in either a Tiles or Tree style
of layout. The HTML page produced for the home page also consists of various other components, such as a
logo, title, menu, search field, or index link.

Transforming Documents 734

Figure 361: Examples of Main Page Components for a Tiles Style of Layout

Figure 362: Examples of Main Page Components for a Tree Style of Layout

The components that can be referenced in the wt_index.html template file are as follows:

• Publication Title
• Publication Logo
• Search Input

Transforming Documents 735

• Print Link
• Main Page Menu
• Main Page Topic Tiles
• Main Page Table of Contents
• Index Terms Link
• Link to Skin Resources

WebHelp Responsive Topic Template

The Topic Template is used to generate HTML pages for each topic in the WebHelp Responsive output. The name
of the template file is wt_topic.html and it is located in the following directory:

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/

The HTML pages produced for each topic consist of the topic content along with various other additional
components, such as a title, menu, navigation breadcrumb, print icon, or side table of contents.

Figure 363: Examples of Topic Page Components

The components that can be referenced in the wt_topic.html template file are as follows:

• Publication Title
• Publication Logo
• Search Input
• Topic Breadcrumb
• Navigational Links
• Print Link
• Topic Content
• Topic Side TOC
• Topic Feedback
• Main Page Menu
• Index Terms Link
• Child Links
• Related Links

Transforming Documents 736

• Link to Skin Resources

WebHelp Responsive Search Results Template

The Search Results Template is used to generate HTML pages that present search results in the WebHelp
Responsive output. The name of the template file is wt_search.html and it is located in the following directory:

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/

The HTML page that is produced consists of a search results component along with various other additional
components, such as a title, menu, or index link.

Figure 364: Examples of Search Results Page Components

The components that can be referenced in the wt_search.html template file are as follows:

• Publication Title
• Publication Logo
• Search Input
• Search Results
• Print Link
• Main Page Menu
• Index Terms Link
• Link to Skin Resources

WebHelp Responsive Index Terms Template

The Index Terms Template is used to generate HTML pages that present index terms in the WebHelp Responsive
output. The name of the template file is wt_terms.html and it is located in the following directory:

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/

The HTML page that is produced consists of an index terms section along with various other additional
components, such as a title, menu, or search field.

Transforming Documents 737

Figure 365: Examples of Index Terms Page Components

The components that can be referenced in the wt_terms.html template file are as follows:

• Publication Title
• Publication Logo
• Search Input
• Print Link
• Main Page Menu
• Index Terms Link
• Link to Skin Resources

WebHelp Responsive Template Components

A WebHelp Responsive template component adds dynamics to a WebHelp template page. The rendering of a
component depends on the context of where it is placed and its content depends on the transformed DITA map.

Some of the template components can be used in all the types of template pages, while some are only available
for certain template pages. For instance, the Publication Title component can be used in all pages, but the
Navigation Breadcrumb component can only be used in Topic Template pages.

To include a template component in the output of a particular type of template page, you have to reference a
specific element in the particular template file. All the elements associated with a template component should
belong to the http://www.oxygenxml.com/webhelp/components namespace.

Every component could contain custom content or reference another component. To specify where the
component content will be located in the output you can use the component_content element as a descendant
of the component element.

Example:

<whc:webhelp_search_input class="navbar-form wh_main_page_search"
 role="form" >
 <whc:include_html href="{$webhelp.include.before.search}"/>
 <div class="search_input">
 <whc:component_content/>
 </div>
</whc:webhelp_search_input>

Transforming Documents 738

The various components and where they can be used are as follows:

Publication Title [webhelp_publication_title]

This component generates the publication title in the output. To generate this component, the
webhelp_publication_title element must be specified in the template file. It can be used in all four types
of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

In the template file, the webhelp_publication_title element can be specified as in the following example:

<whc:webhelp_publication_title
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_publication_title.

Publication Logo [webhelp_logo]

This component generates a logo image in the output. To generate this component, the webhelp_logo element
must be specified in the template file. It can be used in all four types of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

In the template file, the webhelp_logo element can be specified as in the following example:

<whc:webhelp_logo
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In addition, you must also specify the path of the logo image in the webhelp.logo.image
transformation parameter (in the Parameters tab in the transformation scenario). You can set the
webhelp.logo.image.target.url parameter to generate a link to a URL when you click the logo image. If
this parameter is not set, a link to the home page will automatically be generated.

In the output, you will find an element with the class: wh_logo.

Search Input [webhelp_search_input]

This component is used to generate the input widget associated with search function in the output. To generate
this component, the webhelp_search_input element must be specified in the template file. It can be used in
all four types of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

In the template file, the wh_search_input element can be specified as in the following example:

<whc:webhelp_search_input
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_input.

Transforming Documents 739

Search Results [webhelp_search_results]

This component is used to generate a placeholder to signal where the search results will be presented in the
output. To generate this component, the webhelp_search_results element must be specified in the template
file. It can be used in the following type of template page:

• Search Results Template (wt_search.html file)

In the template file, the webhelp_search_results element can be specified as in the following example:

<whc:webhelp_search_results
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_search_results.

Topic Breadcrumb [webhelp_breadcrumb]

This component generates a breadcrumb that displays the path of the current topic. To generate this component,
the webhelp_breadcrumb element must be specified in the template file. It can be used in the following type of
template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_breadcrub element can be specified as in the following example:

<whc:webhelp_breadcrumb
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_breadcrumb. This element will contain a list with items
that correspond to the topics in the path. The first item in the list has a link to the main page with the home class.
The last item in the list corresponds to the current topic and has the active class set.

Navigational Links [webhelp_navigation_links]

This component generates navigation links to the next and previous topics. To generate this component, the
webhelp_navigation_links element must be specified in the template file. It can be used in the following
type of template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_navigation_links element can be specified as in the following example:

<whc:webhelp_navigation_links
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_navigation_links. This element will contain the links
to the next and previous topics.

Topic Content [webhelp_topic_content]

This component generates the content of a topic and it represent the content of the HTML files as they are
produced by the DITA-OT processor. To generate this component, the webhelp_topic_content element must
be specified in the template file. It can be used in the following type of template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_topic_content element can be specified as in the following example:

<whc:webhelp_topic_content
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_topic_content.

Transforming Documents 740

Topic Side TOC [webhelp_side_toc]

This component generates a mini table of contents for the current topic. It will contain links to the children of
current topic, its siblings, and all of its ancestors. To generate this component, the webhelp_side_toc element
must be specified in the template file. It can be used in the following type of template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_side_toc element can be specified as in the following example:

<whc:webhelp_side_toc
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_side_toc. This element will contain links to the topics
that are close to the current topic.

Topic Feedback [webhelp_feedback]

This component generates a placeholder for where the comments section will be presented. To generate this
component, the webhelp_feedback element must be specified in the template file. It can be used in the
following type of template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_feedback element can be specified as in the following example:

<whc:webhelp_feedback
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Child Links [webhelp_child_links]

For all topics with subtopics (child topics), this component generates a list of links to each child topic. To
generate this component, the webhelp_child_links element must be specified in the template file. It can be
used in the following type of template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_child_links element can be specified as in the following example:

<whc:webhelp_child_links
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Related Links [webhelp_related_links]

For all topics that contain related links, this component generates a list of related links that will appear in the
output. To generate this component, the webhelp_related_links element must be specified in the template
file. It can be used in the following type of template page:

• Topic Template (wt_topic.html file)

In the template file, the webhelp_related_links element can be specified as in the following example:

<whc:webhelp_related_links
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

Main Page Topic Tiles [webhelp_tiles]

This component generates the tiles section in the main page. This section will contain a tile for each root topic
of the published documentation. Each topic tile has three sections that corresponds to the topic title, short
description, and image. To generate this component, the webhelp_tiles element must be specified in the
template file. It can be used in the following type of template page:

• Main Page Template (wt_index.html file)

In the template file, the webhelp_tiles element can be specified as in the following example:

<whc:webhelp_tiles

Transforming Documents 741

 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_tiles.

If you want to control the HTML structure that is generated for a WebHelp tile you can also specify the template
for a tile by using the whc:webhelp_tile component, as in the following example:

<whc:webhelp_tile class="col-md-4">
 <!-- Place holder for tile's image -->
 <whc:webhelp_tile_image/>

 <div class="wh_tile_text">
 <!-- Place holder for tile's title -->
 <whc:webhelp_tile_title/>

 <!-- Place holder for tile's shordesc -->
 <whc:webhelp_tile_shortdesc/>
 </div>
</whc:webhelp_tile>

For information about customizing the tiles, see Configuring the Tiles on the Main Page on page 750.

Main Page Table of Contents [webhelp_main_page_toc]

This component generates a simplified Table of Contents. It is simplified because it contains only two levels from
the documentation hierarchy. To generate this component, the webhelp_main_page_toc element must be
specified in the template file. It can be used in the following type of template page:

• Main Page Template (wt_index.html file)

In the template file, the webhelp_main_page_toc element can be specified as in the following example:

<whc:webhelp_main_page_toc
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_main_page_toc.

Main Page Menu [webhelp_topics_menu]

This component generates a menu with all the documentation topics. To generate this component, the
webhelp_topics_menu element must be specified in the template file. It can be used in the following type of
template page:

• Main Page Template (wt_index.html file)

In the template file, the webhelp_topics_menu element can be specified as in the following example:

<whc:webhelp_topics_menu
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_topics_menu.

You can control the maximum level of topics that will be included in the menu using the
webhelp.top.menu.depth transformation parameter (in the Parameters tab of the transformation scenario.

For information about customizing the menu, see Customizing the Menu on page 752.

Print Link [webhelp_print_link]

This component is used to generate a print icon that opens the print dialog box for your particular browser. To
generate this component, the webhelp_print_link element must be specified in the template file. It can be
used in all four types of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

Transforming Documents 742

In the template file, the webhelp_print_link element can be specified as in the following example:

<whc:webhelp_print_link
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_print_link.

Include HTML files [webhelp_include_html]

This component can be used to include custom HTML files. To generate this component, the include_html
element must be specified in the template file. It can be used in all four types of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

In the template file, the include_html element can be specified as in the following example:

<whc:include_html href="${wh.param}"/>

Where the href can have the following values:

• any URL - In this case, the file to be included is specified as an URL.
• {$oxygen-webhelp-template-dir}/file_to_include.html - To include resources that are part of the template.
• ${webhelp.param} - To include a resource whose path is specified through a WebHelp transformation scenario

parameter. The value of this parameter can be a simple HTML fragment, in which case it will be copied to the
output.

Index Terms Link [webhelp_indexterms_link]

This component can be used to generate a link to the index terms page (indexterms.html). If the published
documentation does not contains any index terms, then the link will not be generated. To generate this
component, the webhelp_indexterms_link element must be specified in the template file. It can be used in
all four types of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

In the template file, the webhelp_indexterms_link element can be specified as in the following example:

<whc:webhelp_indexterms_link
 xmlns:whc="http://www.oxygenxml.com/webhelp/components"/>

In the output, you will find an element with the class: wh_indexterms_link. This element will contain a link to
the indexterms.html page.

Link to Skin Resources [webhelp_skin_resources]

This component can be used to add a link to resources for the current WebHelp skin (such as the CSS file). To
generate this component, the webhelp_skin_resources element must be specified in the template file. It can
be used in all four types of template pages:

• Main Page Template (wt_index.html file)
• Topic Template (wt_topic.html file)
• Search Results Template (wt_search.html file)
• Index Terms Template (wt_terms.html file)

In the template file, the webhelp_skin_resources element can be specified as in the following example:

<whc:webhelp_skin_resources/>

Transforming Documents 743

In the output, you will find a link to the skin resources.

Customizing the WebHelp Responsive Output

To change the overall appearance of your WebHelp Responsive output, you can use several different
customization methods or a combination of methods. If you are familiar with CSS and coding, you can style your
WebHelp output through your own custom stylesheets. You can also customize your output by modifying existing
templates, create your own, or by configuring certain options and parameters in the transformation scenario.

This section includes topics that explain various ways to customize your WebHelp Responsive system output,
such as how to configure the tiles on the main page, add logos in the title area, integrate with social media,
localizing the interface, and much more.

WebHelp Responsive Customization Methods

There are several methods that you can use to customize your WebHelp Responsive output. This topic provides
information on each of the methods and highlights its advantages so that you can choose the best possible
method based upon your needs.

Insert Custom XHTML Fragments in Predefined Placeholders

The WebHelp Responsive template contains a series of component placeholders. Some of these placeholders are
left empty in the default output configurations, but you can use them to display custom content. This method is
recommended if you want to use an existing skin and simply make some minor changes or additions in certain
locations within the final output.

Advantages:

• This method is very easy, since the fragments for the placeholders can be specified in the transformation
scenario.

• Advanced knowledge of CSS styling is not required for this method.

Each such placeholder has an associated parameter in the transformation scenario Parameters tab. These
predefined empty placeholder parameters are illustrated and described below:

Figure 366: Predefined Placeholders Diagram

Each of these parameters can hold either an XHTML fragment or a path to a file that contains a well-formed
XHTML fragment:
1- webhelp.fragment.head

In the generated output it displays a given XHTML fragment as a page header. The value of the parameter can
be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

Transforming Documents 744

2- webhelp.fragment.before.body
In the generated output it displays a given XHTML fragment before the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

3- webhelp.fragment.before.logo_and_title
In the generated output it displays a given XHTML fragment before the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

4- webhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

5- webhelp.fragment.before.top_menu
In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

6- webhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

7- webhelp.fragment.before.main.page.search
In the generated output it displays a given XHTML fragment before the search field. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

8- webhelp.fragment.welcome
In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

9- webhelp.fragment.after.main.page.search
In the generated output it displays a given XHTML fragment after the search field. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

10- webhelp.fragment.before.toc_or_tiles
In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

11- webhelp.fragment.after.toc_or_tiles
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

12- webhelp.fragment.footer
In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

13- webhelp.fragment.after.body
In the generated output it displays a given XHTML fragment after the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

EXAMPLE:

To insert a message above the search field component in the main page of the output, follow this procedure:

1. Edit the WebHelp Responsive transformation scenario.
2. Go to Parameters tab and find the parameter associated with the place holder that you want to use. In this

case, it is called webhelp.fragment.welcome.
3. Edit the parameter. Depending on the size of the content you want to add, you can insert one of the following:

• A small well-formed XHTML fragment, such as: <i>Welcome to our user guide</i>.
• A path to a file that contains well-formed XHTML content.

Transforming Documents 745

Customize WebHelp Output with a Custom CSS

This method is recommended if you just want to adapt an existing skin (that is very close to what you need)
and only need to change the styling of the final output. For example, this might be the case if you simply want to
change a color, or adjust some of the margins or paddings of certain components.

Advantages:

• This method could be used as a quick and easy way to make small styling changes.
• The custom CSS can be distributed with your project and shared with other members of your team.
• This method can be used for advanced and precise styling.

Additional Notes:

• The fonts, images, and other resources must be stored in a remote server location.
• This type of customization will not appear in the Templates tab of the transformation scenario. Instead, the

custom CSS needs to be set as a parameter of an existing transformation scenario.

To set a custom CSS to a transformation scenario:

1. Edit the WebHelp Responsive transformation scenario.
2. Open the Parameters tab.
3. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the

args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed. Also, if your customization CSS requires additional resources, you can
copy them to the generated output by specifying the webhelp.custom.resources parameter.

If you are using DITA, you could also override the default XSLT templates that are used for WebHelp
transformations by using some extension points. For information about this method, see Overriding an XSLT
Processing Step of the DITA WebHelp Transformation on page 759.

Create or Customize a WebHelp Responsive Skin

This method is recommended if you want a design that is not similar to any of the predefined skins, or if you
want to make a lot of changes to one of the existing skins. This method is also useful if you want to distribute
additional resources (such as fonts and images) together with a custom CSS.

Advantages:

• The customized skin will be available in the Templates tab of the transformation scenario.
• The resources are encapsulated into the skin directory and can be shared with other team members, along

with a custom CSS file.

Additional Notes:

• This method requires access to the installation folder, or the use of an external DITA-OT engine (with the
WebHelp plugin installed).

To create a new WebHelp Responsive skin, follow this procedure:

1. Locate the following folder in your DITA-OT directory (DITA-OT-DIR):

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/variants/

2. Here you can see some subdirectories corresponding to different variants for the same template. For instance,
the default directories are tiles and tree.

3. In each of these variants, you will find a directory for each of the skins (for example, the default skins and their
corresponding directories are: flowers, green, light, mechano, orange, etc.)

4. Duplicate one of the skin folders and rename it to whatever you want your new skin to be identified as.
5. Edit the skin.css file and customize it the way you want. If your customization of the CSS file requires

additional resources (such as images, fonts, or other CSS files), they need to be placed in the resources
folder at the same level with the skin.css file.

Result: Your new skin should now be included in the list of skins in the Templates tab of the transformation
scenario.

Transforming Documents 746

Tip: During development, you may want to regularly test your customization. To shorten the publishing time of
your tests, use a small set of test files (you could use one of the Oxygen XML Developer sample projects). Also,
you can use your web browser CSS inspector tool to lookup the CSS classes you want to modify.

Create a New WebHelp Responsive Template

This method can be used when you need to make significant structural changes to the WebHelp output.
For example, if you want to move some components to other positions, or if you want to use a different
responsive front-end framework than the default Bootstrap framework (for instance, if you want to switch to ZURB
Foundation).

Advantages:

• This method allows you to fully customize the output.
• This method allows you to change the structure of the generated HTML files.
• You can create your own skins for the new template.

Additional Notes:

• This method requires access to the installation folder, or the use of an external DITA-OT engine (with the
WebHelp plugin installed).

To create a new WebHelp Responsive template, follow these steps:

1. Locate the following folder in your DITA-OT directory (DITA-OT-DIR):

DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/

2. Duplicate the bootstrap folder and rename it to whatever you want your new template to be identified as (for
example, myTemplate).

3. Customize the structure of the new template according to your needs. For example, if you only want to keep
one of the template variants, open the myTemplate/variants folder and delete all of its subdirectories,
except for that one (for instance, the tiles directory). Keep in mind that the structure of the template
directory is important. The names of folders at certain levels correspond to the names of templates and skins,
while components and resources are defined and referenced in certain files or folders at specific locations
within the directory structure. For more information, see WebHelp Responsive Template Directory Structure on
page 732.

4. You can also customize the structure of the skins within the template variants. For example, if you only want
to keep one of the skins in the tiles variant, open the myTemplate/variants/tiles folder and delete all
of its subdirectory skins, except for that one (for instance, the light directory).

5. Edit the skin.css file that is located in the skin directory (for example, myTemplate/variants/tiles/
light) and customize it the way you want. If your customization of the CSS file requires additional resources
(such as images, fonts, or other CSS files), they need to be placed in the resources folder at the same level
with the skin.css file.

Result: Your new templates and skins should now be included in the Templates tab of the transformation
scenario.

Tip: During development you regularly need to test your customization. To shorten the publishing time of your
test, use a small project (you could use one of the Oxygen XML Developer sample projects). Also, you can use
your web browser CSS inspector tool to lookup the CSS classes you want to modify.

For more information about WebHelp Responsive templates, see the WebHelp Responsive Template Mechanism
on page 731 section.

Copying Additional Resources to WebHelp Output Directory

To copy additional resources (such as JavaScript, CSS or other resources) to the output directory of a WebHelp
system, follow these steps:

1. Place all your resources in the same directory.
2. Edit the WebHelp transformation scenario.
3. Go to the Parameters tab.

Transforming Documents 747

http://getbootstrap.com/
http://foundation.zurb.com/
http://foundation.zurb.com/

4. Edit the value for the webhelp.custom.resources parameter and set it to the absolute path of the directory in
step 1.

5. Click OK to save the changes to the transformation scenario.
All files from the new directory will be copied to the root of the WebHelp output directory.

Adding Custom HTML Content in WebHelp Responsive Output

You can add custom HTML content in the WebHelp Responsive output by inserting it in a well-formed XML
file that will be referenced in the transformation scenario. This content may include references to additional
JavaScript, CSS, and other types of resources, or such resources can be inserted inline within the HTML content
that is inserted in the XML file.

To include custom HTML content in the WebHelp Responsive output files, follow these steps:

1. Insert the HTML content in a well-formed XML file. There are several things to consider in regards to this XML
file:

a. Well-Formedness - If the file is not a Well-formed XML document (or fragments are not well-formed), the
transformation will fail.

A common use case is if you want to include several script or link elements. In this case, the XML
fragment has multiple root elements and to make it well-formed, you can wrap it in an html element. This
element tag will be filtered out and only its children will be copied to the output documents. Similarly, you
can wrap your content in head, body, html/head, or html/body elements.

b. Referencing Resources in the XML File - You can include references to local resources (such as JavaScript
or CSS files) by using the predefined ${oxygen-webhelp-output-dir} macro to specify their paths
relative to the output directory:

<html>
 <script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"/>
 <link rel="stylesheet" type="text/css"
 href="${oxygen-webhelp-output-dir}/css/test.css" />
</html>

If you want that the path of your resource to be relative to the templates directory, you can use the
${oxygen-webhelp-template-dir} macro.

To copy the referenced resources to the output directory, follow the procedure in: Copying Additional
Resources to WebHelp Output Directory on page 747.

c. Inline JavaScript or CSS Content - If you want to include inline JavaScript or CSS content in the XML file, it
is important to place this content inside an XML comment, as in the following examples:

JavaScript:

<script type="text/javascript">
 <!--
 /* Include JavaScript code here. */

 function myFunction() {
 return true;
 }
 -->
</script>

CSS:

<style>
 <!--
 /* Include CSS style rules here. */

 *{
 color:red
 }
 -->
</style>

2. Edit the WebHelp Responsive transformation scenario.
3. Go to the Parameters tab.
4. Edit the value of the webhelp.fragment.head parameter and set it to the absolute path of the XML file created in

step 1. Your additional content will be included at the end of the head element of your output document.

Transforming Documents 748

Note: If you want to insert the content in another location within the output document, you can reference the
XML file in any of the other parameters listed in Insert Custom XHTML Fragments in Predefined Placeholders
on page 744.

5. Click OK to save the changes to the transformation scenario.

Related Information:
Copying Additional Resources to WebHelp Output Directory on page 747
WebHelp Responsive Template Directory Structure on page 732
WebHelp Responsive Customization Methods on page 744

Adding a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp system by simply using a parameter in the transformation
scenario to point to your favicon image. This is available for DITA and DocBook WebHelp systems using WebHelp
Responsive, WebHelp Responsive with Feedback, WebHelp Classic, WebHelp Classic with Feedback, or WebHelp
Classic Mobile transformation scenarios.

To add a favicon, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.
2. Locate the webhelp.favicon parameter and enter the file path that points to the image that will be use as

the favicon.
3. Run the transformation scenario.

Adding a Logo Image in the Title Area

To add a logo in the title area of your WebHelp output, follow this procedure:

1. Edit a WebHelp transformation scenario, then open the Parameters tab.
2. Specify the path to your logo in the webhelp.logo.image parameter.
3. If you also want to add a link to your website when you click the logo image, set the URL in the

webhelp.logo.image.target.url parameter.
4. Run the transformation scenario.

Adding a Welcome Message in the Home Page

The main page of the WebHelp Responsive output contains a set of empty placeholders that can be
used to display customized text fragments. These placeholders are available to you through WebHelp
Responsive transformation scenario parameters. One of these placeholders (identified through the
webhelp.fragment.welcome parameter) was designed to display text content above the search box in the
main page.

To add a customized welcome message in the main page of the WebHelp Responsive output, follow this
procedure:

1. Edit a WebHelp Responsive transformation scenario.
2. Open the Templates tab and choose a skin.
3. Open the Parameters tab and edit the webhelp.fragment.welcome parameter. The value of this parameter

can be one of the following:

• A small well-formed XHTML fragment (such as: <i>Welcome to the User Guide</i>).
• Path to a file that contains well-formed XHTML content.

4. Click OK, then click the Apply associated button to execute the transformation scenario.

Adding Video and Audio Objects in DITA WebHelp Output

You can insert references to video and audio media resources (such as videos, audio clips, or embedded HTML
frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played directly
in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

Transforming Documents 749

Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video by adding an object element, as in one of the following
examples:

<object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>

or, instead of the data attribute, you can specify the video using a parameter like this:

<object outputclass="video">
 <param name="src" value="videos/MyVideo.mp4"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 video element.

<video controls="controls"><source type="video/mp4" src="MyVideo.mp4"></source>
</video>

Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip by adding an object element, as in one of the
following examples:

<object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>

or, instead of the data attribute, you can specify the video using a parameter like this:

<object outputclass="audio">
 <param name="src" value="audio/MyClip.mp3"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 audio element.

<audio controls="controls"><source type="audio/mpeg" src="MyClip.mp3"></source>
</audio>

Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by manually adding an object element, as
in one of the following examples:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

or, instead of the data attribute, you can specify the object using a parameter like this:

<object outputclass="iframe">
 <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 iframe element.

<iframe controls="controls" src="https://www.youtube.com/embed/m_vv2s5Trn4">
</iframe>

For more information, see the following video demonstration: https://www.oxygenxml.com/demo/
Media_Objects.html.

Configuring the Tiles on the Main Page

The tiles version of the main page of the WebHelp Responsive output displays a tile for each topic found on the
first level of the DITA map. However, you might want to customize the way they look or even to hide some of
them.

Depending on your particular setup, you can choose to customize the these tiles either by setting metadata
information in the DITA map or by customizing the CSS that is associated with the DITA map.

Transforming Documents 750

https://www.oxygenxml.com/demo/Media_Objects.html
https://www.oxygenxml.com/demo/Media_Objects.html

How to Hide Some of the Tiles

If your documentation is very large or there is a large number of topics on the first level, you might want to hide
some of the tiles. Also, this might be useful if you only want to display the topics in the first page that are most
relevant to your intended audience.

There are two methods for doing this. One of them involves editing the DITA map and marking the topics that do
not need to be displayed as tiles, and another one that uses a small CSS customization level to hide some tiles
identified by the ID of the topic.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics on the first level of the DITA map will not be
displayed as a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Developer.
2. Add the following metadata information in the topicref element (or any of its specializations) for each first-

level topic that you do not want to be displayed as a tile:

<topicmeta>
 <data name="wh-tile">
 <data name="hide" value="yes"/>
 </data>
</topicmeta>

Customizing the CSS

To customize the CSS to control which topics on the first level of the DITA map will not be displayed as a tile,
follow these steps:

1. Make sure you set an ID on the topic you want to hide.
2. Create a new CSS file that contains a rule that hides the tile generated for the topic (identified in the following

example by the topic ID growing-flowers). The CSS file should have content that is similar to this:

.wh_tile [data-id='growing-flowers'] {
 display:none;
}

3. Use the Customizing WebHelp Output with a Custom CSS method to pass the CSS file you just created to the
transformation scenario.

How to Add an Image to the Tiles

There are two methods that you can use to add an image to a tile. One of them involves editing the DITA map, and
the other uses a CSS customization.

Editing the DITA Map

To edit the metadata in the DITA map to set an image to be displayed in a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Developer.
2. Add the following metadata information in the topicref element (or any of its specializations) for each first-

level topic that will have an image displayed in the corresponding tile:

<topicmeta>
 <data name="wh-tile">
 <data name="image" href="img/tile-image.png" format="png">
 <data name="attr-width" value="64"/>
 <data name="attr-height" value="64"/>
 </data>
 </data>
</topicmeta>

Note: The attr-width and attr-height attributes can be used to control the size of the image, but they
are optional.

Customizing the CSS

To customize the CSS to set an image to be displayed in a tile, follow these steps:

1. Make sure you set an ID on the topic that you want the tile include an image.

Transforming Documents 751

2. Create a new CSS file that contains a rule that associates an image with a specific tile. The CSS file should
have content that is similar to this:

.wh_tile[data-id='growing-flowers']> div {
 background-image:url('resources/flower.png');
}

3. Use the Customizing WebHelp Output with a Custom CSS or the Create a WebHelp Responsive Skin method to
pass the CSS file you just created to the transformation scenario.

Change Numbering Styles for Ordered Lists

Ordered lists (ol) are usually numbered in XHTML output using numerals. If you want to change the numbering to
alphabetical, follow these steps:

1. Define a custom outputclass value and set it as an attribute of the ordered list, as in the following example:

<ol outputclass="number-alpha">
 A
 B
 C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{
 list-style-type:lower-alpha;
}

3. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
4. Run the transformation scenario.

CSS Styling to Customize WebHelp Output

One way to customize WebHelp output is to use custom CSS styling. This method can be used to make small,
simple styling changes or more advanced, precise changes. To implement the styling in your WebHelp output, you
simply need to create the custom CSS file and reference it in your transformation scenario.

As a practical example, to hide the horizontal separator line between the content and footer, follow these steps:

1. Create a custom CSS file that contains the following snippet:

.footer_separator {
 display:none;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Run the transformation scenario.

Customizing the Menu

By default, the menu component is displayed in all WebHelp Responsive pages. However, you might want to hide
it completely, or only display some of its menu entries.

How to Hide Some of the Menu Entries

There are two methods for doing this. One of them involves editing the DITA map and marking the topics that do
not need to be included in the menu, and another one that uses a small CSS customization.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics will not be displayed in the menu, follow these steps:

Transforming Documents 752

1. Open the DITA map in the Text editing mode of Oxygen XML Developer.
2. Add the following metadata information in the topicref element (or any of its specializations) for each topic

you do not want to be displayed in the menu:

<topicmeta>
 <data name="wh-menu">
 <data name="hide" value="yes"/>
 </data>
</topicmeta>

Customizing the CSS

To customize the CSS to control which topics will not be displayed in the menu, follow these steps:

1. Make sure you set an ID on the topic that you do not want to include in the menu.
2. Create a new CSS file that contains a rule that hides the menu entry generated for the topic (identified by the

topic ID growing-flowers in the following example). The CSS file should have content that is similar to this:

.wh_top_menu *[data-id='growing-flowers'] {
 display:none;
}

3. Use the Customizing WebHelp Output with a Custom CSS method to pass the CSS file you just created to the
transformation scenario.

How to Hide the Entire Menu

If you do not want to include a main menu in the pages of the WebHelp Responsive output, you can instruct the
transformation scenario to skip the menu generation completely. To do so, follow this procedure:

1. Edit a WebHelp Responsive transformation scenario.
2. Open the Templates tab and choose a skin.
3. Open the Parameters tab and set the value of the webhelp.show.top.menu parameter to no.
4. Click OK, then click the Apply associated button to execute the transformation scenario.

Editing Scoring Values of Tag Elements in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that
matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated
for the search results. Oxygen XML Developer includes a properties file that defines the scoring values for tag
elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

1. Edit the scoring properties file for DITA or DocBook WebHelp systems. The properties file includes
instructions and examples to help you with your customization.
a) For DITA WebHelp systems, edit the following file: DITA-OT-DIR\plugins\com.oxygenxml.webhelp

\indexer\scoring.properties.
b) For DocBook WebHelp system, edit the following file: [OXYGEN_INSTALL_DIR]\frameworks\docbook

\xsl\com.oxygenxml.webhelp\indexer\scoring.properties.
The values that can be edited in the scoring.properties file:

h1 = 10
h2 = 9
h3 = 8
h4 = 7
h5 = 6
h6 = 5
b = 5
strong = 5
em = 3
i=3
u=3
div.toc=-10
title=20
div.ignore=ignored
meta_keywords = 20
meta_indexterms = 20
meta_description = 25
shortdesc=25

2. Save your changes to the file.

Transforming Documents 753

3. Re-run your WebHelp system transformation scenario.

Exclude Certain DITA Topics from WebHelp Search Results

The WebHelp Search engine does not index DITA topics that have the @search attribute set to no. This is useful
if you have topics in your DITA map structure that you do not want to be included in search results for your
WebHelp system.

To exclude DITA topics from WebHelp search results, follow these steps:

1. Edit the DITA map and for any topicref that you want to exclude from search results, set the search
attribute to no.
For example:

<topicref href="../topics/internal-topic1.dita" search="no"/>

2. Save your changes to the DITA map.
3. Re-run your WebHelp system transformation scenario.

Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content
across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to
be flagged. Generally, flagging is supported for block elements (such as paragraphs), but not for phrase-level
elements within a paragraph. This ensures that the images that will flag the content are easily scanned by the
reader, instead of being buried in text.

Follow this procedure:

1. Create a DITA filter file in the directory where you want to add the file. Give the file a descriptive name, such as
audience-flag-build.ditaval.

2. Define the property of the element you want to be flagged. For example, if you want to flag elements that have
the audience attribute set to programmer, the content of the DITAVAL file should look like the following
example:

<?xml version="1.0" encoding="UTF-8"?>
<val>
 <prop att="audience" val="programmer" action="flag"
 img="D:\resource\delta.gif" alt="sample alt text"/>
</val>

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in
the DITAVAL file.

3. Specify the DITAVAL file in the Filters tab of the transformation scenario.
4. Run the transformation scenario.

Integrating Social Media and Google Tools in WebHelp Output

Oxygen XML Developer includes support for integrating some of the most popular social media sites in WebHelp
output.

How to Add a Facebook Like Button in WebHelp Responsive Output

To add a Facebook™ Like widget to your WebHelp output, follow these steps:

1. Go to the Facebook Developers website.
2. Fill-in the displayed form, then click the Get Code button.

A dialog box that contains code snippets is displayed.
3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml.
Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

Transforming Documents 754

https://developers.facebook.com/docs/plugins/like-button

The content of the XML file should look like this:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!--
 (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 -->
 </script>
 <div class="fb-like" data-layout="standard" data-action="like"
 data-show-faces="true" data-share="true"/>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or
without feedback) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters
that begin with webhelp.fragment. Set that parameter to reference the facebook-widget.xml file that
you created earlier.

7. Click Ok.
8. Run the transformation scenario.

How to Add a Google+ Button in WebHelp Responsive Output

To add a Google+ widget to your WebHelp Responsive output, follow these steps:

1. Go to the Google Developers website.
2. Fill-in the displayed form.

The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called

google-plus-button.xml.
Make sure that the content of the file is well-formed.

The content of the XML file should look like this:

<div id="google-plus">
 <!-- Place this tag in your head or just before your close body tag. -->
 <script src="https://apis.google.com/js/platform.js" async defer></script>

 <!-- Place this tag where you want the +1 button to render. -->
 <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or
without feedback) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters
that begin with webhelp.fragment. Set that parameter to reference the google-plus-button.xml file
that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Add Tweet Button in WebHelp Responsive Output

To add a Twitter™ Tweet widget to your WebHelp Responsive output, follow these steps:

Transforming Documents 755

https://developers.google.com/+/web/+1button/

1. Go to the Tweet button generator page.
2. Fill-in the displayed form.

The Preview and code area displays the code.
3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML

file called tweet-button.xml.
Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">
 Tweet
 <script>
 <!--
 !function (d, s, id) {
 var
 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)
 ? 'http': 'https';
 if (! d.getElementById(id)) {
 js = d.createElement(s);
 js.id = id;
 js.src = p + '://platform.twitter.com/widgets.js';
 fjs.parentNode.insertBefore(js, fjs);
 }
 }
 (document,
 'script', 'twitter-wjs');
 -->
 </script>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or
without feedback) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters
that begin with webhelp.fragment. Set that parameter to reference the tweet-button.xml file that you
created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Integrate Google Analytics in WebHelp Responsive Output

To allow your WebHelp Responsive system to benefit from Google Analytics reports, follow these steps:

1. Create a new Google Analytics account (if you do not already have one) and log on.
2. Choose the Analytics solution that fits the needs of your website.
3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID.

A Tracking Code looks like this:

<script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');
 ga('send', 'pageview');
</script>

4. Save the Tracking Code (obtained in the previous step) in a new HTML file called googleAnalytics.html.
5. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the

Document > Transformation menu.

Transforming Documents 756

https://publish.twitter.com

6. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or
without feedback) and click the Duplicate button to open the Edit Scenario dialog box.

7. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters
that begin with webhelp.fragment. Set that parameter to reference the googleAnalytics.html file that
you created earlier.

8. Click Ok.
9. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Integrate Google Search in WebHelp Responsive Output

You can integrate Google Search into your WebHelp Responsive output.

To allow your WebHelp system to use Google Search, follow these steps:

1. Go to the Google Custom Search Engine page using your Google account.
2. Press the Create a custom search engine button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should

obtain a code snippet.
A Google Search script looks like this:

<script>
 (function() {
 var cx =
 '000888210889775888983:8mn4x_mf-yg';
 var gcse = document.createElement('script');
 gcse.type = 'text/javascript';
 gcse.async = true;
 gcse.src = (document.location.protocol == 'https:' ?
 'https:' : 'http:') + '//www.google.com/cse/cse.js?cx=' + cx;
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(gcse, s);
 }
)();
</script>

4. Save the script into a well-formed HTML file called googlecse.html.
5. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the

Document > Transformation menu.
6. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or

without feedback) and click the Duplicate button to open the Edit Scenario dialog box.
7. Switch to the Parameters tab and edit the webhelp.google.search.script parameter to reference the

googlecse.html file that you created earlier.
8. You can also use the webhelp.google.search.results parameter to choose where to display the search

results.
a) Create an HTML file with the following content: <div class="gcse-searchresults-only" data-

autoSearchOnLoad="true" data-queryParameterName-"searchQuery"></div> (you must
use the HTML5 version for the GCSE). For more information about other supported attributes, see Google
Custom Search: Supported Attributes.

b) Set the value of the webhelp.google.search.results parameter to the file path of
the file you just created. If this parameter is not specified, the following code is used: <div
class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-
queryParameterName="searchQuery"></div>.

9. Click Ok.
10.Run the transformation scenario.

Related Information:
Integrating Social Media and Google Tools in WebHelp Output on page 754

Transforming Documents 757

https://developers.google.com/custom-search/docs/element#html5
https://developers.google.com/custom-search/docs/element#supported_attributes
https://developers.google.com/custom-search/docs/element#supported_attributes

Localizing the Email Notifications of WebHelp with Feedback Systems

The feedback-enabled WebHelp systems use emails to notify users when comments are posted. These emails
are based on templates stored in the WebHelp directory. The default messages are in English, French, German,
and Japanese. These messages are copied into the WebHelp system deployment directory during the execution
of the corresponding transformation scenario.

Suppose that you want to localize the emails into Dutch (nl). Follow these steps:

DocBook WebHelp Classic with Feedback

1. Create the following directory:

[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp
\resources\php\templates\nl

2. Copy all English template files from [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl
\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\en and paste them into
the directory you just created.

3. Edit the HTML files from the [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl
\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl directory and translate
the content into Dutch.

4. Start Oxygen XML Developer and edit the DocBook WebHelp Classic with Feedback transformation scenario.
5. In the Parameters tab, look for the l10n.gentext.default.language parameter and set its value to the

appropriate language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us), the
transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

DITA WebHelp Classic with Feedback or WebHelp Responsive with Feedback

1. Create the following directory:

DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates
\nl

2. Copy all English template files from DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-
webhelp\resources\php\templates\en and paste them into the directory you just created.

3. Edit the HTML files from the DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp
\resources\php\templates\nl directory and translate the content into Dutch.

4. Start Oxygen XML Developer and edit the DITA Map WebHelp Classic with Feedback or DITA Map WebHelp
Responsive with Feedback transformation scenario.

5. In the Parameters tab, look for the args.default.language parameter and set its value to the appropriate
language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us), the
transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

Localizing the Interface of WebHelp Output (for DITA Map Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the DITA-OT-DIR/plugins/
com.oxygenxml.webhelp/oxygen-webhelp/resources/localization folder. Translation files have the
strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes. For example, the US English
text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DITA map transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in DITA-OT-DIR/plugins/com.oxygenxml.webhelp/
oxygen-webhelp/resources/localization directory (for example, the Canadian French file would be:
strings-fr-ca.xml). If it does not exist, create one starting from the strings-en-us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the
following format: <str name="Label name">Caption</str>.

Transforming Documents 758

3. Run the predefined transformation scenario called Run DITA OT Integrator by executing it from the Apply
Transformation Scenario(s) dialog box. If the integrator is not visible, select the Show all scenarios action that
is available in the Settings drop-down menu.

4. Make sure that the new XML file that you created in the previous two steps is listed in the file DITA-
OT-DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization/
strings.xml. In our example for the Canadian French file, it should be listed as: <lang xml:lang="fr-
ca" filename="strings-fr-ca.xml"/>.

5. Edit any of the DITA Map to WebHelp transformation scenarios (with or without feedback, or the mobile
version) and set the args.default.language parameter to the code of the language you want to localize (for
example, fr-ca for Canadian French).

6. Run the transformation scenario to produce the WebHelp output.

Related Information:
Searching Japanese Content in WebHelp Pages on page 759

Searching Japanese Content in WebHelp Pages

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can be
used. This analyzer is included in the Oxygen XML Developer installation kit.

Activating Japanese Indexing in DITA WebHelp Systems

To activate the Japanese indexing in your WebHelp system generated from DITA content, follow these steps:

1. Set the language for your content to Japanese with one of the following two methods:

• Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the
args.default.language parameter to ja-jp.

• Set the xml:lang attribute on the root of the DITA map and the referenced topics to ja-jp.
2. For the analyzer to work properly, search terms that are entered into the WebHelp search text field must be

separated by spaces.
3. Run the DITA to WebHelp transformation scenario to generate the output.

Optionally a Japanese user dictionary can be set with the webhelp.search.japanese.dictionary
parameter.

Activating Japanese Indexing in DocBook WebHelp Systems

To activate the Japanese indexing in your WebHelp system generated from DocBook content, follow these steps:

1. Edit a DocBook to WebHelp transformation scenario and in the Parameters tab, set the value of the
l10n.gentext.default.language parameter to ja.

2. Run the transformation scenario to generate the output.

Related Information:
Localizing the Interface of WebHelp Output (for DITA Map Transformations) on page 758
Localizing the Interface of WebHelp Output (for DocBook Transformations) on page 792

Overriding an XSLT Processing Step of the DITA WebHelp Transformation

Since WebHelp output is primarily obtained by running XSLT transformations over the DITA input files (through
the DITA Map WebHelp transformation scenarios), one customization method would be to override the default
XSLT templates that are used by the WebHelp transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp transformation.

• The first method is to use one of the WebHelp XSLT-import extension points that allow you to import an XSLT
stylesheet so that it becomes part of the normal build. This method uses the same mechanism as the DITA-
OT XSLT-import extension points. Note that this method will affect all the outputs generated with the WebHelp
system.

• The second method implies that you will create a DITA-OT extension plugin with a custom transtype and use an
Ant build file to define the transformation process. The main difference from the first customization method

Transforming Documents 759

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html

is that you will not affect all WebHelp transformations. Only the transformations that use the declared plugin
transtype will be affected.

WebHelp XSLT-Import and XSLT-Parameter Extension Points

The WebHelp XSLT-Import extension points allows you to extend the XSLT stylesheets associated with some of
the WebHelp transformation steps. The DITA-OT plug-in installer adds an XSLT import statement in the default
WebHelp XSLT so that the XSLT stylesheet referenced by the extension point becomes part of the normal build.

Example:

<plugin id="com.oxygenxml.webhelp.extension">
 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp" file="xsl/fixup.xsl"/>
</plugin>

Attention: The customizations you make by using this extension point will affect all WebHelp
transformations. If you want to have a customization that is only available for a certain transformation,
please use the Overriding a WebHelp XSLT Stylesheet from an Ant Build File method.

XSLT-Import Extension Points

The following extension points are available:

com.oxygenxml.webhelp.xsl.dita2webhelp
Extension point to override the XSLT stylesheet (dita2webhelpImpl.xsl) that produces an HTML file for
each DITA topic. Depending on the type of WebHelp transformation you are currently using, the path to this
stylesheet is as follows:

• WebHelp Classic Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita
\desktop\dita2webhelpImpl.xsl

• WebHelp Classic Mobile Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\mobile\dita2webhelpImpl.xsl

• WebHelp Responsive Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\responsive\dita2webhelpImpl.xsl

com.oxygenxml.webhelp.xsl.createMainFiles
Extension point to override the XSLT stylesheet (createMainFilesImpl.xsl) that produces the WebHelp
main HTML page (index.html). Depending on the type of WebHelp transformation you are currently using,
the path to this stylesheet is as follows:

• WebHelp Classic Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita
\desktop\createMainFilesImpl.xsl

• WebHelp Classic Mobile Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\mobile\createMainFilesImpl.xsl

• WebHelp Responsive Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\responsive\createMainFilesImpl.xsl

com.oxygenxml.webhelp.xsl.createTocXML
Extension point to override the XSLT stylesheet (tocDita.xsl) that produces the toc.xml file. This
file contains information extracted from the DITA map and it is mainly used to construct the WebHelp
Table of Contents and navigational links. The path to this stylesheet is: DITA-OT-DIR\plugins
\com.oxygenxml.webhelp\xsl\dita\tocDita.xsl.

XSLT-Parameter Extension Points

If your customization stylesheet declares one or more XSLT parameters and you want to control their values from
the transformation scenario, you can use one of the following XSLT parameter extension points:

com.oxygenxml.webhelp.xsl.dita2webhelp.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.dita2webhelp extension point.

Transforming Documents 760

com.oxygenxml.webhelp.xsl.createMainFiles.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.createMainFiles extension point.

com.oxygenxml.webhelp.xsl.createTocXml.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.createTocXml extension point.

Related Information:
[DITA-OT] XSLT-Import Extension Points
[DITA-OT] XSLT-Parameter Extension Points

Example: Customizing Side TOC Using XSLT-Import/Parameter Extension Points

This topic provides some common use-cases to demonstrate how to use the WebHelp XSLT-Import extension
points to customize the Table of Contents displayed on the right side of the WebHelp output (the default
transformation generates a mini table of contents for the current topic and it contains links to the children of
current topic, its siblings, and all of its ancestors). The first use-case uses an XSLT-Import extension point while
the second uses an XSLT-Parameter extention point.

Use Case 1: WebHelp XSLT-Import extension point to change which topics are displayed in the Side TOC

Suppose you want to customize the side TOC to only include the current topic and its child topics (while excluding
its siblings and ancestors).

Figure 367: Example: Filtered Side Table of Contents

The default XSLT template responsible for this functionality is defined in: DITA-OT-DIR\plugins
\com.oxygenxml.webhelp\xsl\dita\responsive\navigationLinks.xsl.

<xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]"
 mode="toc-pull" priority="10">

This template computes the link for the current topic along with the links for the sibling topics, and then
propagates them recursively to the parent topic. For this specific use-case, you need to override this template so
that it will produce the link for the current topic along with just the child links that the template already receives.

You can implement this functionality with a WebHelp extension plugin that uses the
com.oxygenxml.webhelp.xsl.dita2webhelp extension point. This extension point allows you to specify a
customization stylesheet that will override the template described above.

To add this functionality as a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,
com.oxygenxml.webhelp.custom.sidetoc).

Transforming Documents 761

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your
customization stylesheet. For example:

<plugin id="com.oxygenxml.webhelp.custom.sidetoc">
 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp"
 file="custom_side_TOC.xsl"/>
</plugin>

3. Create your customization stylesheet (for example, custom_side_TOC.xsl), and edit it to override the template
that produces the side TOC:

<xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]"
 mode="toc-pull"
 priority="10">

 <xsl:param name="pathFromMaplist" as="xs:string"/>
 <xsl:param name="children" select="()" as="element()*"/>
 <xsl:param name="parent" select="parent::*" as="element()?"/>

 <xsl:apply-templates select="." mode="sideTocEntry">
 <xsl:with-param name="pathFromMaplist" select="$pathFromMaplist"/>
 <xsl:with-param name="children" select="$children"/>
 </xsl:apply-templates>
</xsl:template>

4. Use the Run DITA OT Integrator transformation scenario found in the DITA Map section in the Configure
Transformation Scenario(s) dialog box.

5. Run a DITA Map WebHelp Responsive transformation scenario to obtain the customized side TOC.

Use-Case 2: WebHelp XSLT-Parameter extension point to control which topics are displayed in the Side TOC
from the transformation scenario

Another possibility to customize what is displayed in the side Table of Contents is to add a transformation
parameter that will control the XSLT customization when the transformation scenario is applied. For this use-
case, you can use the com.oxygenxml.webhelp.xsl.dita2webhelp.param extension point.

To add this functionality, follow these steps:

1. Create a DITA-OT plugin structure by following the first 3 steps in the procedure above.
2. In the customization stylesheet that you created in step 3, declare the side_toc_only_children

parameter and modify the template to match the topic only when the side_toc_only_children parameter
is set to yes:

<xsl:param name="side_toc_only_children" select="'yes'"/>
 ...
 <xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]
 [$side_toc_only_children = 'yes']"
 ...

3. Edit the plugin.xml file to specify the com.oxygenxml.webhelp.xsl.dita2webhelp.param extension point and a
custom parameter file by adding the following line:

<feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp.param"
 file="custom_params.xml"/>

4. Create a custom parameter file (for example, custom_params.xml). It should look like this:

<dummy>
 <param name="side_toc_only_children" expression="${side_toc_only_children}"
 if="side_toc_only_children"/>
</dummy>

5. Use the Run DITA OT Integrator transformation scenario found in the DITA Map section in the Configure
Transformation Scenario(s) dialog box.

6. Edit a DITA Map WebHelp Responsive transformation scenario and in the Parameters tab, specify the desired
value (yes or no) for your custom parameter (side_toc_only_children).

7. Run the transformation scenario.

Transforming Documents 762

Related Information:
[DITA-OT] XSLT-Import Extension Points
[DITA-OT] XSLT-Parameter Extension Points

Overriding a WebHelp XSLT Stylesheet from an Ant Build File

To create a WebHelp XSLT customization that is only available for a certain DITA OT transformation, the
extension plugin should declare a custom transtype. The WebHelp XSLT stylesheets can be overridden from an
ANT file provided by the DITA-OT extension plugin. From the Ant target associated with the plugin, you will specify
a custom XSLT stylesheet that imports the original WebHelp stylesheet and add some customization templates.

The following procedure explains how to create a DITA-OT extension plugin that uses this extension method:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,
com.oxygenxml.webhelp.responsive.custom).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies a new DITA-OT transtype and the
build file associated with the plugin. For example:

<plugin id="com.oxygenxml.webhelp.responsive.customization">
 <feature extension="dita.conductor.target.relative" file="integrator.xml"/>
 <transtype name="webhelp-responsive-custom" extends="webhelp-responsive"
 desc="WebHelp Responsive Customization"/>
</plugin>

3. Create the integrator.xml file that will import the actual plugin Ant build file.

<project basedir="." name="Webhelp Responsive Customization">
 <import file="build.xml"/>
</project>

4. Create the build.xml file that overrides the value of properties associated with the XSLT stylesheets used to
produce HTML files. The following Ant properties can be overridden to specify your customization stylesheets:

args.wh.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce an HTML file for each
topic.

args.create.main.files.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce the main HTML file.

args.createTocXML.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce the toc.xml file. The
toc.xml file contains information extracted from DITA map and it is mainly used to create the WebHelp
TOC.

For example, to customize a WebHelp Responsive transformation type, the build file should look like:

<project basedir="." name="Webhelp Responsive Customization">
 <target name="dita2webhelp-responsive-custom">
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce an HTML file for each topic
 -->
 <property
 name="args.wh.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/dita2webhelpCustom.xsl"/>
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce the main HTML file.
 -->
 <property
 name="args.create.main.files.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/createMainFilesCustom.xsl"/>
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce the toc.xml file.
 -->
 <property
 name="args.createTocXML.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/createTocXMLCustom.xsl"/>
 <!--
 Depending on which version of WebHelp you want to customize,
 you need to delegate to different build targets:
 * dita2webhelp-responsive - when you are customizing the Webhelp Responsive

Transforming Documents 763

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/dev_ref/plugin-newtranstype.html

 * dita2webhelp-mobile - when you are customizing the Webhelp Mobile
 * dita2webhelp - when you are customizing the Webhelp Classic
 -->
 <antcall target="dita2webhelp-responsive"/>
 </target>
</project>

Note: Depending on which version of WebHelp you want to customize, you need to call one of the following
build targets:

• dita2webhelp-responsive - For WebHelp Responsive (with or without feedback) output.
• dita2webhelp - For WebHelp Classic (with or without feedback) output.
• dita2webhelp-mobile - For WebHelp Classic Mobile output (deprecated).

5. Create an xsl directory in the plugin customization directory (that you created in step 1) to store the
customized XSLT stylesheets.

Referencing the WebHelp XSLT Stylesheets from Your Customizations

Note that your customization stylesheets should import the original stylesheets that they override. To reference
the WebHelp stylesheets, you can use the plugin:com.oxygenxml.dita-ot.plugin.webhelp prefix. This prefix is
rewritten by an XML catalog to the WebHelp root directory.

Customizing the dita2webhelp.xsl Stylesheet

The XSLT stylesheet that customizes the WebHelp dita2webhelp.xsl stylesheet should look like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce an HTML file for each topic.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/
 dita/responsive/dita2webhelp.xsl"/>
 <!--
 Please add your customization templates here.
 -->
</xsl:stylesheet>

Depending on which version of WebHelp you want to customize, you need to import one of the following XSLT
stylesheets:

• dita2webhelp-responsive (WebHelp Responsive) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
responsive/dita2webhelp.xsl"/>

• dita2webhelp (WebHelp Classic) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/desktop/
dita2webhelp.xsl"/>

• dita2webhelp-mobile (WebHelp Classic Mobile) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/mobile/
dita2webhelp.xsl"/>

Customizing the createMainFiles.xsl Stylesheet

The XSLT stylesheet that customizes the WebHelp createMainFiles.xsl stylesheet should look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce the main HTML file.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
 responsive/createMainFiles.xsl"/>
 <!--
 Please add your customization templates here.
 -->

Transforming Documents 764

</xsl:stylesheet>

Depending on which version of WebHelp you want to customize, you need to import one of the following XSLT
stylesheets:

• dita2webhelp-responsive (WebHelp Responsive) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
responsive/createMainFiles.xsl"/>

• dita2webhelp (WebHelp Classic) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/desktop/
createMainFiles.xsl"/>

• dita2webhelp-mobile (WebHelp Classic Mobile) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/mobile/
createMainFiles.xsl"/>

Customizing the tocDita.xsl File

The XSLT stylesheet that customizes the WebHelp tocDita.xsl stylesheet should look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce the toc.xml file.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/tocDita.xsl"/>
 <!--
 Please add your customization templates here.
 -->

</xsl:stylesheet>

Search Engine Optimization for DITA WebHelp

A DITA Map WebHelp transformation scenario can be configured to produce a sitemap.xml file that is used
by search engines to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system
and allows webmasters to provide additional information about each page, such as the date it was last updated,
change frequency, and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://www.example.com/topics/introduction.html</loc>
 <lastmod>2014-10-24</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.5</priority>
 </url>
 <url>
 <loc>http://www.example.com/topics/care.html#care</loc>
 <lastmod>2014-10-24</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.5</priority>
 </url>
 . . .
</urlset>

Each page has a <url> element structure containing additional information, such as:

• loc - the URL of the page. This URL must begin with the protocol (such as http), if required by your
web server. It is constructed from the value of the webhelp.sitemap.base.url parameter from the
transformation scenario and the relative path to the page (collected from the href attribute of a topicref
element in the DITA map).

Note: The value must have fewer than 2,048 characters.
• lastmod (optional) - the date when the page was last modified. The date format is YYYY-MM-DD.
• changefreq (optional) - indicates how frequently the page is likely to change. This value provides

general information to assist search engines, but may not correlate exactly to how often they crawl
the page. Valid values are: always, hourly, daily, weekly, monthly, yearly, and never.

Transforming Documents 765

The first time the sitemap.xml file is generated, the value is set based upon the value of the
webhelp.sitemap.change.frequency parameter in the DITA WebHelp transformation scenario. You can
change the value in each url element by editing the sitemap.xml file.

Note: The value always should be used to describe documents that change each time they are accessed.
The value never should be used to describe archived URLs.

• priority (optional) - the priority of this page relative to other pages on your site. Valid values range from 0.0
to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets the search
engines know which pages you deem most important for the crawlers. The first time the sitemap.xml
file is generated, the value is set based upon the value of the webhelp.sitemap.priority parameter in
the DITA WebHelp transformation scenario. You can change the value in each url element by editing the
sitemap.xml file.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-
tune search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit
DITA Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

• webhelp.sitemap.base.url - the URL of the location where your WebHelp system is deployed

Note: This parameter is required for Oxygen XML Developer to generate the sitemap.xml file.
• webhelp.sitemap.change.frequency - how frequently the WebHelp pages are likely to change

(accepted values are: always, hourly, daily, weekly, monthly, yearly, and never)
• webhelp.sitemap.priority - the priority of each page (value ranging from 0.0 to 1.0)

3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of

each page, according to your needs.

Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map and set the xml:lang
attribute on its root element (map). The corresponding attribute value can be set for following RTL languages:

• ar-eg - Arabic
• he-il - Hebrew
• ur-pk - Urdu

WebHelp Responsive Runtime Additional Parameters

A deployed WebHelp Responsive system can accept the following GET parameters:

• contextId - The WebHelp JavaScript engine will look for this value in the context-help-map.xml
mapping file and load the corresponding help page. For more information, see the Context-Sensitive WebHelp
System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

• appname - You can use this parameter in conjunction with contextId to search for this value in the
corresponding appname attribute value in the mapping file.

http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication

• searchQuery - You can use this parameter to perform a search operation when WebHelp is loaded. For
example, if you want to open WebHelp showing all search results for growing flowers, the URL should look like
this: http://localhost/webhelp/index.html?searchQuery=growing%20flowers.

Related Information:
Context-Sensitive WebHelp Responsive System on page 767

Transforming Documents 766

Context-Sensitive WebHelp Responsive System

Context-sensitive help systems assist users by providing specific informational topics for certain components
of a user interface, such as a button or window. This mechanism works based on mappings between a unique ID
defined in the topic and a corresponding HTML page.

Generating Context-Sensitive Help

When WebHelp Responsive output is generated by Oxygen XML Developer, the transformation process produces
an XML mapping file called context-help-map.xml and copies it in the output folder of the transformation.
This XML file maps an ID to a corresponding HTML page through an appContext element, as in the following
example:

<map productID="oxy-webhelp" productVersion="1.1">
 <appContext helpID="myapp-functionid1" path="tasks/app-help1.html"/>
 <appContext helpID="myapp-functionid2" path="tasks/app-help1.html"/>
 . . .
</map>

The possible attributes are as follows:

helpID
A Unique ID provided by a topic from two possible sources (resourceid element or id attribute):

resourceid
The resourceid element is mapped into the appContext element and can be specified in either the
topicref within a DITA map or in a prolog within a DITA topic. The resourceid element accepts the
following attributes:

• appname - A name for the external application that references the topic. If this attribute is not
specified, its value is considered to be empty ("").

• appid - An ID used by an application to identify the topic.
• id - Specifies a value that is used by a specific application to identify the topic, but this attribute is

ignored if an appid attribute is used.

Note: Multiple appid values can be associated with a single appname value (and multiple appname
values can be associated with a single appid value), but the values for both attributes work in
combination to specify a specific ID for a specific application, and therefore each combination of values
for the appid and appname attributes should be unique within the context of a single root map. For
example, suppose that you need two different functions of an application to both open the same WebHelp
page.

Example: resourceid Specified in a DITA Map

The resourceid element can be specified in a topicmeta element within a topicref.

<map title="App Help">
 <topicref href="app-help1.dita" type="task">
 <topicmeta>
 <resourceid appname="myapp" appid="functionid1"/>
 <resourceid appname="myapp" appid="functionid2"/>
 </topicmeta>
 </topicref>
</map>

Example: resourceid Specified in a DITA Topic

The resourceid element can be specified in a prolog element within a DITA topic.

<task id="app-help1">
 <title>My App Help</title>
 <prolog>
 <resourceid appname="myapp" appid="functionid1"/>
 <resourceid appname="myapp" appid="functionid2"/>
 </prolog>
...
</task>

For more information about the resourceid element, see DITA Specifications: <resourceid>.

Transforming Documents 767

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/resourceid.html#resourceid__attributes

id
If a resourceid element is not declared in the DITA map or DITA topic (as described above), the id
attribute that is set on the topic root element is mapped into the appContext element.

Important: You should ensure that these defined IDs are unique in the context of the entire DITA project.
If the IDs are not unique, the transformation scenario will display warning messages in the transformation
console output and the help system will not work properly.

path
The path to a corresponding WebHelp page. This path is relative to the location of the context-help-
map.xml mapping file.

productID (Applicable only if you are using the WebHelp Responsive with Feedback transformation scenario)
The ID of the product for your documentation project.

productVersion (Applicable only if you are using the WebHelp Responsive with Feedback transformation
scenario)

The version of the product for your documentation project.

There are two ways of implementing context-sensitive help in your system:

• The XML mapping file can be loaded by a PHP script on the server side. The script receives the contextId
value and will look it up in the XML file.

• Invoke the index.html WebHelp system file and pass the contextId parameter with a specific value.
The WebHelp system will automatically open the help page associated with the value of the contextId
parameter.

index.html?contextId=myDITATopic

Context-Sensitive Queries

You can use the URL field in your browser to search for topics in a context-sensitive WebHelp system with the
assistance of the following parameters:

• contextId - The WebHelp JavaScript engine will look for this value in the context-help-map.xml
mapping file and load the corresponding help page. For more information, see the Context-Sensitive WebHelp
System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

• appname - You can use this parameter in conjunction with contextId to search for this value in the
corresponding appname attribute value in the mapping file.

http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication

Related Information:
WebHelp Responsive Runtime Additional Parameters on page 766

Publishing WebHelp Responsive Output on a SharePoint Site

Since WebHelp output must be published locally, on the same machine where the WebHelp process is running, to
publish your files directly to a SharePoint library you need to map a network drive to connect to SharePoint and
change your file extensions to .aspx, as described in the steps below.

To publish WebHelp Responsive output on a SharePoint site, follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://
support.microsoft.com/en-us/kb/2616712.

2. To allow browsers to open your published files (rather than downloading them), you need to change the file
extensions from .html to .aspx. Fortunately, this can be done in the transformation scenario.

a. Edit the WebHelp transformation scenario and open the Parameters tab.
b. Set the args.outext parameter to .aspx.
c. Run the transformation scenario.

Transforming Documents 768

https://support.microsoft.com/en-us/kb/2616712
https://support.microsoft.com/en-us/kb/2616712

WebHelp Classic System
WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include
platform independence, ability to update content continuously, and it can be viewed using a regular web browser.
The Oxygen XML Developer WebHelp system includes several variants to suit your specific needs. The WebHelp
Classic variant is designed for desktop systems when feedback from users is not necessary and it is available for
DocBook and DITA document types.

Layout of the WebHelp Classic System Interface

The layout of the WebHelp Classic system is comprised of the following components:
Left Pane or Frame

This section on the left side of the help system includes the following tabs:

Content

A typical table of contents style presentation of your content. You can use the Expand all/ Collapse
all buttons to expand or collapse all the topics presented in the Table of Contents.

Note: You can enhance the appearance of items in the Table of Contents. See the Customizing WebHelp
Classic Systems chapter for more details.

Index
Presents the index terms for your content. If your content does not contain any indexterm elements, this
tab is not generated.

Search Results
This tab is generated when the Search field is used. It presents the search results in the form of links to
topics where the search terms are found, along with a rating scheme for each result. For more details, see
the Search Feature section.

Upper Pane or Frame
The upper section of the help system includes the following features:

Search Field
Use this feature to perform searches in your content. When you enter search terms in this field, the results
are displayed in the Search Results tab in the left section of the help system, along with a rating scheme
for each result. For more details, see the Search Feature section.

Frames Option
Click on this option to display the output rendered in HTML frames.

Print Option
Opens a dialog box with various printing options and a print preview.

Navigation Links
You can navigate through the content of your output using the navigation links or arrows in the upper-right
part of the page. These arrows allow you to move to the Parent topic, Previous topic, or Next topic.
Links to the parent topics of the currently opened topic are also presented at the top of the page.

Note: You can edit the args.hide.parent.link parameter to hide the Parent, Next, and Previous
links.

Main Pane or Frame
The content of the help pages are rendered and displayed in this main section.

Transforming Documents 769

Figure 368: WebHelp Classic Output

WebHelp Classic Search Engine
Search Rules

Rules that are applied during a search include:

• You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers" will
only return results if both words are found consecutively and exactly as they are typed in the search field). This
type of search is known as a phrase search.

• Boolean Search is supported using the following operators: and, or, not. When there are two adjacent search
terms without an operator, or is used as the default search operator (for example, grow flowers is the same as
grow or flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate
keywords: grow and flowers).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for
example, content inside a keywords element weighs more than an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".")
characters count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored).
This rule does not apply to CJK (Chinese, Japanese, Korean) languages.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that matches
the search criteria. These scores are then translated into a 5-star rating scheme and the stars are displayed to the
right of each result. The search results are sorted depending on the following:

• Search entries that satisfy the phrase search criterion are presented first.
• The number of keywords found in a single page (the higher the number, the better).

Transforming Documents 770

• The context (for example, a word found in a title scores better than a word found in unformatted text). The
search ranking order, sorted by relevance is as follows:

• The search term is included in a meta keyword
• The search term is in the title of the page
• The search term is in bold text in a paragraph
• The search term is in normal text in a paragraph

Excluded Terms

To improve performance, the Search feature excludes certain stop words. For example, the English version of
such stop words include: a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their,
then, there, these, they, this, to, was, will, with.

WebHelp Classic Search Results Tab

When you enter search terms in the Search field at the top of the help system, the results are displayed in the
Search Results tab in the left section. When you click on a result in the Search Results tab, that result is displayed
in the main pane with the search terms highlighted. If you press Enter with the Search field empty, the highlights
are removed.

Figure 369: WebHelp Classic Search Results Tab

Missing Terms

Transforming Documents 771

If you enter multiple search terms (other than stop words), for any result that the search engine found at least one
term but not one or more of the other terms, the Missing terms will be listed below each result.

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For
information about editing these values, see Editing Scoring Values of Tag Elements in Search Results on page
753.

Browser Compatibility

This output format is compatible with the most recent versions of the following common browsers:

• Edge
• Internet Explorer (IE 9 or newer)
• Chrome
• Firefox
• Safari
• Opera

Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer),
WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not
work properly. We recommend that you load WebHelp Classic pages in Google Chrome or Internet Explorer only
from a web server (with a URL such as http://your.server.com/webhelp/index.html or http://
localhost/web_pages/index.html).

Warning: Due to some restrictions in web browsers in regards to JavaScript code, the frameless version
(index.html start page) of the WebHelp Classic system should only be loaded from a web server
(with a URL such as http://your.server.com/webhelp/index.html or http://localhost/
web_pages/index.html). When loading WebHelp Classic pages from the local file system, the
frameset version (index_frames.html start page) of the WebHelp Classic system should be used
instead (file:///...).

WebHelp Classic with Feedback System

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include
platform independence, ability to update content continuously, and a feedback mechanism that allows your
authors and audience to interact with one another through comments. The Oxygen XML Developer WebHelp
system includes several variants to suit your specific needs. The WebHelp Classic with Feedback variant is
designed for desktop systems, includes a feedback system that allows your users to make comments and allows
you to manage and reply to them, and it is available for DocBook and DITA document types.

Layout

The layout of the WebHelp Classic with Feedback system is comprised of the following components:
Left Pane or Frame

This section on the left side of the help system includes the following tabs:

Content

A typical table of contents style presentation of your content. You can use the Expand all/ Collapse
all buttons to expand or collapse all the topics presented in the Table of Contents.

Note: You can enhance the appearance of items in the Table of Contents. See the Customizing WebHelp
Classic Systems chapter for more details.

Index
Presents the index terms for your content. If your content does not contain any indexterm elements, this
tab is not generated.

Transforming Documents 772

Search Results
This tab is generated when the Search field is used. It presents the search results in the form of links to
topics where the search terms are found, along with a rating scheme for each result. For more details, see
the Search Feature section.

Upper Pane or Frame
The upper section of the help system includes the following features:

Search Field
Use this feature to perform searches in your content. When you enter search terms in this field, the results
are displayed in the Search Results tab in the left section of the help system, along with a rating scheme
for each result. For more details, see the Search Feature section.

Frames Option
Click on this option to display the output rendered in HTML frames.

Print Option
Opens a dialog box with various printing options and a print preview.

Navigation Links
You can navigate through the content of your output using the navigation links or arrows in the upper-right
part of the page. These arrows allow you to move to the Parent topic, Previous topic, or Next topic.
Links to the parent topics of the currently opened topic are also presented at the top of the page.

Note: You can edit the args.hide.parent.link parameter to hide the Parent, Next, and Previous
links.

Main Pane or Frame
The content of the help pages are rendered and displayed in this main section.

Feedback Section
The WebHelp Classic with Feedback system contains a Comments bar at the bottom of the main pane. This
section is where you can interact with users through a comment system.

Transforming Documents 773

Figure 370: WebHelp Classic with Feedback System

Managing Comments

To add a new comment, click the Add New Comment button, or click Reply to add a comment to an existing
thread. You can click on the Log in button on the right side of this bar to be authenticated as a user and your user
name will be included in any comments that you add. If you do not have a user name, you can click on the Sign Up
button to create a new user.

After you log in, your name and user name are displayed in the Comments bar, along with the Log off and Edit
buttons. Click the Edit button to open the User Profile dialog box where you can customize the following options:

• Your Name - You can use this field to edit the initial name that you used to create your user profile.
• Your email address - You can use this field to edit the initial email address that you used to create your profile.
• You can choose to receive an email in the following situations:

• When a comment is left on a page that you commented on.
• When a comment is left on any topic in the WebHelp Classic system.
• When a reply is left to one of my comments.

• New Password - Allows you to enter a new password for your user account.

Note: The Current Password field from the top of the User Profile is mandatory if you want to save the
changes you make.

If you are an administrator, you can manage user information and comments. For more information, see
Managing Users and Comments in a Feedback-Enabled WebHelp System on page 730.

WebHelp Classic Search Engine
Search Rules

Rules that are applied during a search include:

Transforming Documents 774

• You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers" will
only return results if both words are found consecutively and exactly as they are typed in the search field). This
type of search is known as a phrase search.

• Boolean Search is supported using the following operators: and, or, not. When there are two adjacent search
terms without an operator, or is used as the default search operator (for example, grow flowers is the same as
grow or flowers).

• The space character separates keywords (an expression such as grow flowers counts as two separate
keywords: grow and flowers).

• indexterm and keywords DITA elements are an effective way to increase the ranking of a page (for
example, content inside a keywords element weighs more than an H1 HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot (".")
characters count as a single word.

• Always search for words containing three or more characters (shorter words, such as to or of are ignored).
This rule does not apply to CJK (Chinese, Japanese, Korean) languages.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that matches
the search criteria. These scores are then translated into a 5-star rating scheme and the stars are displayed to the
right of each result. The search results are sorted depending on the following:

• Search entries that satisfy the phrase search criterion are presented first.
• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title scores better than a word found in unformatted text). The

search ranking order, sorted by relevance is as follows:

• The search term is included in a meta keyword
• The search term is in the title of the page
• The search term is in bold text in a paragraph
• The search term is in normal text in a paragraph

Excluded Terms

To improve performance, the Search feature excludes certain stop words. For example, the English version of
such stop words include: a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their,
then, there, these, they, this, to, was, will, with.

WebHelp Classic Search Results Tab

When you enter search terms in the Search field at the top of the help system, the results are displayed in the
Search Results tab in the left section. When you click on a result in the Search Results tab, that result is displayed
in the main pane with the search terms highlighted. If you press Enter with the Search field empty, the highlights
are removed.

Transforming Documents 775

Figure 371: WebHelp Classic Search Results Tab

Missing Terms

If you enter multiple search terms (other than stop words), for any result that the search engine found at least one
term but not one or more of the other terms, the Missing terms will be listed below each result.

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For
information about editing these values, see Editing Scoring Values of Tag Elements in Search Results on page
753.

Browser Compatibility

This output format is compatible with the most recent versions of the following common browsers:

• Edge
• Internet Explorer (IE 9 or newer)
• Chrome
• Firefox
• Safari
• Opera

Transforming Documents 776

Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer),
WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not
work properly. We recommend that you load WebHelp Classic pages in Google Chrome or Internet Explorer only
from a web server (with a URL such as http://your.server.com/webhelp/index.html or http://
localhost/web_pages/index.html).

Deploying a Feedback-Enabled WebHelp System

System Requirements

The feedback-enabled WebHelp system of Oxygen XML Developer requires a standard server deployment. You
can request this from your server admin and it needs the following system components:

• A Web server (such as Apache Web Server)
• A MySQL or MariaDB database server
• A database admin tool (such as phpMyAdmin)
• PHP Version 5.1.6 or later

Oxygen XML WebHelp system supports most of the recent versions of the following browsers: Chrome, Firefox,
Edge, Internet Explorer, Safari, Opera.

Create WebHelp with Feedback Database

The WebHelp with Feedback system needs a database to store user details and the actual feedback, and a user
added to it with all privileges. After this is created, you should have the following information:

• Database name
• Username
• Password

Exactly how you create the database and user depends on your web host and your particular needs.

Example:

The following procedure uses phpMyAdmin to create a MySQL database for the feedback system and a MySQL
user with privileges for that database. The feedback system uses these credentials to connect to the database.

Using phpMyAdmin to create a database:

1. Access the phpMyAdmin instance running on your server.
2. Click Databases (in the right frame) and then create a database. You can give it any name you want (for

example comments).
3. Create a user with connection privileges for this database.
4. Under localhost, in the right frame, click Privileges and then at the bottom of the page click the reload the

privileges link.

Deploying the WebHelp with Feedback Output

If you have a web server configured with PHP and MySQL, you can deploy the WebHelp with Feedback output by
following these steps:

1. Connect to your server using an FTP client.
2. Locate the home directory (from now on, referred to as DOCUMENT_ROOT) of your server.
3. Copy the transformation output folder into the DOCUMENT_ROOT folder.
4. Rename it to something relevant (for example, myProductWebHelp).
5. Open the output folder (for example, http://[YOUR_SERVER]/myProductWebHelp/). You are redirected

to the installation wizard. Proceed with the installation as follows:

a. Verify that the prerequisites are met.
b. Press Start Installation.
c. Configure the Deployment Settings section. Default values are provided, but you should adjust them as

needed.

Transforming Documents 777

Tip: You can change some of the options later. The installation creates a config.php file in
[OXYGEN_WEBHELP_INSTALL_DIR]/feedback/resources/php/config/config.php where all
your configuration options are stored.

d. Configure the MySql Database Connection Settings section. Use the information (database name,
username, password) from the Create WebHelp with Feedback Database section to fill-in the appropriate
text boxes.

Warning: Selecting the Create new database structure option will overwrite any existing data in the
selected database, if it already exists. Therefore, it is useful the first time you install the WebHelp
with Feedback system, but you do not want to select this option on subsequent deployments.

e. If you are using a domain (such as OpenLDAP or Active Directory) to manage users in your organization,
select the Enable LDAP Autehntication option. This will allow you to configure the LDAP server, which will
provide information and credentials for users who will access the WebHelp system. Also, this will allow you
to choose which of the domain users will have administrator privileges.

f. If the Create new database structure option is selected, the Create WebHelp Administrator Account
section becomes available. Here you can set the administrator account data. The administrator is able to
moderate new posts and manage WebHelp users.

The same database can be used to store comments for multiple WebHelp with Feedback deployments. If
a topic is available in multiple deployments and there are comments associated with it, you can choose to
display the comments in all deployments that share the database. To do this, select the Display comments
from other products option. In the Display comments from section, a list with the deployments sharing the
same database is displayed. Select the deployments allowed to share common feedback.

Note: You can restrict the displayed comments of a product depending on its version. If you have two
products that use the same database and you restrict one of them to display comments starting from a
certain version, the comments of the other product are also displayed from the specified version onwards.

g. Press Next Step.
h. Remove the installation folder from your web server.

Important: When you publish subsequent iterations of your WebHelp with Feedback system, you will
not upload the /install folder in the output, as you only need it uploaded the first time you create the
installation. On subsequent uploads, you will just upload the other output files.

i. In your Web browser, go to your WebHelp with Feedback system main page.

Testing Your WebHelp with Feedback System

To test your system, create a user and post a comment. Check to see if the notification emails are delivered to
your email inbox.

Note: To read debug messages generated by the system:

1. Enable JavaScript logging by doing one of the following:

• Open the log.js file, locate the var log= new Log(Level.NONE); line, and change the logging level
to: Level.INFO, Level.DEBUG, Level.WARN, or Level.ERROR.

• Append ?log=true to the WebHelp URL.
2. Inspect the PHP and Apache server log files.

Documentation Product ID and Version

When you run a WebHelp with Feedback transformation scenario, by default you are prompted for a
documentation product ID and version number. This is needed when multiple WebHelp systems are deployed on
the same server. Think of your WebHelp output as a product. If you have three different WebHelp outputs, you
have three different products (each with their own unique documentation product ID). This identifier is included in
a configuration file so that comments are tied to a particular output (product ID and version number).

Note: The WebHelp with Feedback installation includes a configuration option (Display comments from other
products) that allows you to choose to have comments visible in other specified products.

Related Information:
Managing Users and Comments in a Feedback-Enabled WebHelp System on page 730

Transforming Documents 778

Refreshing the Content of a Feedback-Enabled WebHelp System

It is common to update the content of an existing installation of a WebHelp with Feedback system on a regular
basis. In this case, reinstalling the whole system is not a viable option since it might result in the loss of the
comments associated with your topics. Also, reconfiguring the system every time you want to refresh it may be
time consuming.

Fortunately, you can refresh just the content without losing the comments or the initial system configuration. To
do so, follow these steps:

1. Execute the transformation scenario that produces the WebHelp with Feedback output directory.
2. Go to the output directory (specified in the Output tab of the transformation scenario), locate the \feedback

\resources\php\config\config.php file, and delete it.
3. Locate the \feedback\install directory and delete it.
4. Copy the remaining structure of the output folder and paste it into your WebHelp with Feedback system

installation directory, overwriting the existing content.

Managing Users and Comments in a Feedback-Enabled WebHelp System

When you installed the WebHelp with Feedback system the first time (assuming the Create new database
structure option was selected), you should have been prompted to create an administrator account (or a user
named administrator was created by default). As an administrator, you have access to manage comments
posted in your feedback-enabled WebHelp system. You can also manage the user information (such as role,
status, or notification options).

To manage comments and user information, follow these steps:

1. At the bottom of each specific topic there is a Comments navigation bar and on the right side there is a Log
in button. Click this button and log in with your administrator credentials. This gives you access to an Admin
Panel button.

2. Click the Admin Panel button to display an administration page.

Figure 372: Administrative Page
3. Use this page to manage the following options:

Delete Orphaned Comments
Allows you to delete comments that are no longer associated with a topic in your WebHelp system.

Delete Pending Users
Allows you to delete user accounts that you do not wish to activate.

View All Posts
Allows you to view all the comments that are associated with topics in your WebHelp system.

Export Comments
Allows you to export all posts associated with topics in your WebHelp system into an XML file.

Set Version
Use this action to display comments starting with a particular version.

Manage User Information
To edit the details for a user, click on the corresponding row. This opens a window that allows you to
customize the following information associated with the user:

Transforming Documents 779

Name
The full name of the user.

Level
Use this field to modify the privilege level (role) for the selected user. You can choose from the
following:

• User - Regular user, able to post comments and receive e-mail notifications.
• Moderator - In addition to the regular User rights, this type of user has access to the Admin Panel

where a moderator can view, delete, export comments, and set the version of the feedback-enabled
WebHelp system.

• Admin - Full administrative privileges. Can manage WebHelp-specific settings, users, and their
comments.

Company
The name of the organization associated with the user.

E-Mail
The contact email address for the user. This is also the address where the WebHelp system sends
notifications.

WebHelp Notification
When selected, the user receives notifications when comments are posted anywhere in your feedback-
enabled WebHelp system.

Reply Notification
When selected, the user receives notifications when comments are posted as a reply to one of their
comments.

Page Notification
When selected, the user receives notifications when comments are posted on a topic where they
previously posted a comment.

Date
The date the user registered is displayed.

Status
Use this drop-down list to change the status of the user. You can choose from the following:

• Created - The user is created but does not yet have any rights for the feedback-enabled WebHelp
system.

• Validated - The user is able to use the feedback-enabled WebHelp system.
• Suspended - The user has no rights for the feedback-enabled WebHelp system.

Warning: The key used for identifying the page a comment is attached to is the relative file path to the
output page. Since the output file and folder names mirror the source, any change to the file name (or its
folder) in the source will affect the comments associated with that WebHelp page. If you change the file
name or path, the comment history for that topic will become orphaned (a change to the topic ID does not
affect the comment history).

Customizing WebHelp Classic Systems

To change the overall appearance of the WebHelp output, you can use the visual WebHelp Skin Builder tool, which
does not require knowledge of CSS language. If you are familiar with CSS and coding, you can style your WebHelp
output through your own custom stylesheets. You can also customize your output by modifying option and
parameters in the transformation scenario.

This section includes topics that explain various ways to customize your WebHelp system output, such as how
to improve the appearance of the Table of Contents, add logo images in the title area, integrate with social media,
add custom headers and footers, and much more.

Transforming Documents 780

Copying Additional Resources to WebHelp Output Directory

To copy additional resources (such as JavaScript, CSS or other resources) to the output directory of a WebHelp
system, follow these steps:

1. Place all your resources in the same directory.
2. Edit the WebHelp transformation scenario.
3. Go to the Parameters tab.
4. Edit the value for the webhelp.custom.resources parameter and set it to the absolute path of the directory in

step 1.
5. Click OK to save the changes to the transformation scenario.

All files from the new directory will be copied to the root of the WebHelp output directory.

Adding Custom HTML Content in WebHelp Classic Output

You can add custom HTML content in the WebHelp Classic output by inserting it in a well-formed XML file that
will be referenced in the transformation scenario. This content may include references to additional JavaScript,
CSS, and other types of resources, or such resources can be inserted inline within the HTML content that is
inserted in the XML file.

To include custom HTML content in the WebHelp Classic output files, follow these steps:

1. Insert the HTML content in a well-formed XML file. There are several things to consider in regards to this XML
file:

a. Well-Formedness - If the file is not a Well-formed XML document (or fragments are not well-formed), the
transformation will fail.

A common use case is if you want to include several script or link elements. In this case, the XML
fragment has multiple root elements and to make it well-formed, you can wrap it in an html element. This
element tag will be filtered out and only its children will be copied to the output documents. Similarly, you
can wrap your content in head, body, html/head, or html/body elements.

b. Referencing Resources in the XML File - You can include references to local resources (such as JavaScript
or CSS files) by using the predefined ${oxygen-webhelp-output-dir} macro to specify their paths
relative to the output directory:

<html>
 <script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"/>
 <link rel="stylesheet" type="text/css"
 href="${oxygen-webhelp-output-dir}/css/test.css" />
</html>

To copy the referenced resources to the output directory, follow the procedure in: Copying Additional
Resources to WebHelp Output Directory on page 747.

c. Inline JavaScript or CSS Content - If you want to include inline JavaScript or CSS content in the XML file, it
is important to place this content inside an XML comment, as in the following examples:

JavaScript:

<script type="text/javascript">
 <!--
 /* Include JavaScript code here. */

 function myFunction() {
 return true;
 }
 -->
</script>

CSS:

<style>
 <!--
 /* Include CSS style rules here. */

 *{
 color:red
 }
 -->
</style>

Transforming Documents 781

2. Edit the WebHelp Classic transformation scenario.
3. Go to the Parameters tab.
4. Edit the value of the webhelp.head.script parameter and set it to the URL of the XML file created in step 1. Your

additional content will be included at the end of the head element of your output document.

Note: If you want to include the content in the body element, use the webhelp.body.script parameter instead.
5. Click OK to save the changes to the transformation scenario.

Related Information:
Copying Additional Resources to WebHelp Output Directory on page 747

Adding a Button in Code Snippet Areas in DITA WebHelp Classic Output

This task will get you started with how to add an action (such as a button or link) in the code snippet areas that
are displayed in WebHelp Classic output created from a DITA map transformation. You can then attach your code
that does the actual processing for the action.

Follow these steps:

1. Open the DITA-OT-DIR\plugins\org.dita.xhtml\xsl\xslhtml\dita2htmlImpl.xsl file.
2. Locate the <xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">

template to check the default behavior of this template.
3. Open the DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita\desktop\fixup.xsl file.
4. Create a <xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">

template to override the default processing.
5. This new template will include your code for creating the button. It will have the action code that does the

actual processing attached to it (this can be written in JavaScript, for example).
Example of a Select all button:

<xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">
 <button onclick="SelectText(element)">Select all</button>
 <script>
 function SelectText(element) {
 var text = document.getElementById(element);
 var range = document.body.createTextRange();
 range.moveToElementText(text);
 range.select();
 }
 </script>
 </xsl:template>

Adding a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp system by simply using a parameter in the transformation
scenario to point to your favicon image. This is available for DITA and DocBook WebHelp systems using WebHelp
Responsive, WebHelp Responsive with Feedback, WebHelp Classic, WebHelp Classic with Feedback, or WebHelp
Classic Mobile transformation scenarios.

To add a favicon, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.
2. Locate the webhelp.favicon parameter and enter the file path that points to the image that will be use as

the favicon.
3. Run the transformation scenario.

Adding a Logo Image in the Title Area

To add a logo in the title area of your WebHelp output, follow this procedure:

1. Edit a WebHelp transformation scenario, then open the Parameters tab.
2. Specify the path to your logo in the webhelp.logo.image parameter.
3. If you also want to add a link to your website when you click the logo image, set the URL in the

webhelp.logo.image.target.url parameter.
4. Run the transformation scenario.

Transforming Documents 782

Adding Video and Audio Objects in DITA WebHelp Output

You can insert references to video and audio media resources (such as videos, audio clips, or embedded HTML
frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played directly
in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video by adding an object element, as in one of the following
examples:

<object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>

or, instead of the data attribute, you can specify the video using a parameter like this:

<object outputclass="video">
 <param name="src" value="videos/MyVideo.mp4"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 video element.

<video controls="controls"><source type="video/mp4" src="MyVideo.mp4"></source>
</video>

Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip by adding an object element, as in one of the
following examples:

<object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>

or, instead of the data attribute, you can specify the video using a parameter like this:

<object outputclass="audio">
 <param name="src" value="audio/MyClip.mp3"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 audio element.

<audio controls="controls"><source type="audio/mpeg" src="MyClip.mp3"></source>
</audio>

Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by manually adding an object element, as
in one of the following examples:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

or, instead of the data attribute, you can specify the object using a parameter like this:

<object outputclass="iframe">
 <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 iframe element.

<iframe controls="controls" src="https://www.youtube.com/embed/m_vv2s5Trn4">
</iframe>

For more information, see the following video demonstration: https://www.oxygenxml.com/demo/
Media_Objects.html.

Transforming Documents 783

https://www.oxygenxml.com/demo/Media_Objects.html
https://www.oxygenxml.com/demo/Media_Objects.html

Adding Videos in DocBook WebHelp Classic Output

You can insert references to videos in your DocBook topics and then publish them to WebHelp Classic output.
The videos can be played directly in all HTML5-based outputs, including WebHelp systems.

To add videos in the WebHelp Classic output generated from DocBook documents, follow these steps:

1. Edit the DocBook document and reference the video using an mediaobject element, as in the following
example:

<mediaobject>
 <videoobject>
 <videodata fileref="http://www.youtube.com/watch/v/VideoName"/>
 </videoobject>
</mediaobject>

2. Apply a WebHelp or WebHelp with Feedback transformation scenario to obtain the output.

Change Numbering Styles for Ordered Lists

Ordered lists (ol) are usually numbered in XHTML output using numerals. If you want to change the numbering to
alphabetical, follow these steps:

1. Define a custom outputclass value and set it as an attribute of the ordered list, as in the following example:

<ol outputclass="number-alpha">
 A
 B
 C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{
 list-style-type:lower-alpha;
}

3. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
4. Run the transformation scenario.

Changing the Icons in a WebHelp Classic Table of Contents

You can change the icons that appear in a WebHelp Classic table of contents by assigning new image files in a
custom CSS file. By default, the icons for the WebHelp Classic table of contents are defined with the following
CSS codes (the first example is the icon that appears for a collapsed menu and the second for an expanded
menu):

.hasSubMenuClosed{
 background: url('../img/book_closed16.png') no-repeat;
 padding-left: 16px;
 cursor: pointer;
}

.hasSubMenuOpened{
 background: url('../img/book_opened16.png') no-repeat;
 padding-left: 16px;
 cursor: pointer;
}

To assign other icons, use the following procedure:

1. Create a custom CSS file that assigns your desired icons to the .hasSubMenuClosed and
.hasSubMenuOpened properties.

.hasSubMenuClosed{
 background: url('TOC-my-closed-button.png') no-repeat;
}

.hasSubMenuOpened{
 background: url('TOC-my-opened-button.png') no-repeat;

Transforming Documents 784

}

2. It is recommended that you store the image files in the same directory as the default icons.
a) For DITA transformations: DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp

\resources\img\.
b) For DocBook transformations: [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl

\com.oxygenxml.webhelp\oxygen-webhelp\resources\img\.
3. Edit the WebHelp transformation scenario and open the Parameters tab.

a) For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b) For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
4. Run the transformation scenario.

CSS Styling to Customize WebHelp Output

One way to customize WebHelp output is to use custom CSS styling. This method can be used to make small,
simple styling changes or more advanced, precise changes. To implement the styling in your WebHelp output, you
simply need to create the custom CSS file and reference it in your transformation scenario.

As a practical example, to hide the horizontal separator line between the content and footer, follow these steps:

1. Create a custom CSS file that contains the following snippet:

.footer_separator {
 display:none;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Run the transformation scenario.

Customize the Appearance of Selected Items in the Table of Contents

The appearance of selected items in the table of contents of WebHelp Classic output can be enhanced.

For example, to highlight the background of the selected item, follow these steps:

1. Locate the toc.css file in the following directory:

a. For DITA transformations: DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp
\resources\css.

b. For DocBook transformations: [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl
\com.oxygenxml.webhelp\oxygen-webhelp\resources\css.

2. Edit that CSS file, find the menuItemSelected class, and change the value of the background property.

Note: You can also overwrite the same value from your own custom CSS and then specify the path to your CSS in
the transformation scenario (see step 3 in the Changing the Icons in a WebHelp Classic Table of Contents topic.

Customizing WebHelp Output with a Custom CSS

By creating your own custom CSS stylesheet, you can customize the look and style of WebHelp output to fit your
specific needs.

To use a custom CSS in WebHelp output, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
2. Run the transformation scenario.

Transforming Documents 785

Disable Caching in WebHelp Classic Output

In cases where a set of WebHelp Classic pages need to be updated on a regular basis to deliver the latest version
of the documentation, the WebHelp pages should always be requested from the server upon re-loading it in a Web
browser on the client side, rather than re-using an outdated cached version in the browser.

To disable caching in WebHelp Classic output, follow this procedure:

1. Edit the following XSL file for DITA or DocBook WebHelp systems:

• For DITA WebHelp systems, edit the following file: DITA-OT-DIR\plugins\com.oxygenxml.webhelp
\xsl\createMainFiles.xsl.

• For DocBook WebHelp system, edit the following file: [OXYGEN_INSTALL_DIR]\frameworks\docbook
\xsl\com.oxygenxml.webhelp\xsl\createMainFiles.xsl.

2. Locate the following template in the XSL file: <xsl:template name-"create-toc-common-file"> and
add the following code snippet:

<meta http-equiv="Pragma" content="no-cache" />
<meta http-equiv="Expires" content="-1" />

Note: The code should look like this:

 <html>
 <head>
 <xsl:if test="$withFrames">
 <base target="contentwin"/>
 </xsl:if>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <!-- Disable caching of WebHelp pages in web browser. -->
 <meta http-equiv="Pragma" content="no-cache" />
 <meta http-equiv="Expires" content="-1" />
....

3. Save your changes to the file.
4. Re-run your WebHelp system transformation scenario.

Editing Scoring Values of Tag Elements in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that
matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated
for the search results. Oxygen XML Developer includes a properties file that defines the scoring values for tag
elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

1. Edit the scoring properties file for DITA or DocBook WebHelp systems. The properties file includes
instructions and examples to help you with your customization.
a) For DITA WebHelp systems, edit the following file: DITA-OT-DIR\plugins\com.oxygenxml.webhelp

\indexer\scoring.properties.
b) For DocBook WebHelp system, edit the following file: [OXYGEN_INSTALL_DIR]\frameworks\docbook

\xsl\com.oxygenxml.webhelp\indexer\scoring.properties.
The values that can be edited in the scoring.properties file:

h1 = 10
h2 = 9
h3 = 8
h4 = 7
h5 = 6
h6 = 5
b = 5
strong = 5
em = 3
i=3
u=3
div.toc=-10
title=20
div.ignore=ignored
meta_keywords = 20
meta_indexterms = 20
meta_description = 25
shortdesc=25

2. Save your changes to the file.
3. Re-run your WebHelp system transformation scenario.

Transforming Documents 786

Exclude Certain DITA Topics from WebHelp Search Results

The WebHelp Search engine does not index DITA topics that have the @search attribute set to no. This is useful
if you have topics in your DITA map structure that you do not want to be included in search results for your
WebHelp system.

To exclude DITA topics from WebHelp search results, follow these steps:

1. Edit the DITA map and for any topicref that you want to exclude from search results, set the search
attribute to no.
For example:

<topicref href="../topics/internal-topic1.dita" search="no"/>

2. Save your changes to the DITA map.
3. Re-run your WebHelp system transformation scenario.

Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content
across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to
be flagged. Generally, flagging is supported for block elements (such as paragraphs), but not for phrase-level
elements within a paragraph. This ensures that the images that will flag the content are easily scanned by the
reader, instead of being buried in text.

Follow this procedure:

1. Create a DITA filter file in the directory where you want to add the file. Give the file a descriptive name, such as
audience-flag-build.ditaval.

2. Define the property of the element you want to be flagged. For example, if you want to flag elements that have
the audience attribute set to programmer, the content of the DITAVAL file should look like the following
example:

<?xml version="1.0" encoding="UTF-8"?>
<val>
 <prop att="audience" val="programmer" action="flag"
 img="D:\resource\delta.gif" alt="sample alt text"/>
</val>

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in
the DITAVAL file.

3. Specify the DITAVAL file in the Filters tab of the transformation scenario.
4. Run the transformation scenario.

Integrating Social Media and Google Tools in WebHelp Output

Oxygen XML Developer includes support for integrating some of the most popular social media sites in WebHelp
output.

How to Add a Facebook Like Button in WebHelp Classic Output

To add a Facebook™ Like widget to your WebHelp output, follow these steps:

1. Go to the Facebook Developers website.
2. Fill-in the displayed form, then click the Get Code button.

A dialog box that contains code snippets is displayed.
3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml.
Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

Transforming Documents 787

https://developers.facebook.com/docs/plugins/like-button

The content of the XML file should look like this:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!--
 (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 -->
 </script>
 <div class="fb-like" data-layout="standard" data-action="like"
 data-show-faces="true" data-share="true"/>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the facebook-
widget.xml file that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Add a Google+ Button in WebHelp Classic Output

To add a Google+ widget to your WebHelp output, follow these steps:

1. Go to the Google Developers website.
2. Fill-in the displayed form.

The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called

google-plus-button.xml.
Make sure that the content of the file is well-formed.

The content of the XML file should look like this:

<div id="google-plus">
 <!-- Place this tag in your head or just before your close body tag. -->
 <script src="https://apis.google.com/js/platform.js" async defer></script>

 <!-- Place this tag where you want the +1 button to render. -->
 <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the google-
plus-button.xml file that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Add Tweet Button in WebHelp Classic Output

To add a Twitter™ Tweet widget to your WebHelp output, follow these steps:

Transforming Documents 788

https://developers.google.com/+/web/+1button/

1. Go to the Tweet button generator page.
2. Fill-in the displayed form.

The Preview and code area displays the code.
3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML

file called tweet-button.xml.
Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">
 Tweet
 <script>
 <!--
 !function (d, s, id) {
 var
 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)
 ? 'http': 'https';
 if (! d.getElementById(id)) {
 js = d.createElement(s);
 js.id = id;
 js.src = p + '://platform.twitter.com/widgets.js';
 fjs.parentNode.insertBefore(js, fjs);
 }
 }
 (document,
 'script', 'twitter-wjs');
 -->
 </script>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the tweet-
button.xml file that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Integrate Google Analytics in WebHelp Classic Output

To allow your WebHelp system to benefit from Google Analytics reports, follow these steps:

1. Create a new Google Analytics account (if you do not already have one) and log on.
2. Choose the Analytics solution that fits the needs of your website.
3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID.

A Tracking Code looks like this:

<script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');
 ga('send', 'pageview');
</script>

4. Save the Tracking Code (obtained in the previous step) in a new HTML file called googleAnalytics.html.
5. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the

Document > Transformation menu.

Transforming Documents 789

https://publish.twitter.com

6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

7. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the
googleAnalytics.html file that you created earlier.

8. Click Ok.
9. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Integrate Google Search in WebHelp Classic Output

You can integrate Google Search into your WebHelp output.

To allow your WebHelp system to use Google Search, follow these steps:

1. Go to the Google Custom Search Engine page using your Google account.
2. Press the Create a custom search engine button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should

obtain a code snippet.
A Google Search script looks like this:

<script>
 (function() {
 var cx =
 '000888210889775888983:8mn4x_mf-yg';
 var gcse = document.createElement('script');
 gcse.type = 'text/javascript';
 gcse.async = true;
 gcse.src = (document.location.protocol == 'https:' ?
 'https:' : 'http:') + '//www.google.com/cse/cse.js?cx=' + cx;
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(gcse, s);
 }
)();
</script>

4. Save the script into a well-formed HTML file called googlecse.html.
5. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the

Document > Transformation menu.
6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without

feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.
7. Switch to the Parameters tab and edit the webhelp.google.search.script parameter to reference the

googlecse.html file that you created earlier.
8. You can also use the webhelp.google.search.results parameter to choose where to display the search

results.
a) Create an HTML file with the following content: <div class="gcse-searchresults-only" data-

queryParameterName="searchQuery" > (you must use the HTML5 version for the GCSE). It is
recommended that you set the data-linkTarget attribute value to frm for frameless versions of the
WebHelp system or to data-contentWin for frameset versions of WebHelp. The default value is _blank
and if you do not specify a value the search results will be loaded in a new window. For more information
about other supported attributes, see Google Custom Search: Supported Attributes.

b) Set the value of the webhelp.google.search.results parameter to the file path of the file you just
created. If this parameter is not specified, the following code is used: <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>.

9. Click Ok.
10.Run the transformation scenario.

Related Information:
Integrating Social Media and Google Tools in WebHelp Output on page 754

Transforming Documents 790

https://developers.google.com/custom-search/docs/element#html5
https://developers.google.com/custom-search/docs/element#supported_attributes

Localizing the Email Notifications of WebHelp with Feedback Systems

The feedback-enabled WebHelp systems use emails to notify users when comments are posted. These emails
are based on templates stored in the WebHelp directory. The default messages are in English, French, German,
and Japanese. These messages are copied into the WebHelp system deployment directory during the execution
of the corresponding transformation scenario.

Suppose that you want to localize the emails into Dutch (nl). Follow these steps:

DocBook WebHelp Classic with Feedback

1. Create the following directory:

[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl\com.oxygenxml.webhelp\oxygen-webhelp
\resources\php\templates\nl

2. Copy all English template files from [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl
\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\en and paste them into
the directory you just created.

3. Edit the HTML files from the [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl
\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates\nl directory and translate
the content into Dutch.

4. Start Oxygen XML Developer and edit the DocBook WebHelp Classic with Feedback transformation scenario.
5. In the Parameters tab, look for the l10n.gentext.default.language parameter and set its value to the

appropriate language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us), the
transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

DITA WebHelp Classic with Feedback or WebHelp Responsive with Feedback

1. Create the following directory:

DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp\resources\php\templates
\nl

2. Copy all English template files from DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-
webhelp\resources\php\templates\en and paste them into the directory you just created.

3. Edit the HTML files from the DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp
\resources\php\templates\nl directory and translate the content into Dutch.

4. Start Oxygen XML Developer and edit the DITA Map WebHelp Classic with Feedback or DITA Map WebHelp
Responsive with Feedback transformation scenario.

5. In the Parameters tab, look for the args.default.language parameter and set its value to the appropriate
language code. In our example, use the value nl for Dutch.

Note: If you set the parameter to a value such as LanguageCode-CountryCode (for example, en-us), the
transformation scenario will only use the language code

6. Run the transformation scenario to obtain the WebHelp with Feedback output.

Localizing the Interface of WebHelp Output

You can localize the interface of WebHelp output for DITA or DocBook transformations.

Localizing the Interface of WebHelp Output (for DITA Map Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the DITA-OT-DIR/plugins/
com.oxygenxml.webhelp/oxygen-webhelp/resources/localization folder. Translation files have the
strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes. For example, the US English
text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DITA map transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in DITA-OT-DIR/plugins/com.oxygenxml.webhelp/
oxygen-webhelp/resources/localization directory (for example, the Canadian French file would be:
strings-fr-ca.xml). If it does not exist, create one starting from the strings-en-us.xml file.

Transforming Documents 791

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the
following format: <str name="Label name">Caption</str>.

3. Run the predefined transformation scenario called Run DITA OT Integrator by executing it from the Apply
Transformation Scenario(s) dialog box. If the integrator is not visible, select the Show all scenarios action that
is available in the Settings drop-down menu.

4. Make sure that the new XML file that you created in the previous two steps is listed in the file DITA-
OT-DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization/
strings.xml. In our example for the Canadian French file, it should be listed as: <lang xml:lang="fr-
ca" filename="strings-fr-ca.xml"/>.

5. Edit any of the DITA Map to WebHelp transformation scenarios (with or without feedback, or the mobile
version) and set the args.default.language parameter to the code of the language you want to localize (for
example, fr-ca for Canadian French).

6. Run the transformation scenario to produce the WebHelp output.

Related Information:
Searching Japanese Content in WebHelp Pages on page 759

Localizing the Interface of WebHelp Output (for DocBook Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
folder. Translation files have the strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language
codes. For example, the US English text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DocBook transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/
com.oxygenxml.webhelp/oxygen-webhelp/resources/localization directory (for example, the
Canadian French file would be: strings-fr-ca.xml). If it does not exist, create one starting from the strings-en-
us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the
following format: <str name="Label name">Caption</str>.

3. Make sure that the new XML file that you created in the previous two steps is listed in the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/
resources/localization/strings.xml. In our example for the Canadian French file, it should be listed
as: <lang xml:lang="fr-ca" filename="strings-fr-ca.xml"/>.

4. Edit any of the DocBook to WebHelp transformation scenarios (with or without feedback, or the mobile
version) and set the l10n.gentext.default.language parameter to the code of the language you want to localize
(for example, fr-ca for Canadian French).

5. Run the transformation scenario to produce the WebHelp output.

Related Information:
Searching Japanese Content in WebHelp Pages on page 759

Searching Japanese Content in WebHelp Pages

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can be
used. This analyzer is included in the Oxygen XML Developer installation kit.

Activating Japanese Indexing in DITA WebHelp Systems

To activate the Japanese indexing in your WebHelp system generated from DITA content, follow these steps:

1. Set the language for your content to Japanese with one of the following two methods:

• Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the
args.default.language parameter to ja-jp.

• Set the xml:lang attribute on the root of the DITA map and the referenced topics to ja-jp.
2. For the analyzer to work properly, search terms that are entered into the WebHelp search text field must be

separated by spaces.

Transforming Documents 792

3. Run the DITA to WebHelp transformation scenario to generate the output.

Optionally a Japanese user dictionary can be set with the webhelp.search.japanese.dictionary
parameter.

Activating Japanese Indexing in DocBook WebHelp Systems

To activate the Japanese indexing in your WebHelp system generated from DocBook content, follow these steps:

1. Edit a DocBook to WebHelp transformation scenario and in the Parameters tab, set the value of the
l10n.gentext.default.language parameter to ja.

2. Run the transformation scenario to generate the output.

Related Information:
Localizing the Interface of WebHelp Output (for DITA Map Transformations) on page 758
Localizing the Interface of WebHelp Output (for DocBook Transformations) on page 792

Overriding an XSLT Processing Step of the DITA WebHelp Transformation

Since WebHelp output is primarily obtained by running XSLT transformations over the DITA input files (through
the DITA Map WebHelp transformation scenarios), one customization method would be to override the default
XSLT templates that are used by the WebHelp transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp transformation.

• The first method is to use one of the WebHelp XSLT-import extension points that allow you to import an XSLT
stylesheet so that it becomes part of the normal build. This method uses the same mechanism as the DITA-
OT XSLT-import extension points. Note that this method will affect all the outputs generated with the WebHelp
system.

• The second method implies that you will create a DITA-OT extension plugin with a custom transtype and use an
Ant build file to define the transformation process. The main difference from the first customization method
is that you will not affect all WebHelp transformations. Only the transformations that use the declared plugin
transtype will be affected.

WebHelp XSLT-Import and XSLT-Parameter Extension Points

The WebHelp XSLT-Import extension points allows you to extend the XSLT stylesheets associated with some of
the WebHelp transformation steps. The DITA-OT plug-in installer adds an XSLT import statement in the default
WebHelp XSLT so that the XSLT stylesheet referenced by the extension point becomes part of the normal build.

Example:

<plugin id="com.oxygenxml.webhelp.extension">
 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp" file="xsl/fixup.xsl"/>
</plugin>

Attention: The customizations you make by using this extension point will affect all WebHelp
transformations. If you want to have a customization that is only available for a certain transformation,
please use the Overriding a WebHelp XSLT Stylesheet from an Ant Build File method.

XSLT-Import Extension Points

The following extension points are available:

com.oxygenxml.webhelp.xsl.dita2webhelp
Extension point to override the XSLT stylesheet (dita2webhelpImpl.xsl) that produces an HTML file for
each DITA topic. Depending on the type of WebHelp transformation you are currently using, the path to this
stylesheet is as follows:

• WebHelp Classic Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita
\desktop\dita2webhelpImpl.xsl

• WebHelp Classic Mobile Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\mobile\dita2webhelpImpl.xsl

Transforming Documents 793

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html

• WebHelp Responsive Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\responsive\dita2webhelpImpl.xsl

com.oxygenxml.webhelp.xsl.createMainFiles
Extension point to override the XSLT stylesheet (createMainFilesImpl.xsl) that produces the WebHelp
main HTML page (index.html). Depending on the type of WebHelp transformation you are currently using,
the path to this stylesheet is as follows:

• WebHelp Classic Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita
\desktop\createMainFilesImpl.xsl

• WebHelp Classic Mobile Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\mobile\createMainFilesImpl.xsl

• WebHelp Responsive Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\responsive\createMainFilesImpl.xsl

com.oxygenxml.webhelp.xsl.createTocXML
Extension point to override the XSLT stylesheet (tocDita.xsl) that produces the toc.xml file. This
file contains information extracted from the DITA map and it is mainly used to construct the WebHelp
Table of Contents and navigational links. The path to this stylesheet is: DITA-OT-DIR\plugins
\com.oxygenxml.webhelp\xsl\dita\tocDita.xsl.

XSLT-Parameter Extension Points

If your customization stylesheet declares one or more XSLT parameters and you want to control their values from
the transformation scenario, you can use one of the following XSLT parameter extension points:

com.oxygenxml.webhelp.xsl.dita2webhelp.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.dita2webhelp extension point.

com.oxygenxml.webhelp.xsl.createMainFiles.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.createMainFiles extension point.

com.oxygenxml.webhelp.xsl.createTocXml.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.createTocXml extension point.

Related Information:
[DITA-OT] XSLT-Import Extension Points
[DITA-OT] XSLT-Parameter Extension Points

Example: Customizing Side TOC Using XSLT-Import/Parameter Extension Points

This topic provides some common use-cases to demonstrate how to use the WebHelp XSLT-Import extension
points to customize the Table of Contents displayed on the right side of the WebHelp output (the default
transformation generates a mini table of contents for the current topic and it contains links to the children of
current topic, its siblings, and all of its ancestors). The first use-case uses an XSLT-Import extension point while
the second uses an XSLT-Parameter extention point.

Use Case 1: WebHelp XSLT-Import extension point to change which topics are displayed in the Side TOC

Suppose you want to customize the side TOC to only include the current topic and its child topics (while excluding
its siblings and ancestors).

Transforming Documents 794

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html

Figure 373: Example: Filtered Side Table of Contents

The default XSLT template responsible for this functionality is defined in: DITA-OT-DIR\plugins
\com.oxygenxml.webhelp\xsl\dita\responsive\navigationLinks.xsl.

<xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]"
 mode="toc-pull" priority="10">

This template computes the link for the current topic along with the links for the sibling topics, and then
propagates them recursively to the parent topic. For this specific use-case, you need to override this template so
that it will produce the link for the current topic along with just the child links that the template already receives.

You can implement this functionality with a WebHelp extension plugin that uses the
com.oxygenxml.webhelp.xsl.dita2webhelp extension point. This extension point allows you to specify a
customization stylesheet that will override the template described above.

To add this functionality as a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,
com.oxygenxml.webhelp.custom.sidetoc).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your
customization stylesheet. For example:

<plugin id="com.oxygenxml.webhelp.custom.sidetoc">
 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp"
 file="custom_side_TOC.xsl"/>
</plugin>

3. Create your customization stylesheet (for example, custom_side_TOC.xsl), and edit it to override the template
that produces the side TOC:

<xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]"
 mode="toc-pull"
 priority="10">

 <xsl:param name="pathFromMaplist" as="xs:string"/>
 <xsl:param name="children" select="()" as="element()*"/>
 <xsl:param name="parent" select="parent::*" as="element()?"/>

 <xsl:apply-templates select="." mode="sideTocEntry">
 <xsl:with-param name="pathFromMaplist" select="$pathFromMaplist"/>
 <xsl:with-param name="children" select="$children"/>
 </xsl:apply-templates>
</xsl:template>

4. Use the Run DITA OT Integrator transformation scenario found in the DITA Map section in the Configure
Transformation Scenario(s) dialog box.

5. Run a DITA Map WebHelp Responsive transformation scenario to obtain the customized side TOC.

Transforming Documents 795

Use-Case 2: WebHelp XSLT-Parameter extension point to control which topics are displayed in the Side TOC
from the transformation scenario

Another possibility to customize what is displayed in the side Table of Contents is to add a transformation
parameter that will control the XSLT customization when the transformation scenario is applied. For this use-
case, you can use the com.oxygenxml.webhelp.xsl.dita2webhelp.param extension point.

To add this functionality, follow these steps:

1. Create a DITA-OT plugin structure by following the first 3 steps in the procedure above.
2. In the customization stylesheet that you created in step 3, declare the side_toc_only_children

parameter and modify the template to match the topic only when the side_toc_only_children parameter
is set to yes:

<xsl:param name="side_toc_only_children" select="'yes'"/>
 ...
 <xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]
 [$side_toc_only_children = 'yes']"
 ...

3. Edit the plugin.xml file to specify the com.oxygenxml.webhelp.xsl.dita2webhelp.param extension point and a
custom parameter file by adding the following line:

<feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp.param"
 file="custom_params.xml"/>

4. Create a custom parameter file (for example, custom_params.xml). It should look like this:

<dummy>
 <param name="side_toc_only_children" expression="${side_toc_only_children}"
 if="side_toc_only_children"/>
</dummy>

5. Use the Run DITA OT Integrator transformation scenario found in the DITA Map section in the Configure
Transformation Scenario(s) dialog box.

6. Edit a DITA Map WebHelp Responsive transformation scenario and in the Parameters tab, specify the desired
value (yes or no) for your custom parameter (side_toc_only_children).

7. Run the transformation scenario.

Related Information:
[DITA-OT] XSLT-Import Extension Points
[DITA-OT] XSLT-Parameter Extension Points

Overriding a WebHelp XSLT Stylesheet from an Ant Build File

To create a WebHelp XSLT customization that is only available for a certain DITA OT transformation, the
extension plugin should declare a custom transtype. The WebHelp XSLT stylesheets can be overridden from an
ANT file provided by the DITA-OT extension plugin. From the Ant target associated with the plugin, you will specify
a custom XSLT stylesheet that imports the original WebHelp stylesheet and add some customization templates.

The following procedure explains how to create a DITA-OT extension plugin that uses this extension method:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,
com.oxygenxml.webhelp.responsive.custom).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies a new DITA-OT transtype and the
build file associated with the plugin. For example:

<plugin id="com.oxygenxml.webhelp.responsive.customization">
 <feature extension="dita.conductor.target.relative" file="integrator.xml"/>
 <transtype name="webhelp-responsive-custom" extends="webhelp-responsive"
 desc="WebHelp Responsive Customization"/>
</plugin>

3. Create the integrator.xml file that will import the actual plugin Ant build file.

<project basedir="." name="Webhelp Responsive Customization">
 <import file="build.xml"/>
</project>

Transforming Documents 796

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/dev_ref/plugin-newtranstype.html

4. Create the build.xml file that overrides the value of properties associated with the XSLT stylesheets used to
produce HTML files. The following Ant properties can be overridden to specify your customization stylesheets:

args.wh.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce an HTML file for each
topic.

args.create.main.files.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce the main HTML file.

args.createTocXML.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce the toc.xml file. The
toc.xml file contains information extracted from DITA map and it is mainly used to create the WebHelp
TOC.

For example, to customize a WebHelp Responsive transformation type, the build file should look like:

<project basedir="." name="Webhelp Responsive Customization">
 <target name="dita2webhelp-responsive-custom">
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce an HTML file for each topic
 -->
 <property
 name="args.wh.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/dita2webhelpCustom.xsl"/>
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce the main HTML file.
 -->
 <property
 name="args.create.main.files.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/createMainFilesCustom.xsl"/>
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce the toc.xml file.
 -->
 <property
 name="args.createTocXML.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/createTocXMLCustom.xsl"/>
 <!--
 Depending on which version of WebHelp you want to customize,
 you need to delegate to different build targets:
 * dita2webhelp-responsive - when you are customizing the Webhelp Responsive
 * dita2webhelp-mobile - when you are customizing the Webhelp Mobile
 * dita2webhelp - when you are customizing the Webhelp Classic
 -->
 <antcall target="dita2webhelp-responsive"/>
 </target>
</project>

Note: Depending on which version of WebHelp you want to customize, you need to call one of the following
build targets:

• dita2webhelp-responsive - For WebHelp Responsive (with or without feedback) output.
• dita2webhelp - For WebHelp Classic (with or without feedback) output.
• dita2webhelp-mobile - For WebHelp Classic Mobile output (deprecated).

5. Create an xsl directory in the plugin customization directory (that you created in step 1) to store the
customized XSLT stylesheets.

Referencing the WebHelp XSLT Stylesheets from Your Customizations

Note that your customization stylesheets should import the original stylesheets that they override. To reference
the WebHelp stylesheets, you can use the plugin:com.oxygenxml.dita-ot.plugin.webhelp prefix. This prefix is
rewritten by an XML catalog to the WebHelp root directory.

Customizing the dita2webhelp.xsl Stylesheet

The XSLT stylesheet that customizes the WebHelp dita2webhelp.xsl stylesheet should look like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"

Transforming Documents 797

 version="2.0">
 <!--
 Import the original stylesheet used to produce an HTML file for each topic.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/
 dita/responsive/dita2webhelp.xsl"/>
 <!--
 Please add your customization templates here.
 -->
</xsl:stylesheet>

Depending on which version of WebHelp you want to customize, you need to import one of the following XSLT
stylesheets:

• dita2webhelp-responsive (WebHelp Responsive) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
responsive/dita2webhelp.xsl"/>

• dita2webhelp (WebHelp Classic) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/desktop/
dita2webhelp.xsl"/>

• dita2webhelp-mobile (WebHelp Classic Mobile) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/mobile/
dita2webhelp.xsl"/>

Customizing the createMainFiles.xsl Stylesheet

The XSLT stylesheet that customizes the WebHelp createMainFiles.xsl stylesheet should look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce the main HTML file.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
 responsive/createMainFiles.xsl"/>
 <!--
 Please add your customization templates here.
 -->

</xsl:stylesheet>

Depending on which version of WebHelp you want to customize, you need to import one of the following XSLT
stylesheets:

• dita2webhelp-responsive (WebHelp Responsive) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
responsive/createMainFiles.xsl"/>

• dita2webhelp (WebHelp Classic) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/desktop/
createMainFiles.xsl"/>

• dita2webhelp-mobile (WebHelp Classic Mobile) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/mobile/
createMainFiles.xsl"/>

Customizing the tocDita.xsl File

The XSLT stylesheet that customizes the WebHelp tocDita.xsl stylesheet should look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce the toc.xml file.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/tocDita.xsl"/>

Transforming Documents 798

 <!--
 Please add your customization templates here.
 -->

</xsl:stylesheet>

Removing the Previous/Next Links from WebHelp Classic Output

The Previous and Next links that are created at the top area of each WebHelp Classic page can be hidden with a
CSS code.

To remove these links from WebHelp Classic output, follow these steps:

1. Add the following CSS code in a custom CSS stylesheet:

.navparent, .navprev, .navnext {
 visibility:hidden;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Run the transformation scenario.

Search Engine Optimization for DITA WebHelp

A DITA Map WebHelp transformation scenario can be configured to produce a sitemap.xml file that is used
by search engines to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system
and allows webmasters to provide additional information about each page, such as the date it was last updated,
change frequency, and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://www.example.com/topics/introduction.html</loc>
 <lastmod>2014-10-24</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.5</priority>
 </url>
 <url>
 <loc>http://www.example.com/topics/care.html#care</loc>
 <lastmod>2014-10-24</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.5</priority>
 </url>
 . . .
</urlset>

Each page has a <url> element structure containing additional information, such as:

• loc - the URL of the page. This URL must begin with the protocol (such as http), if required by your
web server. It is constructed from the value of the webhelp.sitemap.base.url parameter from the
transformation scenario and the relative path to the page (collected from the href attribute of a topicref
element in the DITA map).

Note: The value must have fewer than 2,048 characters.
• lastmod (optional) - the date when the page was last modified. The date format is YYYY-MM-DD.
• changefreq (optional) - indicates how frequently the page is likely to change. This value provides

general information to assist search engines, but may not correlate exactly to how often they crawl
the page. Valid values are: always, hourly, daily, weekly, monthly, yearly, and never.
The first time the sitemap.xml file is generated, the value is set based upon the value of the
webhelp.sitemap.change.frequency parameter in the DITA WebHelp transformation scenario. You can
change the value in each url element by editing the sitemap.xml file.

Note: The value always should be used to describe documents that change each time they are accessed.
The value never should be used to describe archived URLs.

• priority (optional) - the priority of this page relative to other pages on your site. Valid values range from 0.0
to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets the search

Transforming Documents 799

engines know which pages you deem most important for the crawlers. The first time the sitemap.xml
file is generated, the value is set based upon the value of the webhelp.sitemap.priority parameter in
the DITA WebHelp transformation scenario. You can change the value in each url element by editing the
sitemap.xml file.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-
tune search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit
DITA Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

• webhelp.sitemap.base.url - the URL of the location where your WebHelp system is deployed

Note: This parameter is required for Oxygen XML Developer to generate the sitemap.xml file.
• webhelp.sitemap.change.frequency - how frequently the WebHelp pages are likely to change

(accepted values are: always, hourly, daily, weekly, monthly, yearly, and never)
• webhelp.sitemap.priority - the priority of each page (value ranging from 0.0 to 1.0)

3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of

each page, according to your needs.

Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map and set the xml:lang
attribute on its root element (map). The corresponding attribute value can be set for following RTL languages:

• ar-eg - Arabic
• he-il - Hebrew
• ur-pk - Urdu

WebHelp Skin Builder

The WebHelp Skin Builder is a simple, easy-to-use tool, specially designed to assist users to visually customize
the look and feel of the WebHelp output. It is implemented as an online tool hosted on the Oxygen XML Developer
website and allows you to experiment with various styles and colors over a documentation sample.

To be able to use the Skin Builder, you need:

• An Internet connection and unrestricted access to Oxygen XML Developer website.
• A late version web browser.

To start the Skin Builder, do one of the following:

• For DocBook or DITA WebHelp systems, use a web browser to go to https://www.oxygenxml.com/webhelp-
skin-builder.

• For DITA WebHelp systems, you can click the Online preview link in the Skins tab of a DITA OT transformation
scenario. In the upper section of the preview, click the Select Skin button, then choose Customize Skin.

Skin Builder Layout

The left side panel of the Skin Builder is divided into 3 sections:

• Actions - Contains the following two buttons:

• Import - Opens an Import CSS dialog box that allows you to load a CSS stylesheet and apply it over the
documentation sample.

• Export - Saves all properties as a CSS file.
• Settings - Includes a Highlight selection option that helps you identify the areas affected by a particular

element customization.

• When hovering an item in the customizable elements menu, the affected sample area is highlighted with a
dotted blue border.

Transforming Documents 800

https://www.oxygenxml.com/webhelp-skin-builder
https://www.oxygenxml.com/webhelp-skin-builder

• When an item in the customizable elements menu is selected, the affected sample area is highlighted with
a solid red border.

• Customize - Provides a series of customizable elements organized under four main categories:

• Header
• TOC Area
• Vertical Splitter
• Content

For each customizable element, you can alter properties such as background color or font face. Any alteration
made in the customizable elements menu is applied in real time over the sample area.

Create a Customization Skin

1. The starting point can be either one of the predefined skins or a CSS stylesheet applied over the sample using
the Import button.

2. Use the elements in the Customize section to set properties that modify the look of the skin. By default, all
customizable elements display a single property, but you can make more visible by clicking the Add button
and choosing from the available properties.

Note: If you want to revert a particular property to its initial value, press the Reset button.
3. When you are happy with the skin customizations you have made, press the Export button. All settings will be

saved in a CSS file.

Apply a Customization Skin to a DITA Map to WebHelp Classic Transformation Scenario

1. Start Oxygen XML Developer.
2. Load the DITA map you want to produce as a WebHelp output.
3. Edit a DITA Map to WebHelp-type transformation scenario. Set the previously exported CSS file in the Custom

section of the Skins tab.
4. Run the transformation to obtain the WebHelp output.

Apply a Customization Skin to a DocBook to WebHelp Classic Transformation Scenario

1. Start Oxygen XML Developer.
2. Load the DocBook file you want to produce as a WebHelp output.
3. In the Parameters tab, set the webhelp.skin.css parameter to point to the previously exported CSS.
4. To customize the logo, use the following parameters: webhelp.logo.image and webhelp.logo.image.target.url.
5. Run the transformation to obtain the WebHelp output.

To see our video demonstration about using the WebHelp Skin Builder, go to https://www.oxygenxml.com/demo/
Skin_Builder.html.

Related Information:
Skins Tab (DITA OT Transformations)

WebHelp Classic Runtime Additional Parameters

A deployed WebHelp system can accept the following GET parameters:

• log - The value can be true or false (default value). When set to true, it enables JavaScript debugging.
• contextId - The WebHelp JavaScript engine will look for this value in the context-help-map.xml

mapping file and load the corresponding help page. For more information, see the Context-Sensitive WebHelp
System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

• appname - You can use this parameter in conjunction with contextId to search for this value in the
corresponding appname attribute value in the mapping file.

http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication

Transforming Documents 801

https://www.oxygenxml.com/demo/Skin_Builder.html
https://www.oxygenxml.com/demo/Skin_Builder.html

• toc.visible - The value can be true (default value) or false. When set to false, the table of contents
will be collapsed when you load the WebHelp page.

• searchQuery - You can use this parameter to perform a search operation when WebHelp is loaded. For
example, if you want to open WebHelp showing all search results for growing flowers, the URL should look like
this: http://localhost/webhelp/index.html?searchQuery=growing%20flowers.

Related Information:
Context-Sensitive WebHelp Classic System on page 802

Context-Sensitive WebHelp Classic System

Context-sensitive help systems assist users by providing specific informational topics for certain components
of a user interface, such as a button or window. This mechanism works based on mappings between a unique ID
defined in the topic and a corresponding HTML page.

Generating Context-Sensitive Help

When WebHelp Classic output is generated by Oxygen XML Developer, the transformation process produces
an XML mapping file called context-help-map.xml and copies it in the output folder of the transformation.
This XML file maps an ID to a corresponding HTML page through an appContext element, as in the following
example:

<map productID="oxy-webhelp" productVersion="1.1">
 <appContext helpID="myapp-functionid1" path="tasks/app-help1.html"/>
 <appContext helpID="myapp-functionid2" path="tasks/app-help1.html"/>
 . . .
</map>

The possible attributes are as follows:

helpID
A Unique ID provided by a topic from two possible sources (resourceid element or id attribute):

resourceid
The resourceid element is mapped into the appContext element and can be specified in either the
topicref within a DITA map or in a prolog within a DITA topic. The resourceid element accepts the
following attributes:

• appname - A name for the external application that references the topic. If this attribute is not
specified, its value is considered to be empty ("").

• appid - An ID used by an application to identify the topic.
• id - Specifies a value that is used by a specific application to identify the topic, but this attribute is

ignored if an appid attribute is used.

Note: Multiple appid values can be associated with a single appname value (and multiple appname
values can be associated with a single appid value), but the values for both attributes work in
combination to specify a specific ID for a specific application, and therefore each combination of values
for the appid and appname attributes should be unique within the context of a single root map. For
example, suppose that you need two different functions of an application to both open the same WebHelp
page.

Example: resourceid Specified in a DITA Map

The resourceid element can be specified in a topicmeta element within a topicref.

<map title="App Help">
 <topicref href="app-help1.dita" type="task">
 <topicmeta>
 <resourceid appname="myapp" appid="functionid1"/>
 <resourceid appname="myapp" appid="functionid2"/>
 </topicmeta>
 </topicref>
</map>

Example: resourceid Specified in a DITA Topic

Transforming Documents 802

The resourceid element can be specified in a prolog element within a DITA topic.

<task id="app-help1">
 <title>My App Help</title>
 <prolog>
 <resourceid appname="myapp" appid="functionid1"/>
 <resourceid appname="myapp" appid="functionid2"/>
 </prolog>
...
</task>

For more information about the resourceid element, see DITA Specifications: <resourceid>.

id
If a resourceid element is not declared in the DITA map or DITA topic (as described above), the id
attribute that is set on the topic root element is mapped into the appContext element.

Important: You should ensure that these defined IDs are unique in the context of the entire DITA project.
If the IDs are not unique, the transformation scenario will display warning messages in the transformation
console output and the help system will not work properly.

path
The path to a corresponding WebHelp page. This path is relative to the location of the context-help-
map.xml mapping file.

productID (Applicable only if you are using the WebHelp Classic with Feedback transformation scenario)
The ID of the product for your documentation project.

productVersion (Applicable only if you are using the WebHelp Classic with Feedback transformation
scenario)

The version of the product for your documentation project.

There are two ways of implementing context-sensitive help in your system:

• The XML mapping file can be loaded by a PHP script on the server side. The script receives the contextId
value and will look it up in the XML file.

• Invoke one of the WebHelp system files index.html or index_frames.html and pass the contextId
parameter with a specific value. The WebHelp system will automatically open the help page associated with
the value of the contextId parameter.

The following example will open a frameless version of the WebHelp system showing the page associated with
the ID dialog1ID:

index.html?contextId=dialog1ID

The following example will open a frameset version of the WebHelp system showing the page associated with the
ID view1ID:

index_frames.html?contextId=view1ID

Tip: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

Context-Sensitive Queries

You can use the URL field in your browser to search for topics in a context-sensitive WebHelp system with the
assistance of the following parameters:

• contextId - The WebHelp JavaScript engine will look for this value in the context-help-map.xml
mapping file and load the corresponding help page. For more information, see the Context-Sensitive WebHelp
System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

Transforming Documents 803

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/resourceid.html#resourceid__attributes

• appname - You can use this parameter in conjunction with contextId to search for this value in the
corresponding appname attribute value in the mapping file.

http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication

Related Information:
WebHelp Classic Runtime Additional Parameters on page 801

Publishing WebHelp Classic Output on a SharePoint Site

Since WebHelp output must be published locally, on the same machine where the WebHelp process is running, to
publish your files directly to a SharePoint library you need to map a network drive to connect to SharePoint and
change your file extensions to .aspx, as described in the steps below.

To publish WebHelp Classic output on a SharePoint site, follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://
support.microsoft.com/en-us/kb/2616712.

2. To allow browsers to open your published files (rather than downloading them), you need to change the file
extensions from .html to .aspx. Fortunately, this can be done in the transformation scenario.

a. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.outext parameter to .aspx.
b. For a DocBook transformation, set the html.ext parameter to .aspx.

b. Run the transformation scenario.

WebHelp Classic Mobile System (Deprecated)
Note: The WebHelp Classic Mobile system was deprecated as of version 19.0. It is recommended that you use
the more recent WebHelp Responsive system for a flexible mobile variant.

WebHelp is a form of online help that consists of a series of web pages (XHTML format). Its advantages include
platform independence, ability to update content continuously, and it can be viewed using a regular web browser.
The Oxygen XML Developer WebHelp system includes several variants to suit your specific needs. The WebHelp
Classic Mobile variant works on multiple platforms (Android, iOS, BlackBerry, Windows Mobile) and is specially
designed for mobile devices when feedback from users is not necessary. It is available for DocBook and DITA
document types. The functionality of the desktop WebHelp Classic layout is preserved, it is organized in an
intuitive layout, and offers table of contents, search capabilities, and index navigation.

Figure 374: WebHelp Classic Mobile

Transforming Documents 804

https://support.microsoft.com/en-us/kb/2616712
https://support.microsoft.com/en-us/kb/2616712

Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer),
WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not
work properly. We recommend that you load WebHelp Classic pages in Google Chrome or Internet Explorer only
from a web server (with a URL such as http://your.server.com/webhelp/index.html or http://
localhost/web_pages/index.html).

Customizing WebHelp Classic Mobile Systems

If you are familiar with CSS and coding, you can style your WebHelp output through your own custom stylesheets.
You can also customize your output by modifying option and parameters in the transformation scenario. This
section includes topics that explain various ways to customize your WebHelp Classic Mobile system output.

Copying Additional Resources to WebHelp Output Directory

To copy additional resources (such as JavaScript, CSS or other resources) to the output directory of a WebHelp
system, follow these steps:

1. Place all your resources in the same directory.
2. Edit the WebHelp transformation scenario.
3. Go to the Parameters tab.
4. Edit the value for the webhelp.custom.resources parameter and set it to the absolute path of the directory in

step 1.
5. Click OK to save the changes to the transformation scenario.

All files from the new directory will be copied to the root of the WebHelp output directory.

Adding Custom HTML Content in WebHelp Classic Output

You can add custom HTML content in the WebHelp Classic output by inserting it in a well-formed XML file that
will be referenced in the transformation scenario. This content may include references to additional JavaScript,
CSS, and other types of resources, or such resources can be inserted inline within the HTML content that is
inserted in the XML file.

To include custom HTML content in the WebHelp Classic output files, follow these steps:

1. Insert the HTML content in a well-formed XML file. There are several things to consider in regards to this XML
file:

a. Well-Formedness - If the file is not a Well-formed XML document (or fragments are not well-formed), the
transformation will fail.

A common use case is if you want to include several script or link elements. In this case, the XML
fragment has multiple root elements and to make it well-formed, you can wrap it in an html element. This
element tag will be filtered out and only its children will be copied to the output documents. Similarly, you
can wrap your content in head, body, html/head, or html/body elements.

b. Referencing Resources in the XML File - You can include references to local resources (such as JavaScript
or CSS files) by using the predefined ${oxygen-webhelp-output-dir} macro to specify their paths
relative to the output directory:

<html>
 <script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"/>
 <link rel="stylesheet" type="text/css"
 href="${oxygen-webhelp-output-dir}/css/test.css" />
</html>

To copy the referenced resources to the output directory, follow the procedure in: Copying Additional
Resources to WebHelp Output Directory on page 747.

c. Inline JavaScript or CSS Content - If you want to include inline JavaScript or CSS content in the XML file, it
is important to place this content inside an XML comment, as in the following examples:

JavaScript:

<script type="text/javascript">
 <!--
 /* Include JavaScript code here. */

 function myFunction() {
 return true;
 }

Transforming Documents 805

 -->
</script>

CSS:

<style>
 <!--
 /* Include CSS style rules here. */

 *{
 color:red
 }
 -->
</style>

2. Edit the WebHelp Classic transformation scenario.
3. Go to the Parameters tab.
4. Edit the value of the webhelp.head.script parameter and set it to the URL of the XML file created in step 1. Your

additional content will be included at the end of the head element of your output document.

Note: If you want to include the content in the body element, use the webhelp.body.script parameter instead.
5. Click OK to save the changes to the transformation scenario.

Related Information:
Copying Additional Resources to WebHelp Output Directory on page 747

Adding a Button in Code Snippet Areas in DITA WebHelp Classic Output

This task will get you started with how to add an action (such as a button or link) in the code snippet areas that
are displayed in WebHelp Classic output created from a DITA map transformation. You can then attach your code
that does the actual processing for the action.

Follow these steps:

1. Open the DITA-OT-DIR\plugins\org.dita.xhtml\xsl\xslhtml\dita2htmlImpl.xsl file.
2. Locate the <xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">

template to check the default behavior of this template.
3. Open the DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita\desktop\fixup.xsl file.
4. Create a <xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">

template to override the default processing.
5. This new template will include your code for creating the button. It will have the action code that does the

actual processing attached to it (this can be written in JavaScript, for example).
Example of a Select all button:

<xsl:template match="*[contains(@class, ' topic/pre ')]" mode="pre-fmt">
 <button onclick="SelectText(element)">Select all</button>
 <script>
 function SelectText(element) {
 var text = document.getElementById(element);
 var range = document.body.createTextRange();
 range.moveToElementText(text);
 range.select();
 }
 </script>
 </xsl:template>

Adding a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp system by simply using a parameter in the transformation
scenario to point to your favicon image. This is available for DITA and DocBook WebHelp systems using WebHelp
Responsive, WebHelp Responsive with Feedback, WebHelp Classic, WebHelp Classic with Feedback, or WebHelp
Classic Mobile transformation scenarios.

To add a favicon, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.
2. Locate the webhelp.favicon parameter and enter the file path that points to the image that will be use as

the favicon.
3. Run the transformation scenario.

Transforming Documents 806

Adding Video and Audio Objects in DITA WebHelp Output

You can insert references to video and audio media resources (such as videos, audio clips, or embedded HTML
frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played directly
in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video by adding an object element, as in one of the following
examples:

<object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>

or, instead of the data attribute, you can specify the video using a parameter like this:

<object outputclass="video">
 <param name="src" value="videos/MyVideo.mp4"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 video element.

<video controls="controls"><source type="video/mp4" src="MyVideo.mp4"></source>
</video>

Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip by adding an object element, as in one of the
following examples:

<object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>

or, instead of the data attribute, you can specify the video using a parameter like this:

<object outputclass="audio">
 <param name="src" value="audio/MyClip.mp3"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 audio element.

<audio controls="controls"><source type="audio/mpeg" src="MyClip.mp3"></source>
</audio>

Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by manually adding an object element, as
in one of the following examples:

<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>

or, instead of the data attribute, you can specify the object using a parameter like this:

<object outputclass="iframe">
 <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>
</object>

2. Apply a DITA to WebHelp transformation scenario to obtain the output.

Result: The transformation converts the object element to an HTML5 iframe element.

<iframe controls="controls" src="https://www.youtube.com/embed/m_vv2s5Trn4">
</iframe>

For more information, see the following video demonstration: https://www.oxygenxml.com/demo/
Media_Objects.html.

Transforming Documents 807

https://www.oxygenxml.com/demo/Media_Objects.html
https://www.oxygenxml.com/demo/Media_Objects.html

Adding Videos in DocBook WebHelp Classic Output

You can insert references to videos in your DocBook topics and then publish them to WebHelp Classic output.
The videos can be played directly in all HTML5-based outputs, including WebHelp systems.

To add videos in the WebHelp Classic output generated from DocBook documents, follow these steps:

1. Edit the DocBook document and reference the video using an mediaobject element, as in the following
example:

<mediaobject>
 <videoobject>
 <videodata fileref="http://www.youtube.com/watch/v/VideoName"/>
 </videoobject>
</mediaobject>

2. Apply a WebHelp or WebHelp with Feedback transformation scenario to obtain the output.

Changing the Style of WebHelp Mobile Pages

You can change the style for your WebHelp Mobile pages by setting a custom theme created with a third-party
tool.

To create a custom theme for WebHelp Mobile pages, use the following procedure:

1. Create a custom theme (the result will be a CSS stylesheet). Use a designer tool, such as the ThemeRoller for
jQuery Mobile, to create your own custom theme and then download the resulting CSS stylesheet.

Tip: If you are using ThemeRoller for jQuery Mobile, make sure you use a type C swatch.
2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Make sure that the output folder is empty.
4. Run the transformation scenario.

Change Numbering Styles for Ordered Lists

Ordered lists (ol) are usually numbered in XHTML output using numerals. If you want to change the numbering to
alphabetical, follow these steps:

1. Define a custom outputclass value and set it as an attribute of the ordered list, as in the following example:

<ol outputclass="number-alpha">
 A
 B
 C

2. Add the following code snippet in a custom CSS file:

ol.number-alpha{
 list-style-type:lower-alpha;
}

3. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
4. Run the transformation scenario.

Changing the Icons in a WebHelp Classic Table of Contents

You can change the icons that appear in a WebHelp Classic table of contents by assigning new image files in a
custom CSS file. By default, the icons for the WebHelp Classic table of contents are defined with the following

Transforming Documents 808

http://themeroller.jquerymobile.com/
http://themeroller.jquerymobile.com/

CSS codes (the first example is the icon that appears for a collapsed menu and the second for an expanded
menu):

.hasSubMenuClosed{
 background: url('../img/book_closed16.png') no-repeat;
 padding-left: 16px;
 cursor: pointer;
}

.hasSubMenuOpened{
 background: url('../img/book_opened16.png') no-repeat;
 padding-left: 16px;
 cursor: pointer;
}

To assign other icons, use the following procedure:

1. Create a custom CSS file that assigns your desired icons to the .hasSubMenuClosed and
.hasSubMenuOpened properties.

.hasSubMenuClosed{
 background: url('TOC-my-closed-button.png') no-repeat;
}

.hasSubMenuOpened{
 background: url('TOC-my-opened-button.png') no-repeat;
}

2. It is recommended that you store the image files in the same directory as the default icons.
a) For DITA transformations: DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp

\resources\img\.
b) For DocBook transformations: [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl

\com.oxygenxml.webhelp\oxygen-webhelp\resources\img\.
3. Edit the WebHelp transformation scenario and open the Parameters tab.

a) For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b) For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
4. Run the transformation scenario.

CSS Styling to Customize WebHelp Output

One way to customize WebHelp output is to use custom CSS styling. This method can be used to make small,
simple styling changes or more advanced, precise changes. To implement the styling in your WebHelp output, you
simply need to create the custom CSS file and reference it in your transformation scenario.

As a practical example, to hide the horizontal separator line between the content and footer, follow these steps:

1. Create a custom CSS file that contains the following snippet:

.footer_separator {
 display:none;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Run the transformation scenario.

Customize the Appearance of Selected Items in the Table of Contents

The appearance of selected items in the table of contents of WebHelp Classic output can be enhanced.

For example, to highlight the background of the selected item, follow these steps:

1. Locate the toc.css file in the following directory:

Transforming Documents 809

a. For DITA transformations: DITA-OT-DIR\plugins\com.oxygenxml.webhelp\oxygen-webhelp
\resources\css.

b. For DocBook transformations: [OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl
\com.oxygenxml.webhelp\oxygen-webhelp\resources\css.

2. Edit that CSS file, find the menuItemSelected class, and change the value of the background property.

Note: You can also overwrite the same value from your own custom CSS and then specify the path to your CSS in
the transformation scenario (see step 3 in the Changing the Icons in a WebHelp Classic Table of Contents topic.

Customizing WebHelp Output with a Custom CSS

By creating your own custom CSS stylesheet, you can customize the look and style of WebHelp output to fit your
specific needs.

To use a custom CSS in WebHelp output, follow these steps:

1. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
2. Run the transformation scenario.

Disable Caching in WebHelp Classic Output

In cases where a set of WebHelp Classic pages need to be updated on a regular basis to deliver the latest version
of the documentation, the WebHelp pages should always be requested from the server upon re-loading it in a Web
browser on the client side, rather than re-using an outdated cached version in the browser.

To disable caching in WebHelp Classic output, follow this procedure:

1. Edit the following XSL file for DITA or DocBook WebHelp systems:

• For DITA WebHelp systems, edit the following file: DITA-OT-DIR\plugins\com.oxygenxml.webhelp
\xsl\createMainFiles.xsl.

• For DocBook WebHelp system, edit the following file: [OXYGEN_INSTALL_DIR]\frameworks\docbook
\xsl\com.oxygenxml.webhelp\xsl\createMainFiles.xsl.

2. Locate the following template in the XSL file: <xsl:template name-"create-toc-common-file"> and
add the following code snippet:

<meta http-equiv="Pragma" content="no-cache" />
<meta http-equiv="Expires" content="-1" />

Note: The code should look like this:

 <html>
 <head>
 <xsl:if test="$withFrames">
 <base target="contentwin"/>
 </xsl:if>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <!-- Disable caching of WebHelp pages in web browser. -->
 <meta http-equiv="Pragma" content="no-cache" />
 <meta http-equiv="Expires" content="-1" />
....

3. Save your changes to the file.
4. Re-run your WebHelp system transformation scenario.

Editing Scoring Values of Tag Elements in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that
matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated
for the search results. Oxygen XML Developer includes a properties file that defines the scoring values for tag
elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

Transforming Documents 810

1. Edit the scoring properties file for DITA or DocBook WebHelp systems. The properties file includes
instructions and examples to help you with your customization.
a) For DITA WebHelp systems, edit the following file: DITA-OT-DIR\plugins\com.oxygenxml.webhelp

\indexer\scoring.properties.
b) For DocBook WebHelp system, edit the following file: [OXYGEN_INSTALL_DIR]\frameworks\docbook

\xsl\com.oxygenxml.webhelp\indexer\scoring.properties.
The values that can be edited in the scoring.properties file:

h1 = 10
h2 = 9
h3 = 8
h4 = 7
h5 = 6
h6 = 5
b = 5
strong = 5
em = 3
i=3
u=3
div.toc=-10
title=20
div.ignore=ignored
meta_keywords = 20
meta_indexterms = 20
meta_description = 25
shortdesc=25

2. Save your changes to the file.
3. Re-run your WebHelp system transformation scenario.

Exclude Certain DITA Topics from WebHelp Search Results

The WebHelp Search engine does not index DITA topics that have the @search attribute set to no. This is useful
if you have topics in your DITA map structure that you do not want to be included in search results for your
WebHelp system.

To exclude DITA topics from WebHelp search results, follow these steps:

1. Edit the DITA map and for any topicref that you want to exclude from search results, set the search
attribute to no.
For example:

<topicref href="../topics/internal-topic1.dita" search="no"/>

2. Save your changes to the DITA map.
3. Re-run your WebHelp system transformation scenario.

Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content
across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to
be flagged. Generally, flagging is supported for block elements (such as paragraphs), but not for phrase-level
elements within a paragraph. This ensures that the images that will flag the content are easily scanned by the
reader, instead of being buried in text.

Follow this procedure:

1. Create a DITA filter file in the directory where you want to add the file. Give the file a descriptive name, such as
audience-flag-build.ditaval.

2. Define the property of the element you want to be flagged. For example, if you want to flag elements that have
the audience attribute set to programmer, the content of the DITAVAL file should look like the following
example:

<?xml version="1.0" encoding="UTF-8"?>
<val>
 <prop att="audience" val="programmer" action="flag"
 img="D:\resource\delta.gif" alt="sample alt text"/>
</val>

Transforming Documents 811

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in
the DITAVAL file.

3. Specify the DITAVAL file in the Filters tab of the transformation scenario.
4. Run the transformation scenario.

Integrating Social Media and Google Tools in WebHelp Output

Oxygen XML Developer includes support for integrating some of the most popular social media sites in WebHelp
output.

How to Add a Facebook Like Button in WebHelp Classic Output

To add a Facebook™ Like widget to your WebHelp output, follow these steps:

1. Go to the Facebook Developers website.
2. Fill-in the displayed form, then click the Get Code button.

A dialog box that contains code snippets is displayed.
3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-

widget.xml.
Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!--
 (function(d, s, id) {
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
 -->
 </script>
 <div class="fb-like" data-layout="standard" data-action="like"
 data-show-faces="true" data-share="true"/>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the facebook-
widget.xml file that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Add a Google+ Button in WebHelp Classic Output

To add a Google+ widget to your WebHelp output, follow these steps:

1. Go to the Google Developers website.
2. Fill-in the displayed form.

The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called

google-plus-button.xml.
Make sure that the content of the file is well-formed.

Transforming Documents 812

https://developers.facebook.com/docs/plugins/like-button
https://developers.google.com/+/web/+1button/

The content of the XML file should look like this:

<div id="google-plus">
 <!-- Place this tag in your head or just before your close body tag. -->
 <script src="https://apis.google.com/js/platform.js" async defer></script>

 <!-- Place this tag where you want the +1 button to render. -->
 <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the google-
plus-button.xml file that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Add Tweet Button in WebHelp Classic Output

To add a Twitter™ Tweet widget to your WebHelp output, follow these steps:

1. Go to the Tweet button generator page.
2. Fill-in the displayed form.

The Preview and code area displays the code.
3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML

file called tweet-button.xml.
Make sure you follow these rules:

• The file must be well-formed.
• The code for each script element must be included in an XML comment.
• The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

<div id="twitter">
 Tweet
 <script>
 <!--
 !function (d, s, id) {
 var
 js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location)
 ? 'http': 'https';
 if (! d.getElementById(id)) {
 js = d.createElement(s);
 js.id = id;
 js.src = p + '://platform.twitter.com/widgets.js';
 fjs.parentNode.insertBefore(js, fjs);
 }
 }
 (document,
 'script', 'twitter-wjs');
 -->
 </script>
</div>

4. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the
Document > Transformation menu.

5. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without
feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

6. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the tweet-
button.xml file that you created earlier.

7. Click Ok.
8. Run the transformation scenario.

Transforming Documents 813

https://publish.twitter.com

Related Information:
DITA Map to WebHelp Output on page 607

How to Integrate Google Analytics in WebHelp Classic Output

To allow your WebHelp system to benefit from Google Analytics reports, follow these steps:

1. Create a new Google Analytics account (if you do not already have one) and log on.
2. Choose the Analytics solution that fits the needs of your website.
3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID.

A Tracking Code looks like this:

<script>
 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-XXXXXXXX-X', 'auto');
 ga('send', 'pageview');
</script>

4. Save the Tracking Code (obtained in the previous step) in a new HTML file called googleAnalytics.html.
5. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the

Document > Transformation menu.
6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without

feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.
7. Switch to the Parameters tab and edit the webhelp.footer.file parameter to reference the

googleAnalytics.html file that you created earlier.
8. Click Ok.
9. Run the transformation scenario.

Related Information:
DITA Map to WebHelp Output on page 607

How to Integrate Google Search in WebHelp Classic Output

You can integrate Google Search into your WebHelp output.

To allow your WebHelp system to use Google Search, follow these steps:

1. Go to the Google Custom Search Engine page using your Google account.
2. Press the Create a custom search engine button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should

obtain a code snippet.
A Google Search script looks like this:

<script>
 (function() {
 var cx =
 '000888210889775888983:8mn4x_mf-yg';
 var gcse = document.createElement('script');
 gcse.type = 'text/javascript';
 gcse.async = true;
 gcse.src = (document.location.protocol == 'https:' ?
 'https:' : 'http:') + '//www.google.com/cse/cse.js?cx=' + cx;
 var s = document.getElementsByTagName('script')[0];
 s.parentNode.insertBefore(gcse, s);
 }
)();
</script>

4. Save the script into a well-formed HTML file called googlecse.html.
5. In Oxygen XML Developer, click the Configure Transformation Scenario(s) action from the toolbar (or the

Document > Transformation menu.
6. Select an existing WebHelp transformation scenario (depending on your needs, it may be with or without

feedback, or the mobile variant) and click the Duplicate button to open the Edit Scenario dialog box.

Transforming Documents 814

7. Switch to the Parameters tab and edit the webhelp.google.search.script parameter to reference the
googlecse.html file that you created earlier.

8. You can also use the webhelp.google.search.results parameter to choose where to display the search
results.
a) Create an HTML file with the following content: <div class="gcse-searchresults-only" data-

queryParameterName="searchQuery" > (you must use the HTML5 version for the GCSE). It is
recommended that you set the data-linkTarget attribute value to frm for frameless versions of the
WebHelp system or to data-contentWin for frameset versions of WebHelp. The default value is _blank
and if you do not specify a value the search results will be loaded in a new window. For more information
about other supported attributes, see Google Custom Search: Supported Attributes.

b) Set the value of the webhelp.google.search.results parameter to the file path of the file you just
created. If this parameter is not specified, the following code is used: <gcse:searchresults-only
linkTarget="frm"></gcse:searchresults-only>.

9. Click Ok.
10.Run the transformation scenario.

Related Information:
Integrating Social Media and Google Tools in WebHelp Output on page 754

Localizing the Interface of WebHelp Output

You can localize the interface of WebHelp output for DITA or DocBook transformations.

Localizing the Interface of WebHelp Output (for DITA Map Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the DITA-OT-DIR/plugins/
com.oxygenxml.webhelp/oxygen-webhelp/resources/localization folder. Translation files have the
strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes. For example, the US English
text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DITA map transformations, follow these steps:

1. Look for the strings-[lang1]-[lang2].xml file in DITA-OT-DIR/plugins/com.oxygenxml.webhelp/
oxygen-webhelp/resources/localization directory (for example, the Canadian French file would be:
strings-fr-ca.xml). If it does not exist, create one starting from the strings-en-us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the
following format: <str name="Label name">Caption</str>.

3. Run the predefined transformation scenario called Run DITA OT Integrator by executing it from the Apply
Transformation Scenario(s) dialog box. If the integrator is not visible, select the Show all scenarios action that
is available in the Settings drop-down menu.

4. Make sure that the new XML file that you created in the previous two steps is listed in the file DITA-
OT-DIR/plugins/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization/
strings.xml. In our example for the Canadian French file, it should be listed as: <lang xml:lang="fr-
ca" filename="strings-fr-ca.xml"/>.

5. Edit any of the DITA Map to WebHelp transformation scenarios (with or without feedback, or the mobile
version) and set the args.default.language parameter to the code of the language you want to localize (for
example, fr-ca for Canadian French).

6. Run the transformation scenario to produce the WebHelp output.

Related Information:
Searching Japanese Content in WebHelp Pages on page 759

Localizing the Interface of WebHelp Output (for DocBook Transformations)

Static labels that are used in the WebHelp output are kept in translation files in the [OXYGEN_INSTALL_DIR]/
frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/resources/localization
folder. Translation files have the strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language
codes. For example, the US English text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DocBook transformations, follow these steps:

Transforming Documents 815

https://developers.google.com/custom-search/docs/element#html5
https://developers.google.com/custom-search/docs/element#supported_attributes

1. Look for the strings-[lang1]-[lang2].xml file in [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/
com.oxygenxml.webhelp/oxygen-webhelp/resources/localization directory (for example, the
Canadian French file would be: strings-fr-ca.xml). If it does not exist, create one starting from the strings-en-
us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the
following format: <str name="Label name">Caption</str>.

3. Make sure that the new XML file that you created in the previous two steps is listed in the file
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/com.oxygenxml.webhelp/oxygen-webhelp/
resources/localization/strings.xml. In our example for the Canadian French file, it should be listed
as: <lang xml:lang="fr-ca" filename="strings-fr-ca.xml"/>.

4. Edit any of the DocBook to WebHelp transformation scenarios (with or without feedback, or the mobile
version) and set the l10n.gentext.default.language parameter to the code of the language you want to localize
(for example, fr-ca for Canadian French).

5. Run the transformation scenario to produce the WebHelp output.

Related Information:
Searching Japanese Content in WebHelp Pages on page 759

Searching Japanese Content in WebHelp Pages

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can be
used. This analyzer is included in the Oxygen XML Developer installation kit.

Activating Japanese Indexing in DITA WebHelp Systems

To activate the Japanese indexing in your WebHelp system generated from DITA content, follow these steps:

1. Set the language for your content to Japanese with one of the following two methods:

• Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the
args.default.language parameter to ja-jp.

• Set the xml:lang attribute on the root of the DITA map and the referenced topics to ja-jp.
2. For the analyzer to work properly, search terms that are entered into the WebHelp search text field must be

separated by spaces.
3. Run the DITA to WebHelp transformation scenario to generate the output.

Optionally a Japanese user dictionary can be set with the webhelp.search.japanese.dictionary
parameter.

Activating Japanese Indexing in DocBook WebHelp Systems

To activate the Japanese indexing in your WebHelp system generated from DocBook content, follow these steps:

1. Edit a DocBook to WebHelp transformation scenario and in the Parameters tab, set the value of the
l10n.gentext.default.language parameter to ja.

2. Run the transformation scenario to generate the output.

Related Information:
Localizing the Interface of WebHelp Output (for DITA Map Transformations) on page 758
Localizing the Interface of WebHelp Output (for DocBook Transformations) on page 792

Overriding an XSLT Processing Step of the DITA WebHelp Transformation

Since WebHelp output is primarily obtained by running XSLT transformations over the DITA input files (through
the DITA Map WebHelp transformation scenarios), one customization method would be to override the default
XSLT templates that are used by the WebHelp transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp transformation.

• The first method is to use one of the WebHelp XSLT-import extension points that allow you to import an XSLT
stylesheet so that it becomes part of the normal build. This method uses the same mechanism as the DITA-

Transforming Documents 816

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html

OT XSLT-import extension points. Note that this method will affect all the outputs generated with the WebHelp
system.

• The second method implies that you will create a DITA-OT extension plugin with a custom transtype and use an
Ant build file to define the transformation process. The main difference from the first customization method
is that you will not affect all WebHelp transformations. Only the transformations that use the declared plugin
transtype will be affected.

WebHelp XSLT-Import and XSLT-Parameter Extension Points

The WebHelp XSLT-Import extension points allows you to extend the XSLT stylesheets associated with some of
the WebHelp transformation steps. The DITA-OT plug-in installer adds an XSLT import statement in the default
WebHelp XSLT so that the XSLT stylesheet referenced by the extension point becomes part of the normal build.

Example:

<plugin id="com.oxygenxml.webhelp.extension">
 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp" file="xsl/fixup.xsl"/>
</plugin>

Attention: The customizations you make by using this extension point will affect all WebHelp
transformations. If you want to have a customization that is only available for a certain transformation,
please use the Overriding a WebHelp XSLT Stylesheet from an Ant Build File method.

XSLT-Import Extension Points

The following extension points are available:

com.oxygenxml.webhelp.xsl.dita2webhelp
Extension point to override the XSLT stylesheet (dita2webhelpImpl.xsl) that produces an HTML file for
each DITA topic. Depending on the type of WebHelp transformation you are currently using, the path to this
stylesheet is as follows:

• WebHelp Classic Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita
\desktop\dita2webhelpImpl.xsl

• WebHelp Classic Mobile Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\mobile\dita2webhelpImpl.xsl

• WebHelp Responsive Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\responsive\dita2webhelpImpl.xsl

com.oxygenxml.webhelp.xsl.createMainFiles
Extension point to override the XSLT stylesheet (createMainFilesImpl.xsl) that produces the WebHelp
main HTML page (index.html). Depending on the type of WebHelp transformation you are currently using,
the path to this stylesheet is as follows:

• WebHelp Classic Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl\dita
\desktop\createMainFilesImpl.xsl

• WebHelp Classic Mobile Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\mobile\createMainFilesImpl.xsl

• WebHelp Responsive Transformations - DITA-OT-DIR\plugins\com.oxygenxml.webhelp\xsl
\dita\responsive\createMainFilesImpl.xsl

com.oxygenxml.webhelp.xsl.createTocXML
Extension point to override the XSLT stylesheet (tocDita.xsl) that produces the toc.xml file. This
file contains information extracted from the DITA map and it is mainly used to construct the WebHelp
Table of Contents and navigational links. The path to this stylesheet is: DITA-OT-DIR\plugins
\com.oxygenxml.webhelp\xsl\dita\tocDita.xsl.

XSLT-Parameter Extension Points

If your customization stylesheet declares one or more XSLT parameters and you want to control their values from
the transformation scenario, you can use one of the following XSLT parameter extension points:

Transforming Documents 817

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html

com.oxygenxml.webhelp.xsl.dita2webhelp.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.dita2webhelp extension point.

com.oxygenxml.webhelp.xsl.createMainFiles.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.createMainFiles extension point.

com.oxygenxml.webhelp.xsl.createTocXml.param
Use this extension point to pass parameters to the stylesheet specified using the
com.oxygenxml.webhelp.xsl.createTocXml extension point.

Related Information:
[DITA-OT] XSLT-Import Extension Points
[DITA-OT] XSLT-Parameter Extension Points

Example: Customizing Side TOC Using XSLT-Import/Parameter Extension Points

This topic provides some common use-cases to demonstrate how to use the WebHelp XSLT-Import extension
points to customize the Table of Contents displayed on the right side of the WebHelp output (the default
transformation generates a mini table of contents for the current topic and it contains links to the children of
current topic, its siblings, and all of its ancestors). The first use-case uses an XSLT-Import extension point while
the second uses an XSLT-Parameter extention point.

Use Case 1: WebHelp XSLT-Import extension point to change which topics are displayed in the Side TOC

Suppose you want to customize the side TOC to only include the current topic and its child topics (while excluding
its siblings and ancestors).

Figure 375: Example: Filtered Side Table of Contents

The default XSLT template responsible for this functionality is defined in: DITA-OT-DIR\plugins
\com.oxygenxml.webhelp\xsl\dita\responsive\navigationLinks.xsl.

<xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]"
 mode="toc-pull" priority="10">

This template computes the link for the current topic along with the links for the sibling topics, and then
propagates them recursively to the parent topic. For this specific use-case, you need to override this template so
that it will produce the link for the current topic along with just the child links that the template already receives.

You can implement this functionality with a WebHelp extension plugin that uses the
com.oxygenxml.webhelp.xsl.dita2webhelp extension point. This extension point allows you to specify a
customization stylesheet that will override the template described above.

To add this functionality as a DITA-OT plugin, follow these steps:

Transforming Documents 818

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,
com.oxygenxml.webhelp.custom.sidetoc).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your
customization stylesheet. For example:

<plugin id="com.oxygenxml.webhelp.custom.sidetoc">
 <feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp"
 file="custom_side_TOC.xsl"/>
</plugin>

3. Create your customization stylesheet (for example, custom_side_TOC.xsl), and edit it to override the template
that produces the side TOC:

<xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]"
 mode="toc-pull"
 priority="10">

 <xsl:param name="pathFromMaplist" as="xs:string"/>
 <xsl:param name="children" select="()" as="element()*"/>
 <xsl:param name="parent" select="parent::*" as="element()?"/>

 <xsl:apply-templates select="." mode="sideTocEntry">
 <xsl:with-param name="pathFromMaplist" select="$pathFromMaplist"/>
 <xsl:with-param name="children" select="$children"/>
 </xsl:apply-templates>
</xsl:template>

4. Use the Run DITA OT Integrator transformation scenario found in the DITA Map section in the Configure
Transformation Scenario(s) dialog box.

5. Run a DITA Map WebHelp Responsive transformation scenario to obtain the customized side TOC.

Use-Case 2: WebHelp XSLT-Parameter extension point to control which topics are displayed in the Side TOC
from the transformation scenario

Another possibility to customize what is displayed in the side Table of Contents is to add a transformation
parameter that will control the XSLT customization when the transformation scenario is applied. For this use-
case, you can use the com.oxygenxml.webhelp.xsl.dita2webhelp.param extension point.

To add this functionality, follow these steps:

1. Create a DITA-OT plugin structure by following the first 3 steps in the procedure above.
2. In the customization stylesheet that you created in step 3, declare the side_toc_only_children

parameter and modify the template to match the topic only when the side_toc_only_children parameter
is set to yes:

<xsl:param name="side_toc_only_children" select="'yes'"/>
 ...
 <xsl:template
 match="
 toc:topic
 [not(@toc = 'no')]
 [not(@processing-role = 'resource-only')]
 [$side_toc_only_children = 'yes']"
 ...

3. Edit the plugin.xml file to specify the com.oxygenxml.webhelp.xsl.dita2webhelp.param extension point and a
custom parameter file by adding the following line:

<feature extension="com.oxygenxml.webhelp.xsl.dita2webhelp.param"
 file="custom_params.xml"/>

4. Create a custom parameter file (for example, custom_params.xml). It should look like this:

<dummy>
 <param name="side_toc_only_children" expression="${side_toc_only_children}"
 if="side_toc_only_children"/>
</dummy>

5. Use the Run DITA OT Integrator transformation scenario found in the DITA Map section in the Configure
Transformation Scenario(s) dialog box.

6. Edit a DITA Map WebHelp Responsive transformation scenario and in the Parameters tab, specify the desired
value (yes or no) for your custom parameter (side_toc_only_children).

Transforming Documents 819

7. Run the transformation scenario.

Related Information:
[DITA-OT] XSLT-Import Extension Points
[DITA-OT] XSLT-Parameter Extension Points

Overriding a WebHelp XSLT Stylesheet from an Ant Build File

To create a WebHelp XSLT customization that is only available for a certain DITA OT transformation, the
extension plugin should declare a custom transtype. The WebHelp XSLT stylesheets can be overridden from an
ANT file provided by the DITA-OT extension plugin. From the Ant target associated with the plugin, you will specify
a custom XSLT stylesheet that imports the original WebHelp stylesheet and add some customization templates.

The following procedure explains how to create a DITA-OT extension plugin that uses this extension method:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example,
com.oxygenxml.webhelp.responsive.custom).

2. Create a plugin.xml file (in the folder you created in step 1) that specifies a new DITA-OT transtype and the
build file associated with the plugin. For example:

<plugin id="com.oxygenxml.webhelp.responsive.customization">
 <feature extension="dita.conductor.target.relative" file="integrator.xml"/>
 <transtype name="webhelp-responsive-custom" extends="webhelp-responsive"
 desc="WebHelp Responsive Customization"/>
</plugin>

3. Create the integrator.xml file that will import the actual plugin Ant build file.

<project basedir="." name="Webhelp Responsive Customization">
 <import file="build.xml"/>
</project>

4. Create the build.xml file that overrides the value of properties associated with the XSLT stylesheets used to
produce HTML files. The following Ant properties can be overridden to specify your customization stylesheets:

args.wh.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce an HTML file for each
topic.

args.create.main.files.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce the main HTML file.

args.createTocXML.xsl
Specify this property if you want to customize the XSLT stylesheet used to produce the toc.xml file. The
toc.xml file contains information extracted from DITA map and it is mainly used to create the WebHelp
TOC.

For example, to customize a WebHelp Responsive transformation type, the build file should look like:

<project basedir="." name="Webhelp Responsive Customization">
 <target name="dita2webhelp-responsive-custom">
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce an HTML file for each topic
 -->
 <property
 name="args.wh.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/dita2webhelpCustom.xsl"/>
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce the main HTML file.
 -->
 <property
 name="args.create.main.files.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/createMainFilesCustom.xsl"/>
 <!--
 Override this property if you want to customize the XSLT stylesheet
 used to produce the toc.xml file.
 -->
 <property
 name="args.createTocXML.xsl"
 value="${dita.plugin.com.oxygenxml.webhelp.responsive.custom.dir}
 /xsl/createTocXMLCustom.xsl"/>
 <!--
 Depending on which version of WebHelp you want to customize,

Transforming Documents 820

http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-parameters.html
http://www.dita-ot.org/dev/dev_ref/plugin-newtranstype.html

 you need to delegate to different build targets:
 * dita2webhelp-responsive - when you are customizing the Webhelp Responsive
 * dita2webhelp-mobile - when you are customizing the Webhelp Mobile
 * dita2webhelp - when you are customizing the Webhelp Classic
 -->
 <antcall target="dita2webhelp-responsive"/>
 </target>
</project>

Note: Depending on which version of WebHelp you want to customize, you need to call one of the following
build targets:

• dita2webhelp-responsive - For WebHelp Responsive (with or without feedback) output.
• dita2webhelp - For WebHelp Classic (with or without feedback) output.
• dita2webhelp-mobile - For WebHelp Classic Mobile output (deprecated).

5. Create an xsl directory in the plugin customization directory (that you created in step 1) to store the
customized XSLT stylesheets.

Referencing the WebHelp XSLT Stylesheets from Your Customizations

Note that your customization stylesheets should import the original stylesheets that they override. To reference
the WebHelp stylesheets, you can use the plugin:com.oxygenxml.dita-ot.plugin.webhelp prefix. This prefix is
rewritten by an XML catalog to the WebHelp root directory.

Customizing the dita2webhelp.xsl Stylesheet

The XSLT stylesheet that customizes the WebHelp dita2webhelp.xsl stylesheet should look like:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce an HTML file for each topic.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/
 dita/responsive/dita2webhelp.xsl"/>
 <!--
 Please add your customization templates here.
 -->
</xsl:stylesheet>

Depending on which version of WebHelp you want to customize, you need to import one of the following XSLT
stylesheets:

• dita2webhelp-responsive (WebHelp Responsive) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
responsive/dita2webhelp.xsl"/>

• dita2webhelp (WebHelp Classic) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/desktop/
dita2webhelp.xsl"/>

• dita2webhelp-mobile (WebHelp Classic Mobile) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/mobile/
dita2webhelp.xsl"/>

Customizing the createMainFiles.xsl Stylesheet

The XSLT stylesheet that customizes the WebHelp createMainFiles.xsl stylesheet should look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce the main HTML file.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
 responsive/createMainFiles.xsl"/>
 <!--
 Please add your customization templates here.
 -->

Transforming Documents 821

</xsl:stylesheet>

Depending on which version of WebHelp you want to customize, you need to import one of the following XSLT
stylesheets:

• dita2webhelp-responsive (WebHelp Responsive) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/
responsive/createMainFiles.xsl"/>

• dita2webhelp (WebHelp Classic) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/desktop/
createMainFiles.xsl"/>

• dita2webhelp-mobile (WebHelp Classic Mobile) -

<xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/mobile/
createMainFiles.xsl"/>

Customizing the tocDita.xsl File

The XSLT stylesheet that customizes the WebHelp tocDita.xsl stylesheet should look like:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="xs math"
 version="2.0">
 <!--
 Import the original stylesheet used to produce the toc.xml file.
 -->
 <xsl:import href="plugin:com.oxygenxml.dita-ot.plugin.webhelp:xsl/dita/tocDita.xsl"/>
 <!--
 Please add your customization templates here.
 -->

</xsl:stylesheet>

Removing the Previous/Next Links from WebHelp Classic Output

The Previous and Next links that are created at the top area of each WebHelp Classic page can be hidden with a
CSS code.

To remove these links from WebHelp Classic output, follow these steps:

1. Add the following CSS code in a custom CSS stylesheet:

.navparent, .navprev, .navnext {
 visibility:hidden;
}

2. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the
args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the
transformation scenario is processed.

b. For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Run the transformation scenario.

Search Engine Optimization for DITA WebHelp

A DITA Map WebHelp transformation scenario can be configured to produce a sitemap.xml file that is used
by search engines to aid crawling and indexing mechanisms. A sitemap lists all pages of a WebHelp system
and allows webmasters to provide additional information about each page, such as the date it was last updated,
change frequency, and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the sitemap.xml file looks like this:

<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
 <url>
 <loc>http://www.example.com/topics/introduction.html</loc>
 <lastmod>2014-10-24</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.5</priority>
 </url>

Transforming Documents 822

 <url>
 <loc>http://www.example.com/topics/care.html#care</loc>
 <lastmod>2014-10-24</lastmod>
 <changefreq>weekly</changefreq>
 <priority>0.5</priority>
 </url>
 . . .
</urlset>

Each page has a <url> element structure containing additional information, such as:

• loc - the URL of the page. This URL must begin with the protocol (such as http), if required by your
web server. It is constructed from the value of the webhelp.sitemap.base.url parameter from the
transformation scenario and the relative path to the page (collected from the href attribute of a topicref
element in the DITA map).

Note: The value must have fewer than 2,048 characters.
• lastmod (optional) - the date when the page was last modified. The date format is YYYY-MM-DD.
• changefreq (optional) - indicates how frequently the page is likely to change. This value provides

general information to assist search engines, but may not correlate exactly to how often they crawl
the page. Valid values are: always, hourly, daily, weekly, monthly, yearly, and never.
The first time the sitemap.xml file is generated, the value is set based upon the value of the
webhelp.sitemap.change.frequency parameter in the DITA WebHelp transformation scenario. You can
change the value in each url element by editing the sitemap.xml file.

Note: The value always should be used to describe documents that change each time they are accessed.
The value never should be used to describe archived URLs.

• priority (optional) - the priority of this page relative to other pages on your site. Valid values range from 0.0
to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets the search
engines know which pages you deem most important for the crawlers. The first time the sitemap.xml
file is generated, the value is set based upon the value of the webhelp.sitemap.priority parameter in
the DITA WebHelp transformation scenario. You can change the value in each url element by editing the
sitemap.xml file.

Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-
tune search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit
DITA Scenario dialog box.

2. Open the Parameters tab and set a value for the following parameters:

• webhelp.sitemap.base.url - the URL of the location where your WebHelp system is deployed

Note: This parameter is required for Oxygen XML Developer to generate the sitemap.xml file.
• webhelp.sitemap.change.frequency - how frequently the WebHelp pages are likely to change

(accepted values are: always, hourly, daily, weekly, monthly, yearly, and never)
• webhelp.sitemap.priority - the priority of each page (value ranging from 0.0 to 1.0)

3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of

each page, according to your needs.

Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map and set the xml:lang
attribute on its root element (map). The corresponding attribute value can be set for following RTL languages:

• ar-eg - Arabic
• he-il - Hebrew
• ur-pk - Urdu

WebHelp Classic Runtime Additional Parameters

A deployed WebHelp system can accept the following GET parameters:

Transforming Documents 823

• log - The value can be true or false (default value). When set to true, it enables JavaScript debugging.
• contextId - The WebHelp JavaScript engine will look for this value in the context-help-map.xml

mapping file and load the corresponding help page. For more information, see the Context-Sensitive WebHelp
System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

• appname - You can use this parameter in conjunction with contextId to search for this value in the
corresponding appname attribute value in the mapping file.

http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication

• toc.visible - The value can be true (default value) or false. When set to false, the table of contents
will be collapsed when you load the WebHelp page.

• searchQuery - You can use this parameter to perform a search operation when WebHelp is loaded. For
example, if you want to open WebHelp showing all search results for growing flowers, the URL should look like
this: http://localhost/webhelp/index.html?searchQuery=growing%20flowers.

Related Information:
Context-Sensitive WebHelp Classic System on page 802

Context-Sensitive WebHelp Classic System

Context-sensitive help systems assist users by providing specific informational topics for certain components
of a user interface, such as a button or window. This mechanism works based on mappings between a unique ID
defined in the topic and a corresponding HTML page.

Generating Context-Sensitive Help

When WebHelp Classic output is generated by Oxygen XML Developer, the transformation process produces
an XML mapping file called context-help-map.xml and copies it in the output folder of the transformation.
This XML file maps an ID to a corresponding HTML page through an appContext element, as in the following
example:

<map productID="oxy-webhelp" productVersion="1.1">
 <appContext helpID="myapp-functionid1" path="tasks/app-help1.html"/>
 <appContext helpID="myapp-functionid2" path="tasks/app-help1.html"/>
 . . .
</map>

The possible attributes are as follows:

helpID
A Unique ID provided by a topic from two possible sources (resourceid element or id attribute):

resourceid
The resourceid element is mapped into the appContext element and can be specified in either the
topicref within a DITA map or in a prolog within a DITA topic. The resourceid element accepts the
following attributes:

• appname - A name for the external application that references the topic. If this attribute is not
specified, its value is considered to be empty ("").

• appid - An ID used by an application to identify the topic.
• id - Specifies a value that is used by a specific application to identify the topic, but this attribute is

ignored if an appid attribute is used.

Note: Multiple appid values can be associated with a single appname value (and multiple appname
values can be associated with a single appid value), but the values for both attributes work in
combination to specify a specific ID for a specific application, and therefore each combination of values
for the appid and appname attributes should be unique within the context of a single root map. For
example, suppose that you need two different functions of an application to both open the same WebHelp
page.

Example: resourceid Specified in a DITA Map

Transforming Documents 824

The resourceid element can be specified in a topicmeta element within a topicref.

<map title="App Help">
 <topicref href="app-help1.dita" type="task">
 <topicmeta>
 <resourceid appname="myapp" appid="functionid1"/>
 <resourceid appname="myapp" appid="functionid2"/>
 </topicmeta>
 </topicref>
</map>

Example: resourceid Specified in a DITA Topic

The resourceid element can be specified in a prolog element within a DITA topic.

<task id="app-help1">
 <title>My App Help</title>
 <prolog>
 <resourceid appname="myapp" appid="functionid1"/>
 <resourceid appname="myapp" appid="functionid2"/>
 </prolog>
...
</task>

For more information about the resourceid element, see DITA Specifications: <resourceid>.

id
If a resourceid element is not declared in the DITA map or DITA topic (as described above), the id
attribute that is set on the topic root element is mapped into the appContext element.

Important: You should ensure that these defined IDs are unique in the context of the entire DITA project.
If the IDs are not unique, the transformation scenario will display warning messages in the transformation
console output and the help system will not work properly.

path
The path to a corresponding WebHelp page. This path is relative to the location of the context-help-
map.xml mapping file.

productID (Applicable only if you are using the WebHelp Classic with Feedback transformation scenario)
The ID of the product for your documentation project.

productVersion (Applicable only if you are using the WebHelp Classic with Feedback transformation
scenario)

The version of the product for your documentation project.

There are two ways of implementing context-sensitive help in your system:

• The XML mapping file can be loaded by a PHP script on the server side. The script receives the contextId
value and will look it up in the XML file.

• Invoke one of the WebHelp system files index.html or index_frames.html and pass the contextId
parameter with a specific value. The WebHelp system will automatically open the help page associated with
the value of the contextId parameter.

The following example will open a frameless version of the WebHelp system showing the page associated with
the ID dialog1ID:

index.html?contextId=dialog1ID

The following example will open a frameset version of the WebHelp system showing the page associated with the
ID view1ID:

index_frames.html?contextId=view1ID

Tip: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

Context-Sensitive Queries

You can use the URL field in your browser to search for topics in a context-sensitive WebHelp system with the
assistance of the following parameters:

Transforming Documents 825

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/resourceid.html#resourceid__attributes

• contextId - The WebHelp JavaScript engine will look for this value in the context-help-map.xml
mapping file and load the corresponding help page. For more information, see the Context-Sensitive WebHelp
System topic.

Note: You can use an anchor in the contextId parameter to jump to a specific section in a document. For
example, contextId=topicID#anchor.

• appname - You can use this parameter in conjunction with contextId to search for this value in the
corresponding appname attribute value in the mapping file.

http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication

Related Information:
WebHelp Classic Runtime Additional Parameters on page 801

Publishing WebHelp Classic Output on a SharePoint Site

Since WebHelp output must be published locally, on the same machine where the WebHelp process is running, to
publish your files directly to a SharePoint library you need to map a network drive to connect to SharePoint and
change your file extensions to .aspx, as described in the steps below.

To publish WebHelp Classic output on a SharePoint site, follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://
support.microsoft.com/en-us/kb/2616712.

2. To allow browsers to open your published files (rather than downloading them), you need to change the file
extensions from .html to .aspx. Fortunately, this can be done in the transformation scenario.

a. Edit the WebHelp transformation scenario and open the Parameters tab.

a. For a DITA transformation, set the args.outext parameter to .aspx.
b. For a DocBook transformation, set the html.ext parameter to .aspx.

b. Run the transformation scenario.

Using the Oxygen XML WebHelp Plugin to Automate Output
Oxygen XML WebHelp plugin allows you to use a command line interface script to obtain WebHelp output from
DITA and DocBook documents. Note that the Oxygen XML WebHelp plugin is a standalone product with its own
licensing terms and cannot be used with a Oxygen XML Developer license.

The WebHelp output files created with the Oxygen XML WebHelp plugin are the same as the output files
produced when you run DITA or DocBook to WebHelp transformation scenarios from within Oxygen XML
Developer.

When an automated process is required due to the amount of output needed, do the following:

1. Install the Oxygen XML WebHelp plugin.
2. Acquire a Oxygen XML WebHelp license from https://www.oxygenxml.com/buy_webhelp.html.
3. Integrate the Oxygen XML WebHelp plugin with DITA or DocBook.

Oxygen XML WebHelp Plugin for DITA

To transform DITA documents using the Oxygen XML WebHelp plugin, first integrate the plugin with the DITA
Open Toolkit. The purpose of the integration is to add the following transformation types to the DITA Open
Toolkit:

• webhelp-responsive - The transformation that produces WebHelp Responsive and WebHelp Responsive with
Feedback output for desktop and mobile devices.

• webhelp - The transformation that produces WebHelp Classic output for desktop.
• webhelp-feedback - The transformation that produces feedback-enabled WebHelp Classic with Feedback for

desktop.
• webhelp-mobile - The transformations that produces WebHelp Classic Mobile output for mobile devices.

Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit

The requirements of the Oxygen XML WebHelp plugin for the DITA Open Toolkit are as follows:

Transforming Documents 826

https://support.microsoft.com/en-us/kb/2616712
https://support.microsoft.com/en-us/kb/2616712
https://www.oxygenxml.com/buy_webhelp.html

• Java Virtual Machine 1.6 or newer if you want to use DITA-OT 1.8.5 or Java Virtual Machine 1.8 or newer if you
want to use DITA-OT 2.4.4.

• DITA Open Toolkit 1.8.5 or 2.4.4 (includes Saxon 9.x libraries).

Note: The Oxygen XML WebHelp Plugin has been tested with these two specific versions (DITA-OT 1.8.5 or
DITA-OT 2.4.4) and therefore they are the recommended versions.

To integrate the Oxygen XML WebHelp plugin with the DITA Open Toolkit, follow these steps:

1. Download and install a Java Virtual Machine version compatible with the DITA-OT version.
2. Download and unpack the DITA Open Toolkit version 1.8.5 or 2.4.4.
3. Go to Oxygen XML WebHelp website, download the latest DITA-OT version of the installation kit, and unzip it.
4. Copy all plugin directories from the unpacked archive to the plugins directory of the DITA OT distribution.

This is necessary to enable certain functionality. For example, the com.oxygenxml.highlight directory
adds syntax highlight capabilities to your WebHelp output for codeblock sections that contain source code
snippets (XML, Java, JavaScript).

5. If you have not already done so, copy your license key into a licensekey.txt file and place it in the DITA-
OT-DIR/plugins/com.oxygenxml.webhelp directory.

6. In the home directory of the DITA Open Toolkit, run ant -f integrator.xml.

Related Information:
Licensing the Oxygen XML WebHelp Plugin for DITA OT on page 827
Upgrading the Oxygen XML WebHelp Plugin for DITA OT on page 827
Customization Example: Apply Custom Styling to an External Transformation on page 832
DITA OT PDF Customization Plugin

Licensing the Oxygen XML WebHelp Plugin for DITA OT

To register the license for the Oxygen XML WebHelp plugin for the DITA Open Toolkit, follow these steps:

1. Open the DITA-OT-DIR/plugins/com.oxygenxml.webhelp directory and create a file called
licensekey.txt.

2. In this file, copy your license key that you purchased for your Oxygen XML WebHelp plugin.
The WebHelp transformation process reads the Oxygen XML WebHelp license key from this file. In case the
file does not exit, or it contains an invalid license, an error message will be displayed.

Related Information:
Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit on page 826
Upgrading the Oxygen XML WebHelp Plugin for DITA OT on page 827

Upgrading the Oxygen XML WebHelp Plugin for DITA OT

To upgrade your Oxygen XML WebHelp plugin for the DITA Open Toolkit, follow these steps:

1. Navigate to the plugins directory of your DITA OT distribution and delete the old Oxygen XML
WebHelp plugin files (oxygen_custom.xsl, oxygen_custom_html.xsl) and directories
(com.oxygenxml.highlight, com.oxygenxml.media, com.oxygenxml.webhelp).

2. Go to Oxygen XML WebHelp website, download the latest DITA-OT version of the installation kit, and unzip it.
3. Copy all plugin directories from the unpacked archive to the plugins directory of the DITA OT distribution.

This is necessary to enable certain functionality. For example, the com.oxygenxml.highlight directory
adds syntax highlight capabilities to your WebHelp output for codeblock sections that contain source code
snippets (XML, Java, JavaScript).

4. In the home directory of the DITA Open Toolkit, run ant -f integrator.xml.

Related Information:
Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit on page 826
Licensing the Oxygen XML WebHelp Plugin for DITA OT on page 827

Transforming Documents 827

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.dita-ot.org/download
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html
https://github.com/radu-pisoi/com.oxygenxml.pdf2.ug
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

Running an External DITA Transformation Using the Oxygen XML WebHelp Plugin

There are two main ways to run a DITA to WebHelp (webhelp-responsive, webhelp, webhelp-feedback, webhelp-
mobile) transformation using the Oxygen XML WebHelp plugin:

Startup Script from WebHelp Plugin Method

The first method involves running the ditaWebhelp.bat or ditaWebhelp.sh startup script that comes
bundled in the WebHelp plugin folder:

• WEBHELP_PLUGIN_DIR\ditaWebhelp.bat script file (Windows based systems)
• WEBHELP_PLUGIN_DIR\ditaWebhelp.sh script file (Unix/Linux based systems)

Before using the script to generate output, you must customize it to specify the paths to the Java VM, DITA Open
Toolkit, and also to set the transformation type. To do this, open the script file and edit the following variables and
parameters:

• JVM_INSTALL_DIR - Specifies the path to the Java Virtual Machine installation directory on your disk.
• DITA_OT_INSTALL_DIR - Specifies the path to DITA Open Toolkit installation directory on your disk.

Note: The scripts reference the dost-patches-DITA-1.8.jar JAR file containing DITA OT 1.8.5-specific
patches. If you use DITA OT 1.7, please update that reference to dost-patches-DITA-1.7.jar. If you use
DITA OT 2.4.4, no patches are needed, so just remove the reference.

• TRANSTYPE - Specifies the type of the transformation you want to apply. You can set it to webhelp-
responsive, webhelp, webhelp-feedback or webhelp-mobile.

• DITA_MAP_BASE_DIR - Specifies the path to the directory where the input DITA map file is located.
• DITAMAP_FILE - Specifies the input DITA map file.
• DITAVAL_FILE - Specifies the .ditaval input filter that the transformation process applies to the input

DITA map file.
• DITAVAL_DIR - Specifies the path to the directory where the .ditaval file is located.
• -Doutput.dir - Specifies the output directory of the transformation.

Startup Script from DITA OT Distribution Method

The second method involves using the startup script that comes bundled with each DITA OT distribution.

DITA OT 1.8.5
For DITA Open Toolkit 1.8.5, the general instructions for running the startup script can be found here: http://
www.dita-ot.org/1.8/readme/building-output-using-cl-tool.html.

DITA OT 2.4.4
For DITA Open Toolkit 2.4.4, the general instructions for running the startup script can be found here: http://
www.dita-ot.org/2.3/parameters/dita-command-arguments.html.

DITA OT Startup Script Examples:

DITA-OT-DIR\bin\[executable] -i [path_to_input.ditamap] -f [transformation_type]

For example:

• DITA-OT-DIR\bin\dita.bat -i c:\mySample.ditamap -f webhelp-responsive (Windows
based systems)

• DITA-OT-DIR\bin\dita -i c:\mySample.ditamap -f webhelp-responsive (Unix/Linux based
systems)

Note: For the -format (-f) argument, use one of the following transformation types: webhelp-
responsive, webhelp, webhelp-feedback or webhelp-mobile.

The downside of this approach is the fact that you will lose certain small fixes and patches that Oxygen XML
Developer adds to the automated DITA OT processing. For example, you may lose the ability to process DITA
topics that contain entity references inside them.

Related Information:
Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit on page 826

Transforming Documents 828

http://www.dita-ot.org/1.8/readme/building-output-using-cl-tool.html
http://www.dita-ot.org/1.8/readme/building-output-using-cl-tool.html
http://www.dita-ot.org/2.3/parameters/dita-command-arguments.html
http://www.dita-ot.org/2.3/parameters/dita-command-arguments.html

Customization Example: Apply Custom Styling to an External Transformation on page 832
DITA OT PDF Customization Plugin

Additional Oxygen XML WebHelp Plugin Parameters for DITA

You can append the following parameters to the command line that runs the transformation:
-Dwebhelp.copyright

Adds a small copyright text that appears at the end of the Table of Contents pane.
-Dwebhelp.custom.resources

The file path to a directory that contains resources files. All files from this directory will be copied to the root
of the WebHelp output.

-Dwebhelp.favicon
The file path that points to an image to be used as a favicon in the WebHelp output.

-Dwebhelp.footer.file (not available for WebHelp Responsive systems)
Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

-Dwebhelp.footer.include (not available for WebHelp Responsive systems)
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

-Dwebhelp.google.search.results
A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search
Engine element gcse:searchresults-only. You can use all supported attributes for this element. It
is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to
contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the
search results will be loaded in a new window. If this parameter is not specified, the following code will be
used <gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

-Dwebhelp.google.search.script
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script
from Google.

-Dwebhelp.logo.image.target.url (not available for WebHelp Classic Mobile systems)
Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to
this address.

-Dwebhelp.logo.image (not available for WebHelp Classic Mobile systems)
Specifies a path to an image displayed as a logo in the left side of the output header.

-Dwebhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-
phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Transforming Documents 829

https://github.com/radu-pisoi/com.oxygenxml.pdf2.ug

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

-Dwebhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to
this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

-Dwebhelp.search.japanese.dictionary
The file path of the dictionary that will be used by the Kuromoji morphological engine that Oxygen XML
Developer uses for indexing Japanese content in the WebHelp pages.

-Dwebhelp.search.ranking
If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results
that are displayed on the Search tab (default setting is true).

-Dwebhelp.show.changes.and.comments
When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp
output. The default value is no.

-Dwebhelp.sitemap.base.url
Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is
computed as the relative file path from the href attribute of a topicref element from the DITA map,
appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this
parameter set to its default empty value, then the sitemap.xml file is not generated.

-Dwebhelp.sitemap.change.frequency
The value of the changefreq element in the generated sitemap.xml file. The changefreq element is
optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq
element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily,
weekly, monthly, yearly, never.

-Dwebhelp.sitemap.priority
The value of the priority element in the generated sitemap.xml file. It can be set to any fractional
number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8.
The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty
value, then the priority element is not added in sitemap.xml.

-Dwebhelp.skin.css (available only for WebHelp Classic and WebHelp Classic with Feedback systems)
Path to a CSS file that sets the style theme in the output WebHelp pages. It can be one of the predefined
skin CSS from the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp
\predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web
application.

Parameters Specific to WebHelp Responsive Output (available only for WebHelp Responsive and WebHelp
Responsive with Feedback systems)
-Dwebhelp.enable.search.autocomplete

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.
-Dwebhelp.fragment.after.body

In the generated output it displays a given XHTML fragment after the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.after.main.page.search
In the generated output it displays a given XHTML fragment after the search field. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

Transforming Documents 830

https://www.oxygenxml.com/webhelp-skin-builder

-Dwebhelp.fragment.after.toc_or_tiles
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

-Dwebhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.before.body
In the generated output it displays a given XHTML fragment before the page body. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.before.logo_and_title
In the generated output it displays a given XHTML fragment before the logo and title. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.before.main.page.search
In the generated output it displays a given XHTML fragment before the search field. The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.before.toc_or_tiles
In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main
page. The value of the parameter can be either an XHTML fragment or a path to a file that contains a well-
formed XHTML fragment.

-Dwebhelp.fragment.before.top_menu
In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.footer
In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter
can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.head
In the generated output it displays a given XHTML fragment as a page header. The value of the parameter can
be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.fragment.welcome
In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the
parameter can be either an XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dwebhelp.merge.nested.topics.related.links
Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links
will be moved from the topic content to the related links component and all of the links from the same group
(for example, Related Tasks, Related References, Related Information) are merged into a single group. The
default value is yes.

-Dwebhelp.show.breadcrumb
Specifies if the breadcrumb component will be presented in the output. The default value is yes.

-Dwebhelp.show.child.links
Specifies if child links will be generated in the output for all topics that have subtopics. The default value is
no.

-Dwebhelp.show.indexterms.link
Specifies if an icon that links to the index will be presented in the output. The default value is yes.

-Dwebhelp.show.main.page.tiles
Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this
parameter should be set to no.

-Dwebhelp.show.main.page.toc
Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

Transforming Documents 831

-Dwebhelp.show.navigation.links
Specifies if navigation links will be presented in the output. The default value is yes.

-Dwebhelp.show.print.link
Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

-Dwebhelp.show.side.toc
Specifies if a side table of contents will be presented on the right side of each topic in the output. The default
value is yes.

-Dwebhelp.show.top.menu
Specifies if a menu will be presented at the topic of the main page in the output. The default value is yes.

-Dwebhelp.top.menu.depth
Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 2.

Note: Note that the fix.external.refs.com.oxygenxml parameter is not supported in Oxygen XML
WebHelp plugin. This parameter is normally used to specify whether or not the application tries to fix such
references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references.

Further Customization

If you need to further customize the transformation process, you can append other DITA-OT parameters as well.
Any parameter that you want to append must follow the -D model of the above parameters. For example, to
append the args.csspath parameter, use:

-Dargs.csspath=[CSS_FILE_PATH]

where [CSS_FILE_PATH] is the location of the directory that contains the CSS file.

Related Information:
DITA OT Parameter Reference

Customization Example: Apply Custom Styling to an External Transformation

Suppose that you want to apply custom styling to an external DITA transformation using the Oxygen XML
WebHelp plugin for DITA OT. The following procedure provides an example of how you could achieve this using a
custom CSS file and some of the Oxygen XML WebHelp plugin parameters.

External Transformation Customization Example

To apply your own custom styling to an external DITA transformation using Oxygen XML WebHelp plugin, follow
these steps:

1. Download and install a Java Virtual Machine version compatible with the DITA-OT version.
2. Download and unpack the DITA Open Toolkit version 1.8.5 or 2.4.4.
3. Go to Oxygen XML WebHelp website, download the latest DITA-OT version of the installation kit, and unzip it.
4. Copy all plugin directories from the unpacked archive to the plugins directory of the DITA OT distribution.

This is necessary to enable certain functionality. For example, the com.oxygenxml.highlight directory
adds syntax highlight capabilities to your WebHelp output for codeblock sections that contain source code
snippets (XML, Java, JavaScript).

5. If you have not already done so, copy your license key into a licensekey.txt file and place it in the DITA-
OT-DIR/plugins/com.oxygenxml.webhelp directory.

6. In the home directory of the DITA Open Toolkit, run ant -f integrator.xml.
7. Create a new directory for your custom template (DITA-OT-DIR/plugins/com.oxygenxml.webhelp/

templates/dita/MyCustomTemplate).
8. Create a new directory for your custom skin (DITA-OT-DIR/plugins/com.oxygenxml.webhelp/

templates/dita/MyCustomTemplate/variants/tree/MyCustomSkin).
9. Copy the DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/

variants/tree/light/skin.css file to the custom skin directory you just created (DITA-OT-DIR/
plugins/com.oxygenxml.webhelp/templates/dita/MyCustomTemplate/variants/tree/
MyCustomSkin).

Transforming Documents 832

http://www.dita-ot.org/2.2/parameters/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.dita-ot.org/download
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

10.Copy the DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/bootstrap/
variants/tree/light/resources directory to the custom skin directory you just created (DITA-OT-
DIR/plugins/com.oxygenxml.webhelp/templates/dita/MyCustomTemplate/variants/tree/
MyCustomSkin).

11.Use your system command console to run a command in the DITA-OT-DIR/bin folder that will invoke the
external transformation and include the Oxygen XML WebHelp plugin parameters that you desire for your
customization.

For example: dita.bat -i c:\myMap.ditamap -f webhelp-responsive
-Dwebhelp.responsive.template.name=MyCustomTemplate -
Dwebhelp.responsive.variant.name=tree -Dwebhelp.responsive.skin.name=MyCustomSkin
-Dargs.breadcrumbs=yes -Dwebhelp.logo.image=c:\Mylogo.png -
Dwebhelp.show.side.toc=no -Dwebhelp.show.top.menu=yes -o c:\MyOutputDirectory

12.Check the output directory to make sure it now contains your custom skin directory.
13.Modify the DITA-OT-DIR/plugins/com.oxygenxml.webhelp/templates/dita/

MyCustomTemplate/variants/tree/MyCustomSkin/skin.css file according to your needs and check
the output to make sure your custom styles are applied properly.

Related Information:
Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit on page 826

Configuring the Comment Database for DITA WebHelp Systems with Feedback

If you run the webhelp-responsive or webhelp-feedback transformation using the WebHelp plugin, you need to
configure the database that holds the user comments.

The instructions for configuring the database are presented in the installation.html file, located
at: [DITA_MAP_BASE_DIR]/out/[TRANSFORM_TYPE]/oxygen-webhelp/resources. The
installation.html file is created by the transformation process.

Building Oxygen XML WebHelp Output on Jenkins

This procedure assumes that you have already integrated, configured, and registered the WebHelp plugin with the
DITA Open Toolkit.

To integrate WebHelp output with the Jenkins continuous integration tool, follow these steps:

1. Create a Maven project to incorporate the DITA-OT that already integrates Oxygen XML WebHelp.
2. Go to the root of your Maven project and edit the pom.xml file to include the following fragment:

<properties>
 <oxygen-webhelp>${basedir}/tools/DITA-OT1.8.5/
 plugins/com.oxygenxml.webhelp</oxygen-webhelp>
</properties>

<plugin>
 <artifactId>exec-maven-plugin</artifactId>
 <groupId>org.codehaus.mojo</groupId>
 <executions>
 <execution><!-- Run our version calculation script -->
 <id>Version Calculation</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>
 <executable>${oxygen-webhelp}/ditaWebhelp.bat</executable>
 </configuration>
 </execution>
 </executions>
</plugin>

Note: In the fragment above it is assumed that you are using DITA-OT version 1.8.5. If you are using another
version, please adjust the path accordingly.

3. Go to the Jenkins top page and create a new Jenkins job. Configure this job to suit your particular
requirements, such as the build frequency and location of the Maven project.

Building Oxygen XML WebHelp Output on Travis CI

This topic assumes you have a DITA project hosted on a GitHub public or private repository.

Transforming Documents 833

https://wiki.jenkins-ci.org/display/JENKINS/Building+a+software+project

The goal of this tutorial is to help you setup a Travis continuous integration job that automatically publishes your
DITA project to GitHub pages after every commit. The published website will contain a feedback link on each
page that would allow a contributor to easily suggest changes to the documentation by creating a pull request on
GitHub with just a few clicks.

Enable the Travis CI Build

1. Sign in to Travis CI with your GitHub account, accepting the GitHub access permissions confirmation.
2. Once you are signed in, and you have synchronized your GitHub repositories, go to your profile page and

enable Travis CI for the repository you want to build.

Configure the Travis CI Build in your GitHub Project

1. Checkout your GitHub project locally.
2. Copy the .travis folder from here to the root directory of your project.
3. In the root of your GitHub project, add a file called .travis.yml with the following content:

language: dita
install:
 - echo "Installed"
script:
 - sh .travis/publish.sh
after_success:
 - sh .travis/deploy.sh
env:
 global:
 - DITAMAP=/path/to/your/ditamap/file
 - DITAVAL=/path/to/your/ditaval/file
 - ANT_OPTS=-Xmx1024M

Note: Replace /path/to/your/ditamap/file and /path/to/your/ditaval/file with the
appropriate paths to your DITA map and ditaval files.

4. Create a GitHub personal access token by following this procedure.
5. Define an environment variable in the repository settings that has the name GH_TOKEN and the value equal with

the GitHub personal access token created earlier.

Register Your License Key

1. Edit your .gitignore file (or create it if it does not already exist) and add the following line:

licenseKey.txt

2. Copy your WebHelp license to the root of your GitHub project in a file called licenseKey.txt.

Important: The licenseKey.txt file should not be committed to GitHub as it contains a license key that is
issued only to you.

3. Encrypt the license key file and add it to the .travis.yml configuration file. This way only the Travis CI server
will be able to decrypt it during the build process.

Commit to GitHub

1. Commit the following files and folders and push the commit to GitHub:

git add .gitignore licenseKey.txt.enc .travis.yml .travis/
git commit -m "Set up the Travis CI publishing system"
git push

2. Create a gh-pages branch in your GitHub project where the WebHelp output will be published. You can follow
the procedure here.

Oxygen XML WebHelp Plugin for DocBook

To transform DocBook documents using the Oxygen XML WebHelp plugin, first integrate the plugin with the
DocBook XSL distribution. The purpose of the integration is to add the following transformation types to the
DocBook XSL distribution:

• webhelp - The transformation that produces WebHelp Classic output for desktop.

Transforming Documents 834

https://pages.github.com/
https://travis-ci.org/auth
https://docs.travis-ci.com/user/github-oauth-scopes
https://travis-ci.org/profile
https://github.com/ctalau/userguide/tree/master/.travis
https://help.github.com/articles/creating-an-access-token-for-command-line-use/
https://docs.travis-ci.com/user/environment-variables/#Defining-Variables-in-Repository-Settings
https://docs.travis-ci.com/user/encrypting-files/#Automated-Encryption
https://help.github.com/articles/creating-project-pages-manually/

• webhelp-feedback - The transformation that produces feedback-enabled WebHelp Classic with Feedback for
desktop.

• webhelp-mobile - The transformations that produces WebHelp Classic Mobile output for mobile devices.
• webhelp-responsive - The transformation that produces WebHelp Responsive and WebHelp Responsive with

Feedback output for desktop and mobile devices.

Integrating the Oxygen XML WebHelp Plugin with the DocBook XSL Distribution

The WebHelp plugin transformations run as an Ant build script. The requirements are:

• Ant 1.8 or later
• Java Virtual Machine 1.6 or later
• DocBook XSL 1.78.1 or later
• Saxon 6.5.5
• Saxon 9.1.0.8

To integrate the Oxygen XML WebHelp plugin with the DocBook XSL distribution, follow these steps:

1. Download and install a Java Virtual Machine 1.6 or later.
2. Download and install Ant 1.8. or later.
3. Go to Oxygen XML WebHelp website, download the DocBook XSL 1.78.1 (or later) installation kit, and unzip it in

the DocBook XSL directory ([OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl).
The DocBook XSL directory should now contain a new subdirectory named com.oxygenxml.webhelp and
two new files, oxygen_custom.xsl and oxygen_custom_html.xsl.

4. If you have not already done so, copy your license key into a licensekey.txt file and place it in the
[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/com.oxygenxml.webhelp directory.

5. Download and unzip saxon6-5-5.zip on your computer.
6. Download and unzip saxonb9-1-0-8j.zip on your computer.

Licensing the Oxygen XML WebHelp Plugin for DocBook

To register the license for the Oxygen XML WebHelp plugin for the DocBook XSL distribution, follow these steps:

1. Create a licenseKey.txt file in the com.oxygenxml.webhelp subdirectory of the DocBook XSL directory.
2. In this file, copy the license key that you purchased for your Oxygen XML WebHelp plugin.

The WebHelp transformation process reads the Oxygen XML Developer license key from this file. If the file
does not exit, or it contains an invalid license, an error message is displayed.

Upgrading the Oxygen XML WebHelp Plugin for DocBook

To upgrade your Oxygen XML WebHelp plugin for DocBook, follow these steps:

1. Navigate to the [OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl directory and delete the old
Oxygen XML WebHelp plugin files (oxygen_custom.xsl, oxygen_custom_html.xsl) and directory
(com.oxygenxml.webhelp).

2. Go to Oxygen XML WebHelp website, download the latest DocBook version of the installation kit, and unzip it in
the DocBook XSL directory ([OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl).
The DocBook XSL directory should now contain a new subdirectory named com.oxygenxml.webhelp and
two new files, oxygen_custom.xsl and oxygen_custom_html.xsl.

Running an External DocBook Transformation Using the WebHelp Plugin

To run a DocBook to WebHelp (webhelp, webhelp-feedback, webhelp-mobile) transformation using the Oxygen
XML WebHelp plugin, use:

• The docbook.bat script file for Windows based systems.
• The docbook.sh script file for Unix/Linux based systems.

Note: You can call these files in an automated process or from the command line.

The docbook.bat and the docbook.sh files are located in the home directory of the Oxygen XML WebHelp
Plugin. Before using them to generate an WebHelp system, customize them to match the paths to the JVM,
DocBook XSL distribution and Saxon engine, and also to set the transformation type. To do this, open a script file
and edit the following variables:

Transforming Documents 835

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.apache.org/dist/ant/binaries/
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html
https://sourceforge.net/projects/docbook/files/docbook-xsl-ns/1.78.1/
http://prdownloads.sourceforge.net/saxon/saxon6-5-5.zip
http://sourceforge.net/projects/saxon/files/Saxon-B/9.1.0.8/
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html

• JVM_INSTALL_DIR - Specifies the path to the Java Virtual Machine installation directory on your disk.
• ANT_INSTALL_DIR - Specifies the path to the installation directory of Ant.
• SAXON_6_DIR - Specifies the path to the installation directory of Saxon 6.5.5.
• SAXON_9_DIR - Specifies the path to the installation directory of Saxon 9.1.0.8.
• DOCBOOK_XSL_DIR - Specifies the path to the installation directory of the DocBook XSL distribution.
• TRANSTYPE - Specifies the type of the transformation you want to apply. You can set it to webhelp,

webhelp-feedback and webhelp-mobile.
• INPUT_DIR - Specifies the path to the input directory, containing the input XML file.
• XML_INPUT_FILE - Specifies the name of the input XML file.
• OUTPUT_DIR - Specifies the path to the output directory where the transformation output is generated.
• DOCBOOK_XSL_DIR_URL - Specifies the path to the directory of the DocBook XSL distribution in URL format.

Additional Oxygen XML WebHelp Plugin Parameters for DocBook

You can append the following parameters to the command line that runs the transformation:
-Dwebhelp.copyright

Adds a small copyright text that appears at the end of the Table of Contents pane.
-Dwebhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.
-Dwebhelp.footer.file

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this
parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or
Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code
for each script element is included in an XML comment (also, the start and end tags for the XML comment
must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

<div id="facebook">
 <div id="fb-root"/>
 <script>
 <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) return;
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
 fjs.parentNode.insertBefore(js, fjs); }
 (document, 'script', 'facebook-jssdk')); -->
 </script>
 <div data-share="true" data-show-faces="true" data-action="like"
 data-layout="standard" class="fb-like"/>
</div>

-Dwebhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no
footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value,
then the content of that file is used as footer. If the webhelp.footer.file has no value then the default
Oxygen XML Developer footer is inserted in each WebHelp page.

-Dwebhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-
phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

-Dwebhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to
this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter: < > / \ ' () { }
= ; * % + &.

Transforming Documents 836

If you need to further customize your transformation, other DocBook XSL parameters can be appended. Any
parameter that you want to append must follow the -D model of the above parameters. For example, you can
append the html.stylesheet parameter in the following form:

-Dhtml.stylesheet=/path/to/directory/of/stylesheet.css

Configuring the Comment Database for DocBook WebHelp Classic with Feedback

If you run the webhelp-feedback transformation using the WebHelp plugin, you need to configure the
database that holds the user comments. The instructions for configuring the database are presented
in the installation.html file, located at: [OUTPUT_DIR]/oxygen-webhelp/resources/
installation.html. The installation.html file is created by the transformation process.

Transforming Documents 837

Working with XPath Expressions 10
Topics:

• XPath Toolbar
• XPath Builder View
• XPath Expression Results View
• XPath and XML Catalogs
• XPath Prefix Mapping

XPath is a language for addressing specific parts of an XML document. XPath, such as the Document Object Model
(DOM), models an XML document as a tree of nodes. An XPath expression is a mechanism for navigating through and
selecting nodes from the XML document. An XPath expression is, in a way, analogous to an SQL query used to select
records from a database.

There are various types of nodes, including element nodes, attribute nodes, and text nodes. XPath defines a way to
compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and boolean expressions.

Examples:

• child::* - Selects all children of the root node.
• .//name - Selects all elements having the name "name", descendants of the current node.
• /catalog/cd[price>10.80] - Selects all the cd elements that have a price element with a value larger than

10.80.

To find out more about XPath, go to http://www.w3.org/TR/xpath.

Related Information:
Content Completion in XPath Expressions on page 345
Finding and Replacing Text in Multiple Files on page 306
Find/Replace Dialog Box on page 302

XPath Toolbar
XPath is a query language for selecting nodes from an XML document. To use XPath expressions effectively, you
need a good understanding of the XPath Core Function Library.

XPath Toolbar

Oxygen XML Developer provides an XPath toolbar to let you query XML documents fast and easy using XPath
expressions.

Figure 376: XPath Toolbar

The XPath toolbar includes the following features:
XPath version chooser drop-down menu

You can choose the XPath version from the drop-down menu available in the left side of the toolbar. Available
options include XPath 1.0, XPath 2.0, XPath 2.0 SA, XPath 3.0, XPath 3.0 SA.

838

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath#corelib

Note: The results returned by XPath 2.0 SA and XPath 3.0 SA have a location limited to the line number of the
start element (there are no column information and no end specified).

Warning: Oxygen XML Developer uses Saxon to execute XPath 3.0 expressions, but implements a
part of the 3.0 functions. When using a function that is not implemented, Oxygen XML Developer can
return a compilation error.

XPath scope menu
Oxygen XML Developer allows you to define a scope for which the XPath operation will be executed. You can
choose where the XPath expression will be executed:

• Current file - Current selected file only.
• Project - All the files in the project.
• Selected project resources - The files selected in the project.
• All opened files - All files opened in the application.
• Opened archive - Files open in the Archive Browser view.
• Working sets - The selected working sets.

At the bottom of the scope menu the following scope configuration actions are available:

• Configure XPath working sets - Allows you to configure and manage collections of files and folders,
encapsulated in logical containers called working sets.

• XPath file filter - You can filter the files from the selected scope for which the XPath expression will be
executed. By default, the XPath expression will be executed only on XML files, but you can also define a
set of patterns that will filter out files from the current scope. If you select the Include archive option, the
XPath expression will be also executed on the files in any archive (including EPUB and DocX) found at the
current scope.

History drop-down list
The XPath combo box keeps a history of the last 15 expressions that were used so that you can easily
choose them again.

Switch to XPath Builder View
Opens the XPath Builder view.

Settings menu
The following actions are available in this drop-down menu:

• Update on cursor move - When selected and you navigate through a document, the XPath expression
corresponding to the XML node at the current cursor position is displayed.

• Evaluate as you type - When you select this option, the XPath expression you are composing is
evaluated in real time.

Note: The Evaluate as you type option and the automatic validation are disabled when you edit huge
documents or when the scope is other than Current file.

• Options - Opens the Preferences page of the currently selected processing engine.

Note: During the execution of an XPath expression, the XPath toolbar displays a Stop button. Press this button
to stop the XPath execution.

When you type expressions longer than 60 characters, a dialog box opens that offers you the possibility to switch
to the XPath Builder view.

Related Information:
XPath Expression Results View on page 842

Working with XPath Expressions 839

XPath Builder View
The XPath/XQuery Builder view allows you to compose complex XPath expressions and execute them over the
currently edited XML document. For XPath 2.0 / 3.0, you can use the doc() function to specify the source file
for which the expressions are executed. When you connect to a database, the expressions are executed over that
database. If you are using the XPath/XQuery Builder view and the current file is an XSLT document, Oxygen XML
Developer executes the expressions over the XML document in the associated scenario.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu. You can also
open it simply by pressing the Switch to XPath Builder View button that is located on the XPath toolbar.

The upper part of the view contains the following actions:
XPath version chooser drop-down menu

A drop-down menu that allows you to select the type of the expression you want to execute. You can choose
between:

• XPath 1.0 (Xerces-driven)
• XPath 2.0, XPath 2.0SA, XPath 3.0, XPath 3.0SA, XQuery 1.0, XQuery 3.0, Saxon-HE XQuery, Saxon-PE

XQuery, or Saxon-EE XQuery (all of them are Saxon-driven)
• Custom connection to XML databases that can execute XQuery expressions

Note: The results returned by XPath 2.0 SA and XPath 3.0 SA have a location limited to the line number of
the start element (there are no column information and no end specified).

Note: Oxygen XML Developer uses Saxon to execute XPath 3.0 expressions. Since Saxon implements a
part of the 3.0 functions, when using a function that is not implemented, Oxygen XML Developer returns a
compilation error.

Execute XPath button
Use this button to start the execution of the XPath or XQuery expression you are editing. The result of the
execution is displayed in the Results view.

Favorites button
Allows you to save certain expressions that you can later reuse. To add an expression as a favorite, press the
star button and enter a name for it. The star turns yellow to confirm that the expression was saved. Expand
the drop-down menu next to the star button to see all your favorites. Oxygen XML Developer automatically
groups favorites in folders named after the method of execution.

History drop-down menu

Keeps a list of the last 15 executed XPath expressions. Use the Clear history action from the bottom of the
list to remove them.

Settings drop-down menu
Contains the following three options:

• Update on cursor move - When selected and you navigate through a document, the XPath expression
corresponding to the XML node at the current cursor position is displayed.

• Evaluate as you type - When you select this option, the XPath expression you are composing is
evaluated in real time.

Note: The Evaluate as you type option and the automatic validation are disabled when you edit huge
documents or when the scope is other than Current file.

• Options - Opens the Preferences page of the currently selected processing engine.

XPath scope menu
Oxygen XML Developer allows you to define a scope for which the XPath operation will be executed. You can
choose where the XPath expression will be executed:

• Current file - Current selected file only.

Working with XPath Expressions 840

• Project - All the files in the project.
• Selected project resources - The files selected in the project.
• All opened files - All files opened in the application.
• Opened archive - Files open in the Archive Browser view.
• Working sets - The selected working sets.

At the bottom of the scope menu the following scope configuration actions are available:

• Configure XPath working sets - Allows you to configure and manage collections of files and folders,
encapsulated in logical containers called working sets.

• XPath file filter - You can filter the files from the selected scope for which the XPath expression will be
executed. By default, the XPath expression will be executed only on XML files, but you can also define a
set of patterns that will filter out files from the current scope. If you select the Include archive option, the
XPath expression will be also executed on the files in any archive (including EPUB and DocX) found at the
current scope.

Figure 377: XPath/XQuery Builder View

While you edit an XPath or XQuery expression, Oxygen XML Developer assists you with the following features:

• Content Completion Assistant - It offers context-dependent proposals and takes into account the cursor
position in the document you are editing. The set of functions proposed by the Content Completion Assistant
also depends on the engine version. Select the engine version from the drop-down menu available in the
toolbar.

• Syntax Highlighting - Allows you to identify the components of an expression. To customize the colors of the
components of the expression, open the Preferences dialog box (Options > Preferences) and go to Editor >
Syntax Highlight.

• Automatic validation of the expression as you type.

Working with XPath Expressions 841

Note: When you type invalid syntax a red serrated line underlines the invalid fragments.
• Function signature and documentation balloon, when the cursor is located inside a function.

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of the top
editable part of the view.

Related Information:
XPath Expression Results View on page 842

XPath Expression Results View
When you run an XPath expression, Oxygen XML Developer displays the results of its execution in the Results
view.

This view contains the following columns:

• Description - The result thatOxygen XML Developer displays when you run an XPath expression.
• XPath location - The path to the matched node.
• Resource - The name of the document that you run the XPath expression on.
• System ID - The path to the document itself.
• Location - The location of the result in the document.

To arrange the results depending on a column, click its header. To group the results by their resource, or by their
system ID, right-click the header of any column in the Results view and select Group by "Resource" or Group by
"System ID". If no information regarding location is available, Oxygen XML Developer displays Not available in the
Location column. Oxygen XML Developer displays the results in a valid XPath expression format.

- /node[value]/node[value]/node[value] -

The Results view also includes various toolbar and contextual menu actions. For more information, see Results
View on page 180.

Example:

The following snippets are taken from a DocBook book based on the DocBook XML DTD. The book contains a
number of chapters. To return all the chapter nodes of the book, enter //chapter in the XPath expression field
and press (Enter). This action returns all the chapter nodes of the DocBook book in the Results View. Click a
record in the Results View to locate and highlight its corresponding chapter element and all its children nodes in
the document you are editing.

To find all example nodes contained in the sect2 nodes of a DocBook XML document, use the following XPath
expression: //chapter/sect1/sect2/example. Oxygen XML Developer adds a result in the Results View for
each example node found in any sect2 node.

For example, if the result of the above XPath expression is:

- /chapter[1]/sect1[3]/sect2[7]/example[1]

it means that in the edited file, the example node is located in the first chapter, third section level one, seventh
section level 2.

Working with XPath Expressions 842

Figure 378: XPath Results Highlighted in Editor Panel with Character Precision

XPath and XML Catalogs
The evaluation of the XPath expression tries to resolve the locations of documents referenced in the expression
through XML Catalogs. These catalogs are configured in the XML Catalog preferences pages and the XML Parser
preferences.

Example:

As an example, consider the evaluation of the collection(URIofCollection) function (XPath 2.0).
To resolve the references from the files returned by the collection() function with an XML catalog,
specify the class name of the catalog-enabled parser for parsing these collection files. The class name is
ro.sync.xml.parser.CatalogEnabledXMLReader. Specify it as it follows:

let $docs := collection(iri-to-uri(
 "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;
 parser=ro.sync.xml.parser.CatalogEnabledXMLReader"))

XPath Prefix Mapping
To define default mappings between prefixes (that you can use in the XPath toolbar) and namespace URIs go to
the XPath preferences page and enter the mappings in the Default prefix-namespace mappings table. The same
preferences panel allows you to configure the default namespace used in XPath 2.0 expressions.

Important: If you define a default namespace, Oxygen XML Developer binds this namespace to the first
free prefix from the list: default, default1, default2, and so on. For example, if you define the default
namespace xmlns="something" and the prefix default is not associated with another namespace, you can
match tags without prefix in an XPath expression typed in the XPath toolbar by using the prefix default. To
find all the level elements when you define a default namespace in the root element, use this expression: //
default:level in the XPath toolbar.

Working with XPath Expressions 843

Working with Archives 11
Topics:

• Browsing Archives
• Working with Archive Files

Oxygen XML Developer includes a useful Archive Browser view that offers the means to work with files directly from
various types of archives (for example, opening and saving files directly in archives, or browsing and modifying archive
structures). The archive support is available for all ZIP-type archives, including:

• ZIP archives
• EPUB books
• JAR archives
• Office Open XML (OOXML) files
• Open Document Format (ODF) files
• IDML files

You can transform, validate, and perform many other operations on files directly from an archive. For instance, you can
transform, or validate files directly from OOXML or ODF packages, and the structure and content of the ZIP archives
can be opened, edited, and saved, similar to any other ZIP archive browsing tool. Also, when browsing for a URL in
various dialog boxes, you can use the Browse for archived file action to browse and select files from a particular
archive.

Browsing Archives
Oxygen XML Developer includes a helper view called the Archive Browser that allows you to view the contents
and structure of an archive, and it offers a variety of toolbar and contextual menu actions. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

To open an archive in the Archive Browser view, use one of the following methods:

• Open an archive from the Project view.
• Select an archive in one of the file chooser dialog boxes in Oxygen XML Developer (such as the Open dialog

box).
• Drag an archive from a system file explorer and drop it in the Archives Browser view.

When displaying an archive, the Archive Browser view locks the archive file. It is then automatically unlocked
when the Archive Browser view is closed.

Tip: If a file is not recognized by Oxygen XML Developer as a supported archive type, you can add it from the
Archive preferences page.

844

Figure 379: Archive Browser

Archive Browser Toolbar Actions

The following actions are available on the Archive Browser toolbar:

Open Archive menu

Provides access to the Open Archive action that opens a new archive in the browser. If the extension is not
known as an archive extension, you will be directed to the Archive preferences page to add a new extension.
The sub-menu keeps a list of recently open archive files and a Clear history action that allows you to delete
the list.

Close
Closes the browsed archive and unlocks the archive file.

Validate (available for EPUB archives only)
Checks the EPUB archive to see if its content and structure is valid.

New folder
Creates a folder as child of the selected folder in the browsed archive.

New file
Creates a file as child of the selected folder in the browsed archive.

Add files
Adds existing files as children of the selected folder in the browsed archive.

Note: You can also add files in the archive by dragging them from the file browser or the Project view and
dropping them in the Archive Browser view.

Delete
Deletes the selected resource in the browsed archive.

Open in System Application
Opens the selected resource in the default system application that is associated with that type of file.

Archive Options
Opens the Archive preferences page.

Working with Archives 845

Archive Browser Contextual Menu Actions

The following additional actions are available from the contextual menu for resources in the Archive Browser
view:

Open
Opens a resource from the archive in the editor.

Extract
Extracts a resource from the archive in a specified folder.

New folder
Creates a folder as child of the selected folder in the browsed archive.

New file
Creates a file as child of the selected folder in the browsed archive.

Add files
Adds existing files as children of the selected folder in the browsed archive.

Note: On OS X, the Add file action is also available and it allows you to add one file at a time.

Rename
Renames a resource in the archive.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to search for and replace specific pieces of text
inside the archive.

Cut
Cuts the selected archive resource.

Copy
Copies the selected archive resource.

Paste
Pastes a file or folder into the archive.

Delete
Removes a file or folder from archive.

Preview
Previews an image contained in the archive. See the Image Preview topic for more details.

Copy location
Copies the URL location of the selected resource.

Refresh
Refreshes the selected resource.

Properties
Shows the properties of the selected resource.

Working with Archive Files
Oxygen XML Developer includes support for working with various types of archives, including the following:

• EPUB - An e-book file format that can be used on many types of devices, such as smart phones, tablets, e-
readers, or computers.

• OOXML - An XML-based file format for representing spreadsheets, charts, presentations, and word processing
documents.

Working with Archives 846

• ODF - An free and open-source XML-based file format for electronic office documents, such as spreadsheets,
charts, presentations, and word processing documents.

When these types of files are opened in the Archive Browser view, their internal components are expanded:

• Document content (XHTML and image files).
• Packaging files.
• Container files.

Figure 380: EPUB File Displayed in the Archive Browser View

When an archive is expanded in the Archive Browser view, you can add or delete files that compose the archive
structure. All changes made to the structure of an archive are saved immediately. You can open files from within
the archive to edit them in the main editing pane and save changes back to the archive. You can also use the

Open in System Application action to open the archive in the default system application that is associated with
that type of file.

EPUB-Specific Validation

When working with EPUB archives, the Archive Browser includes a Validate action on the toolbar that checks
the EPUB archive to make sure the structure and content are valid. Oxygen XML Developer uses the open-
source EpubCheck validator to perform the validation. This validator detects many types of errors, including OCF
container structure, OPF and OPS mark-up, as well as internal reference consistency.

To watch our video demonstration about EPUB support in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/Epub.html.

Related Information:
The Archive Browser View on page 844
EPUB Document Type (Framework) on page 634

Creating an Archive
To create an archive from scratch, follow these steps:

Working with Archives 847

https://www.oxygenxml.com/demo/Epub.html
https://www.oxygenxml.com/demo/Epub.html

1. Go to File > New or click New on the main toolbar.
2. Choose your particular type of archive template. For example, select one of the ODF, OOXML, or EPUB

templates.
3. Click Create and choose the name and location of the file.
4. Click Save.

A skeleton archive is saved on disk and opened in the Archive Browser view.

Tip: Use toolbar and contextual menu actions to edit, add, and remove resources from the archive. For EPUB
archives, you can use the Validate action to verify the integrity of the EPUB archive.

Editing and Saving Files Inside an Archive
You can open files directly from an archive in the Archive Browser view and then edit them in the main editor
pane. To open a file, simply double-click it or select Open from the contextual menu.

When saving the file back to the archive, you are prompted to choose if you want the application to make a
backup copy of the archive before saving the new content. If you choose Never ask me again, you will not be
asked again to make backup copies. You can re-enable the pop-up message from the Messages preferences
page.

Migrating Archives to DITA or TEI
Certain types of archives can be converted to DITA or TEI. For example, OOXML (Office Open XML) archive files
with the DOCX file extension can be migrated to DITA or TEI.

To migrate DOCX files to DITA or TEI, follow these steps:

1. Open and expand the archive in the Archive Browser.
2. Open the document.xml file contained in the archive.
3. Run one of the following predefined transformation scenarios:

a) DOCX DITA to migrate to DITA.
b) DOCX TEI P5 to migrate to TEI.

4. You may need to do some manual reconfiguring to map DOCX styles to DITA or TEI content.

Tip: Oxygen XML Developer also includes a predefined transformation scenario called ODT TEI P5 for
converting ODF archive files with the ODT file extension to TEI and a similar process can be used to migrate
ODT files to TEI.

Working with Archives 848

Databases and CMS Integration 12
Topics:

• Working with Databases
• Content Management System (CMS) Integration

Oxygen XML Developer provides support for connecting and integrating with various databases and content
management systems. This section includes information about the database-related features in Oxygen XML
Developer. It explains how to connect with the supported databases, presents the actions that are available for each
type, and includes information about SharePoint and Documentum (CMS) integration.

Working with Databases
XML is a storage and interchange format for structured data and is supported by all major database systems.
Oxygen XML Developer offers the means for managing the interaction with some of the most commonly used
databases (both Relational and Native XML databases). Through this interaction, Oxygen XML Developer helps
users with browsing, content editing, importing from databases, using XQuery with databases, SQL execution, and
generating XML Schema from a database structure.

The types of connections that are supported in Oxygen XML Developer include:

• IBM DB2
• Microsoft SQL Server
• Oracle Database
• PostgreSQL
• Berkeley DB XML
• eXist
• MarkLogic
• Documentum xDB (X-Hive/DB)
• MySQL
• Generic JDBC
• JDBC-ODBC
• BaseX
• WebDAV
• Microsoft SharePoint

Related Information:
Integration with Microsoft SharePoint on page 907

Data Source Explorer View
The Data Source Explorer view displays your database connections. If the view is not displayed, it can be opened
by selecting it from the Window > Show View menu.

You can connect to a database simply by expanding the connection node (click the connection) . The database
structure can be expanded to resource level, or even all the way to column level for tables inside relational
databases. Oxygen XML Developer supports multiple simultaneous database connections and the connection
tree in the Data Source Explorer view provides an easy method for browsing them.

849

Figure 381: Data Source Explorer View

The objects (nodes) that are displayed in the Data Source Explorer view depend on the connection type and
structure of the database. Various contextual menu actions are available for each hierarchical level and for some
connections you can add or move resources in a container by simply dragging them from the Project view, a file
browsing application, or another database.

Toolbar Actions

The following actions are available in the toolbar of this view:

Filters
Opens the Data Sources / Table Filters preferences page, allowing you to decide which table types are
displayed in the Data Source Explorer view.

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Database-Specific Contextual Menu Actions

Each specific type of database will also include its own specific contextual menu actions in the Data Source
Explorer view. The actions depend on the type of database, the type of node, or the hierarchical level of the node
in which the contextual menu is invoked.

For more information on the specific actions that are available, see the topics in this section for each specific
type of database.

Related Information:
Data Sources Preferences on page 115

Table Explorer View
Relational databases tables in the Data Source Explorer view can be displayed and edited in the Table Explorer
view by selecting the Edit action from the contextual menu of a Table node or by double-clicking one of its
fields. To modify the content of a cell, double-click it and start typing. When editing is complete, Oxygen XML
Developer attempts to update the database with the new cell content.

Databases and CMS Integration 850

Figure 382: Table Explorer View

You can sort the content of a table by one of its columns by clicking its column header.

Note the following:

• The first column is an index (not part of the table structure)
• Every column header contains the field name and its data type
• The primary key columns are marked with this symbol:
• Multiple tables are presented in a tabbed manner

For performance issues, you can set the maximum number of cells that are displayed in the Table Explorer view
(using the Limit the number of cells option in the Data Sources Preferences page). If a table that has more cells
than the value set in the options is displayed in the Table Explorer view, a warning dialog box informs you that the
table is only partially shown.

You are notified if the value you have entered in a cell is not valid (and thus cannot be updated).

• If the content of the edited cell does not belong to the data type of the column, the cell is marked by a red
square and remains in an editing state until a correct value is inserted. For example, in the following figure
propID contains LONG values. If a character or string is inserted, the cell will look like this:

Figure 383: Cell Containing an Invalid Value
• If the constraints of the database are not met (for instance, primary key constraints), an information dialog

box will appear, notifying you of the reason the database has not been updated. For example, in the table
below, trying to set the second record in the primary key propID column to 8, results in a duplicate entry error
since that value has already been used in the first record:

Databases and CMS Integration 851

Figure 384: Duplicate Entry for Primary Key

Table Explorer Contextual Menu Actions

Common editing actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of an
edited cell.

The contextual menu, available on every cell in the Table Explorer view, also includes the following actions:

Set NULL
Sets the content of the cell to null. This action is not available for columns that cannot have a value of null.

Insert row
Inserts an empty row in the table.

Duplicate row
Makes a copy of the selected row and adds it in the Table Explorer view. Note that the new row will not be
inserted in the database table until all conflicts are resolved.

Commit row
Commits the selected row.

Delete row
Deletes the selected row.

Copy
Copies the content of the cell.

Paste
Pastes copied content into the selected cell.

Table Explorer Toolbar Actions

The toolbar of the Table Explorer view also includes the following actions:

Export to XML
Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import
from database chapter) .

Refresh
Performs a refresh for the sub-tree of the selected node.

Insert row
Inserts an empty row in the table.

Databases and CMS Integration 852

Duplicate row
Makes a copy of the selected row and adds it in the Table Explorer view. Note that the new row will not be
inserted in the database table until all conflicts are resolved.

Commit row
Commits the selected row.

Delete row
Deletes the selected row.

Related Information:
Data Source Explorer View on page 849

Database Connection Support
Oxygen XML Developer offers support for a variety of Relational and Native XML database connections. The
database drivers and connections for various types of database are configured in the Data Sources preferences
page and once configured, the database connections can be viewed and managed in the Data Source Explorer
view. Oxygen XML Developer also includes a Database perspective that helps you to manage databases.

The database support in Oxygen XML Developer offers a variety of capabilities, including:

• Browsing the structure of databases in the Data Source Explorer view.
• Viewing relational tables in the Table Explorer view.
• Executing SQL queries against databases.
• Calling stored procedures with input and output parameters.
• XQuery execution with databases.
• Exporting data from databases to XML.

Relational Database Support

Relational databases use a relational model and are based on tables linked by a common key. Oxygen XML
Developer offers support for the most commonly used relational databases, including:

• IBM DB2
• Oracle 11g
• Microsoft SQL Server
• PostgreSQL
• MySQL

Oxygen XML Developer also offers generic support (table browsing and execution of SQL queries) for any JDBC-
compliant database (for example, MariaDB).

To watch our video demonstration about the integration between the relational databases and Oxygen XML
Developer, go to https://www.oxygenxml.com/demo/Author_Database_Integration.html.

Native XML Database Support

Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. They
use XML as an interface to specify documents as tree structured data that may contain unstructured text, but on
disk the data is stored as optimized binary files. This makes query and retrieval processes faster. Oxygen XML
Developer offers support for the most commonly used native XML databases, including:

• Berkeley DB XML
• eXist
• MarkLogic
• Documentum xDB (X-Hive/DB) 10
• Oracle XML DB
• Base X

Databases and CMS Integration 853

https://www.oxygenxml.com/demo/Author_Database_Integration.html

To watch our video demonstration about the integration between the native XML databases and Oxygen XML
Developer, go to https://www.oxygenxml.com/demo/Author_Database_XML_Native.html.

Related Information:
WebDAV Connections on page 892
Integration with Microsoft SharePoint on page 907

IBM DB2 Database Connections

Oxygen XML Developer includes support for IBM DB2 database connections. Oxygen XML Developer allows
you to browse the structure of an IBM DB2 database in the Data Source Explorer view, open tables in the Table
Explorer view, and perform various operations on the resources in the repository.

Figure 385: IBM DB2 Database Connection

Configuring an IBM DB2 Database Connection

To configure the support for the IBM DB2 database, follow this procedure:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver for JDBC
and SQLJ download link. Fill out the download form and download the zip file. Unzip the zip file and use the
db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Developer for configuring a DB2 data
source.

2. Configure IBM DB2 Data Source drivers.
3. Configure an IBM DB2 Server Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure IBM DB2 Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to an IBM DB2 server, follow these steps:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver for JDBC
and SQLJ download link. Fill out the download form and download the zip file.

2. Unzip the downloaded archive.
3. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
4. Click the New button in the Data Sources panel.

Databases and CMS Integration 854

https://www.oxygenxml.com/demo/Author_Database_XML_Native.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://www-306.ibm.com/software/data/db2/express/download.html

The dialog box for configuring a data source is opened.

Figure 386: Data Source Drivers Configuration Dialog Box

5. Enter a unique name for the data source.
6. Select DB2 in the driver Type drop-down menu.
7. Click the Add Files button and select the IBM DB2 driver files from the archive that you downloaded and

unzipped.

The IBM DB2 driver files are:

• db2jcc.jar
• db2jcc_license_cisuz.jar
• db2jcc_license_cu.jar

8. Select the most appropriate Driver class.
9. Click the OK button to finish the data source configuration.
10.Continue on to configure your IBM DB2 connection.

To watch our video demonstration about running XQuery against an IBM DB2 Pure XML database, go to
https://www.oxygenxml.com/demo/DB2.html.

How to Configure an IBM DB2 Connection

The support to create an IBM DB2 connection is available in the Enterprise edition only.

To configure a connection to an IBM DB2 server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Databases and CMS Integration 855

https://www.oxygenxml.com/demo/DB2.html

Figure 387: Connection Configuration Dialog Box

3. Enter a unique name for the connection.
4. Select an IBM DB2 data source in the Data Source drop-down menu.
5. Enter the connection details.

a) Enter the URL to the installed IBM DB2 engine.
b) Enter the user name to access the IBM DB2 engine.
c) Enter the password to access the IBM DB2 engine.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

To watch our video demonstration about running XQuery against an IBM DB2 Pure XML database, go to https://
www.oxygenxml.com/demo/DB2.html.

IBM DB2 Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source
Explorer view, depending on the node in which it is invoked:

Refresh
Performs a refresh on the selected node.

Disconnect (available on Connection nodes)
Closes the current database connection. If a table is already open, you are warned to close it before
proceeding.

Configure Database Sources (available on Connection nodes)
Opens the Data Sources preferences page where you can configure both data sources and connections.

Edit (available on Table nodes)
Opens the selected table in the Table Explorer view.

Export to XML (available on Table nodes)
Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import
from Database chapter).

Databases and CMS Integration 856

https://www.oxygenxml.com/demo/DB2.html
https://www.oxygenxml.com/demo/DB2.html

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the various nodes in IBM DB2
connections include the following additional contextual menu actions:

 XML Schema Repository Level Nodes

Register
Opens a dialog box for adding a new schema file in the DB XML repository. In this dialog box, you enter
a collection name and the necessary schema files. Schema dependencies management can be done by
using the Add and Remove buttons.

 Schema Level Nodes

Unregister
Removes the selected schema from the XML Schema Repository.

View
Opens the selected schema in Oxygen XML Developer.

Microsoft SQL Server Database Connections

Oxygen XML Developer includes support for Microsoft SQL Server database connections. Oxygen XML Developer
allows you to browse the structure of a SQL Server database in the Data Source Explorer view, open tables in the
Table Explorer view, and perform various operations on the resources in the repository.

Configuring a Microsoft SQL Server Connection

To configure the support for a Microsoft SQL Server database, follow this procedure:

1. Download the appropriate MS SQL JDBC driver from the Microsoft website. For SQL Server 2008 R2 and older
go to http://www.microsoft.com/en-us/download/details.aspx?id=21599. For SQL Server 2012 and 2014 go to
http://www.microsoft.com/en-us/download/details.aspx?id=11774.

2. Configure MS SQL Server Data Source drivers.
3. Configure a MS SQL Server Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure Microsoft SQL Server Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to a Microsoft SQL server, follow these steps:

1. Download the appropriate MS SQL JDBC driver from the Microsoft website. For SQL Server 2008 R2 and older,
go to http://www.microsoft.com/en-us/download/details.aspx?id=21599. For SQL Server 2012 and 2014, go to
http://www.microsoft.com/en-us/download/details.aspx?id=11774.

2. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Databases and CMS Integration 857

http://www.microsoft.com/en-us/download/details.aspx?id=21599
http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://www.microsoft.com/en-us/download/details.aspx?id=21599
http://www.microsoft.com/en-us/download/details.aspx?id=11774

Figure 388: Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.
5. Select SQLServer in the driver Type drop-down menu.
6. Click the Add Files button and select the Microsoft SQL Server driver file that you downloaded.

The SQL Server driver file is called sqljdbc.jar.
7. Select the most appropriate Driver class.
8. Click the OK button to finish the data source configuration.
9. Continue on to configure your Microsoft SQL Server connection.

How to Configure a Microsoft SQL Server Connection

The support to configure a Microsoft SQL Server connection is available in the Enterprise edition only.

To configure a connection to a Microsoft SQL Server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Databases and CMS Integration 858

Figure 389: Connection Configuration Dialog Box

3. Enter a unique name for the connection.
4. Select the SQL Server data source in the Data Source drop-down menu.
5. Enter the connection details.

a) Enter the URL of the SQL Server server.
If you want to connect to the server using Windows integrated authentication, you must add
;integratedSecurity=true to the end of the URL. The URL will look like this:

jdbc:sqlserver://localhost;instanceName=SQLEXPRESS;integratedSecurity=true;

Note: For integrated authentication, leave the User and Password fields empty.
b) Enter the user name for the connection to the SQL Server.
c) Enter the password for the connection to the SQL Server.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Microsoft SQL Server Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source
Explorer view, depending on the node in which it is invoked:

Refresh
Performs a refresh on the selected node.

Disconnect (available on Connection nodes)
Closes the current database connection. If a table is already open, you are warned to close it before
proceeding.

Configure Database Sources (available on Connection nodes)
Opens the Data Sources preferences page where you can configure both data sources and connections.

Edit (available on Table nodes)
Opens the selected table in the Table Explorer view.

Databases and CMS Integration 859

Export to XML (available on Table nodes)
Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import
from Database chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the resource level nodes in
Microsoft SQL Server connections include the following additional contextual menu action:

 XML Schema Repository Level Nodes

Register
Opens a dialog box for adding a new schema file in the DB XML repository. In this dialog box, you enter
a collection name and the necessary schema files. Schema dependencies management can be done by
using the Add and Remove buttons.

 Schema Level Nodes

Add
Adds a new schema to the XML Schema files.

Unregister
Removes the selected schema from the XML Schema Repository.

View
Opens the selected schema in Oxygen XML Developer.

Oracle Database Connections

The Oracle database is a common relational type of database system. Oxygen XML Developer comes with built-
in support for the 11g version of the database system. The Oracle database also includes a Oracle XML DB
component that adds native XML support. Oxygen XML Developer allows you to browse Oracle repositories in
the Data Source Explorer view, open tables in the Table Explorer view, and perform various operations on the
resources in the repository.

Figure 390: Oracle Database Connection

Related Information:
Using XQuery with Oracle XML DB

Configuring an Oracle 11g Database Connection

To configure the support for a Oracle 11g database, follow this procedure:

1. Go to http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and
download the Oracle 11g JDBC driver called ojdbc6.jar.

Databases and CMS Integration 860

http://docs.oracle.com/cd/B28359_01/appdev.111/b28369/xdb_xquery.htm#top
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

2. Configure Oracle 11g Data Source drivers.
3. Configure an Oracle 11g Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure Oracle 11g Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to an Oracle 11g server, follow these steps:

1. Go to http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and
download the Oracle 11g JDBC driver called ojdbc6.jar.

2. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Figure 391: Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.
5. Select Oracle in the driver Type drop-down menu.
6. Click the Add Files button and select the Oracle driver file that you downloaded.

The Oracle driver file is called ojdbc5.jar.
7. Select the most appropriate Driver class.
8. Click the OK button to finish the data source configuration.
9. Continue on to configure your Oracle connection.

How to Configure an Oracle 11g Connection

Available in the Enterprise edition only.

To configure a connection to an Oracle 11g server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.

Databases and CMS Integration 861

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 392: Connection Configuration Dialog Box

3. Enter a unique name for the connection.
4. Select the Oracle 11g data source in the Data Source drop-down menu.
5. Enter the connection details.

a) Enter the URL of the Oracle server.
b) Enter the user name for the connection to the Oracle server.
c) Enter the password for the connection to the Oracle server.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Oracle Database Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source
Explorer view, depending on the node in which it is invoked:

Refresh
Performs a refresh on the selected node.

Disconnect (available on Connection nodes)
Closes the current database connection. If a table is already open, you are warned to close it before
proceeding.

Configure Database Sources (available on Connection nodes)
Opens the Data Sources preferences page where you can configure both data sources and connections.

Edit (available on Table nodes)
Opens the selected table in the Table Explorer view.

Export to XML (available on Table nodes)
Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import
from Database chapter).

Databases and CMS Integration 862

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the various nodes in Oracle
database connections include the following additional contextual menu actions:

 XML Schema Repository Level Nodes

Register
Opens a dialog box for adding a new schema file in the XML repository. To add an XML Schema, enter the
schema URI and location on your file system. Local scope means that the schema is visible only to the
user who registers it. Global scope means that the schema is public.

Note: Registering a schema may involve dropping/creating types. Hence you need type-related privileges
such as DROP TYPE, CREATE TYPE, and ALTER TYPE. You need privileges to delete and register the XML
schemas involved in the registering process. You need all privileges on XMLType tables that conform to
the registered schemas. For XMLType columns, the ALTER TABLE privilege is needed on corresponding
tables. If there are schema-based XMLType tables or columns in other database schemas, you need
privileges such as the following:

• CREATE ANY TABLE
• CREATE ANY INDEX
• SELECT ANY TABLE
• UPDATE ANY TABLE
• INSERT ANY TABLE
• DELETE ANY TABLE
• DROP ANY TABLE
• ALTER ANY TABLE
• DROP ANY INDEX

To avoid having to grant all these privileges to the schema owner, Oracle recommends that the registration
be performed by a DBA if there are XML schema-based XMLType table or columns in other user database
schemas.

 XML Repository Level Nodes

Add container
Adds a new child container to the current one.

Add resource
Adds a new resource to the folder.

 Container Level Nodes

Add container
Adds a new child container to the current one.

Add resource
Adds a new resource to the folder.

Delete
Deletes the current container.

Properties
Shows various properties of the current container.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default

Databases and CMS Integration 863

application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Rename
Renames the current resource

Move
Moves the current resource to a new container (also available through drag and drop).

Delete
Deletes the current container.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Properties
Shows various properties of the current container.

Compare
Compares two selected resources using the Compare Files tool.

PostgreSQL Database Connections

Oxygen XML Developer includes support for PostgreSQL database connections. Oxygen XML Developer allows
you to browse the structure of a PostgreSQL database in the Data Source Explorer view, open tables in the Table
Explorer view, and perform various operations on the resources in the repository.

Figure 393: PostgreSQL Database Connection

Configuring a PostgreSQL Database Connection

To configure the support for a PostgreSQL database, follow this procedure:

1. Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3 JDBC3 driver.
2. Configure PostgreSQL Data Source drivers.
3. Configure a PostgreSQL Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Databases and CMS Integration 864

http://jdbc.postgresql.org/download.html

How to Configure PostgreSQL 8.3 Data Source Drivers

To configure a data source for connecting to a PostgreSQL server, follow these steps:

1. Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3 JDBC3 driver.
2. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

4. Enter a unique name for the data source.
5. Select PostgreSQL in the driver Type drop-down list.
6. Click the Add Files button and select the PostgreSQL driver file that you downloaded.

The PostgreSQL driver file is called postgresql-8.3-603.jdbc3.jar.
7. Select the most appropriate Driver class.
8. Click the OK button to finish the data source configuration.
9. Continue on to configure your PostgreSQL connection.

How to Configure a PostgreSQL 8.3 Connection

To configure a connection to a PostgreSQL 8.3 server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 394: Connection Configuration Dialog Box

3. Enter a unique name for the connection.
4. Select the PostgreSQL 8.3 data source in the Data Source drop-down menu.
5. Enter the connection details.

a) Enter the URL of the PostgreSQL 8.3 server.
b) Enter the user name for the connection to the PostgreSQL 8.3 server.
c) Enter the password for the connection to the PostgreSQL 8.3 server.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Databases and CMS Integration 865

http://jdbc.postgresql.org/download.html

PostgreSQL Contextual Menu Actions

General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source
Explorer view, depending on the node in which it is invoked:

Refresh
Performs a refresh on the selected node.

Disconnect (available on Connection nodes)
Closes the current database connection. If a table is already open, you are warned to close it before
proceeding.

Configure Database Sources (available on Connection nodes)
Opens the Data Sources preferences page where you can configure both data sources and connections.

Edit (available on Table nodes)
Opens the selected table in the Table Explorer view.

Export to XML (available on Table nodes)
Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import
from Database chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view, the resource level nodes in
PostgreSQL connections include the following additional contextual menu action:

 Resource Level Nodes

Compare
Compares two selected resources using the Compare Files tool.

Berkeley DB XML Database Connections

Oxygen XML Developer includes support for Berkeley DB XML database connections. Oxygen XML Developer
allows you to browse the structure of a Berkeley DB XML database in the Data Source Explorer view and perform
various operations on the resources in the repository.

Oracle Berkeley DB XML is an open source, embeddable XML database with XQuery-based access to documents
stored in containers and indexed based on their content. It is built on top of the Oracle Berkeley DB and inherits
its features and attributes, along with native XML support. A detailed description can be found at: http://
www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html.

Databases and CMS Integration 866

http://www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html

Figure 395: Berkeley DB XML Connection

Configuring a Berkeley DB XML Database Connection

Follow this procedure to configure the support for a Berkeley DB XML database:

1. Configure Berkeley DB XML Data Source drivers.
2. Configure a Berkeley DB XML Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure Berkeley DB XML Data Source Drivers

For this procedure, you need to already have a Berkeley DB XML database installed on your system.

Oxygen XML Developer supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. To configure a data
source for a Berkeley DB XML database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Data Sources panel.
3. Enter a unique name for the data source.
4. Select Berkeley DBXML from the driver Type drop-down menu.
5. Click the Add Files button to add the Berkeley DB driver files.

The driver files for the Berkeley DB database (and their locations) are as follows:

• db.jar (check for it in [DBXML_DIR]/lib or [DBXML_DIR]/jar)
• dbxml.jar (check for it in [DBXML_DIR]/lib or [DBXML_DIR]/jar)

Where [DBXML_DIR] is the Berkeley DB XML database root directory. For example, in Windows it is: C:
\Program Files\Oracle\Berkeley DB XML <version>.

6. Click the OK button to finish the data source configuration.
7. Continue on to configure your Berkeley DB XML connection.

How to Configure a Berkeley DB XML Connection

Oxygen XML Developer supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. To configure a
connection to a Berkeley DB XML database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured Berkeley data source from the Data Source drop-down menu.
5. Enter the connection details.

Databases and CMS Integration 867

a) Set the path to the Berkeley DB XML database directory in the Environment home directory field. Use a
directory with write access. DO NOT use the installation directory where Berkeley DB XML is installed if
you do not have write access to that directory.

b) Select the Verbosity level: DEBUG, INFO, WARNING, or ERROR.
c) Optionally, you can select the Join existing environment checkbox.

If selected, an attempt is made to join an existing environment in the specified home directory and all the
original environment settings are preserved. If that fails, try reconfiguring the connection with this option
unchecked.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Berkeley DB XML Contextual Menu Actions

While browsing Berkeley DB XML connections in the Data Source Explorer view, the various nodes include the
following contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

New Collection
Opens a Container configuration dialog box that allows you to adds a new container in the repository.

Figure 396: Container Configuration Dialog Box

This dialog box allows you to configure the following:

• Name - The name of the new container.
• Container type - At creation time, every container must have a type defined for it. This container type

identifies how XML documents are stored in the container. As such, the container type can only be
determined at container creation time. You cannot change it when subsequent container opens. You
can select one of the following types:

• Node container - XML documents are stored as individual nodes in the container. Each record in
the underlying database contains a single leaf node, its attributes and attribute values (if any), and
its text nodes (if any). Berkeley DB XML also keeps the information it requires to reassemble the
document from the individual nodes stored in the underlying databases. This is the default selection
and is the preferred container type.

• Whole document container - The container contains entire documents. The documents are stored
without any manipulation of line breaks or whitespace.

• Allow validation - If selected, documents will be validated when they are loaded into the container. The
default behavior is to not validate documents.

Databases and CMS Integration 868

• Index nodes - If selected, indices for the container will return nodes rather than documents. The
default is to index at the document level. This property has no meaning if the container type is Whole
document container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Container Level Nodes

Import Files
Allows you to add a new file on the connection, in the current folder.

Export
Allows you to export the folder on the remote connection to a local folder.

Cut
Removes the current selection and places it in the clipboard.

Paste
Pastes the copied selection.

Rename
Renames the current resource

Delete
Deletes the current container.

Edit indices
Opens a Container Indices dialog box that allows you to configure indices properties for the selected
Berkeley container.

Databases and CMS Integration 869

Figure 397: Container Indices Dialog Box

This dialog box allows you to configure the following properties:

• Granularity - A measure of the level of details of your data in the database. You can select one of the
following:

• Document level - Good option for retrieving large documents.
• Node level - Good option for retrieving nodes from within documents.

• Node - The name of the node.
• Namespace - The index namespace.
• Index type:

• Uniqueness - Indicates whether or not the indexed value must be unique within the container.
• Path type - Drop-down menu that allows you to select from the following:

• node - Indicates that you want to index a single node in the path.
• edge - Indicates that you want to index the portion of the path where two nodes meet.

• Node type - Drop-down menu that allows you to select from the following:

• element - An element node in the document content.
• attribute - An attribute node in the document content.
• metadata - A node found only in the metadata content of a document.

• Key type - Drop-down menu that allows you to select from the following:

• equality - Improves the performances of tests that look for nodes with a specific value.
• presence - Improves the performances of tests that look for the existence of a node regardless

of its value.
• substring - Improves the performance of tests that look for a node whose value contains a given

sub-string.
• Syntax - The syntax describes the type of data the index contains and is mostly used to determine

how indexed values are compared. The default value is string.

Databases and CMS Integration 870

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Cut
Removes the current selection and places it in the clipboard.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

Debugging with Berkeley DB XML

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is
supported in the Oxygen XML Developer XQuery Debugger. The same restrictions and peculiarities apply for the
Berkeley debugger as for the MarkLogic debugger.

eXist Database Connections

Oxygen XML Developer includes support for eXist database connections. Oxygen XML Developer allows you to
browse the structure of a eXist database in the Data Source Explorer view and perform various operations on the
resources in the repository.

Databases and CMS Integration 871

Figure 398: eXist Database Connection

Configuring an eXist Database Connection

There are two ways to configure the support for an eXist database:

1. Use the dedicated Create eXist-db XML connection connection wizard.

a. Open the Preferences dialog box (Options > Preferences), go to Data Sources and click the Create eXist-db
XML connection link.

b. Enter your connection details in the connection wizard and click OK.

Important: To create an eXist connection using this wizard, Oxygen XML Developer expects the exist/
webstart/exist.jnlp path to be accessible at the provided Host and Port.

c. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened
by selecting it from the Window > Show View menu) or switch to the Database perspective.

2. Use the Data Sources preferences page to configure your connection.

a. Configure eXist Data Source drivers.
b. Configure an eXist Connection.
c. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened

by selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure eXist Data Source Drivers

For this procedure, you need to already have an eXist database server installed.

Oxygen XML Developer supports eXist database server versions up to and including version 3.0. To configure a
data source for an eXist database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Data Sources panel.
3. Enter a unique name for the data source.
4. Select eXist from the driver Type drop-down menu.
5. Click the Add Files button to add the eXist driver files.

The following driver files should be added and they are found in the installation directory of the eXist database
server. Make sure you copy the files from the installation of the eXist server where you want to connect from
Oxygen XML Developer.

• exist.jar
• lib/core/xmldb.jar
• lib/core/xmlrpc-client-3.1.x.jar
• lib/core/xmlrpc-common-3.1.x.jar

Databases and CMS Integration 872

• lib/core/ws-commons-util-1.0.x.jar
• lib/core/slf4j-api-1.x.x.jar (if available)
• lib/core/slf4j-log4j12-1.x.x.jar (if available)

The version number from the driver file names may be different for your eXist server installation.
6. Click the OK button to finish the data source configuration.
7. Continue on to configure your eXist connection.

To watch our video demonstration about running XQuery against an eXist XML database, go to https://
www.oxygenxml.com/demo/eXist_Database.html.

How to Configure an eXist Connection

To configure a connection to an eXist database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured eXist data source from the Data Source drop-down menu.
5. Enter the connection details.

a) Set the URI to the installed eXist engine in the XML DB URI field.
b) Set the user name in the User field.
c) Set the password in the Password field.
d) Enter the start collection in the Collection field.

eXist organizes all documents in hierarchical collections. Collections are like directories. They are used to
group related documents together. This text field allows the user to set the default collection name.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.
To watch our video demonstration about running XQuery against an eXist XML database, go to https://
www.oxygenxml.com/demo/eXist_Database.html.

eXist Contextual Menu Actions

While browsing eXist database connections in the Data Source Explorer view, the various nodes include the
following contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Container Level Nodes

New File
Creates a new file on the connection, in the current folder.

New Collection
Creates a new collection on the connection.

Databases and CMS Integration 873

https://www.oxygenxml.com/demo/eXist_Database.html
https://www.oxygenxml.com/demo/eXist_Database.html
https://www.oxygenxml.com/demo/eXist_Database.html
https://www.oxygenxml.com/demo/eXist_Database.html

Import Folders
Imports folders on the server.

Import Files
Allows you to add a new file on the connection, in the current folder.

Export
Allows you to export the folder on the remote connection to a local folder.

Cut
Removes the current selection and places it in the clipboard.

Paste
Pastes the copied selection.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Save As
Allows you to save the selected resource as a file on disk.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Databases and CMS Integration 874

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

MarkLogic Database Connections

Oxygen XML Developer Enterprise edition includes support for MarkLogic database connections. Once you
configure a MarkLogic connection, you can use the Data Source Explorer view to display all the application
servers that are configured on the MarkLogic server. You can expand each application server and view all of its
configured modules, and the Data Source Explorer view allows you to open and edit these modules.

Note: To browse modules located in a database, directory properties must be associated with them. These
directory properties are generated automatically if the directory creation property of the database is set to
automatic. If this property is set to manual or manual-enforced, add the directory properties of the modules
manually, using the XQuery function xdmp:directory-create(). For example, for two documents with the /
code/modules/main.xqy and /code/modules/imports/import.xqy IDs, run the following query:

(xdmp:directory-create('/code/modules/'), xdmp:directory-create('/code/modules/
imports/'))

For more information about directory properties, go to: http://blakeley.com/blogofile/2012/03/19/directory-
assistance/.

MarkLogic and XQuery

MarkLogic connections can be used in conjunction with XQuery scripts to debug and solve problems with XQuery
transformations. XQuery modules can also be validated using a MarkLogic server to allow to you to spot possible
issues without the need of actually executing the XQuery script.

When debugging XQuery files with MarkLogic, you can use the Data Source Explorer view to open the files from
the application server that is involved in the debugging process. By using the Data Source Explorer view, any
imported modules are better identified by the MarkLogic server. You can also use step actions and breakpoints in
the modules to help identify problems.

Modules Container

For each Application server (for example: Bill (HTTP port:8060)), you have access to the XQuery modules that are
visible to that server. When editing, executing, or debugging XQuery it is recommended to open the XQuery files
from this Modules container.

Note: You can also manage resources for a MarkLogic database through a WebDAV connection, although it is
not recommended if you work with XQuery files since imported modules may not be resolved correctly.

Requests Container

Each MarkLogic application server includes a Requests container. In this container, Oxygen XML Developer
displays both queries that are stopped for debugging purposes and queries that are still running. To clean up the
entire Requests container at the end of your session, right-click it and use the Cancel all requests action.

Databases and CMS Integration 875

http://blakeley.com/blogofile/2012/03/19/directory-assistance/
http://blakeley.com/blogofile/2012/03/19/directory-assistance/

Figure 399: MarkLogic Connection in Data Source Explorer

Configuring a MarkLogic Database Connection

Note that this feature is available in Oxygen XML Developer Enterprise edition only.

Follow this procedure to configure the support for a MarkLogic database connection:

1. Download the MarkLogic driver from MarkLogic Community site.
2. Configure MarkLogic Data Source drivers.
3. Configure a MarkLogic Connection.
4. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Related Information:
MarkLogic Development in Oxygen XML Developer on page 877

How to Configure MarkLogic Data Source Drivers

Available in the Enterprise edition only.

Note: Oxygen XML Developer supports MarkLogic version 4.0 or later.

To configure a data source for MarkLogic, follow this procedure:

1. Download the XCC Java distribution zip file from: http://developer.marklogic.com/products/xcc.
2. Unzip the downloaded archive.
3. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
4. Click the New button in the Data Sources panel.
5. Enter a unique name for the data source.
6. Select MarkLogic from the driver Type drop-down list.
7. Click the Add Files button and select the MarkLogic driver file from the lib folder of the archive that you

downloaded and unzipped. The driver file name is marklogic-xcc-{server_version}.jar, where
{server_version} is the MarkLogic server version.

8. Click the OK button to finish the data source configuration.
9. Continue on to configure your MarkLogic Connection.

How to Configure a MarkLogic Connection

Available in the Enterprise edition only.

Note: Oxygen XML Developer supports MarkLogic version 4.0 or later.

To configure a connection to a MarkLogic database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.

Databases and CMS Integration 876

http://community.marklogic.com/download
http://developer.marklogic.com/products/xcc

2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured MarkLogic data source from the Data Source drop-down menu.
5. Enter the connection details.

a) The host name or IP address of the installed MarkLogic engine in the XDBC Host field.
Oxygen XML Developer uses XCC connector to interact with MarkLogic XDBC server and requires the basic
authentication schema to be set. Starting with version MarkLogic 4.0 the default authentication method
when you create an HTTP or WebDAV Server is digest, so make sure to change it to basic.

b) Set the port number of the MarkLogic engine in the Port field. A MarkLogic XDBC application server must
be configured on the server on this port. This XDBC server will be used to process XQuery expressions
against the server. Later, if you want to change the XDBC server, instead of editing the configuration just
use the Use it to execute queries action from Data Source Explorer.

c) Set the user name to access the MarkLogic engine in the User field.
d) Set the password to access the MarkLogic engine in the Password field.
e) Optionally, in the WebDAV URL field, set the URL used for browsing the MarkLogic database in the Data

Source Explorer view.
The Database field specifies the database for which the XQuery expressions are executed. If you set this
option to default, the database associated to the application server of the configured port is used.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

MarkLogic Development in Oxygen XML Developer

The Oxygen XML Developer support for MarkLogic includes features designed for developers, such as debugging
XQuery transformations, remote and collaborative debugging, XQuery editing and validation, and an XQuery
builder that helps to improve productivity.

Working with XQuery Files

MarkLogic supports working with XQuery files to create queries over stored XML content. You can open an
XQuery file, configure a transformation scenario to match your MarkLogic connection, write the XQuery, and then
execute it.

When editing XQuery modules stored on the MarkLogic server, the Outline view collects and displays all the
functions from all imported modules. The Content Completion Assistant also presents all of these functions along
with the latest built-in XQuery functions in accordance with the server version.

When developing queries for MarkLogic, it is best to open the resources from the Data Source Explorer view.
When you execute or debug XQuery files opened from this view, imported modules can be resolved better by
the MarkLogic server. Another advantage is that validation is automatically performed on the MarkLogic server,
including any imported modules.

XQuery Debugging

Oxygen XML Developer allows you to use MarkLogic connections to debug real applications that use XQuery (for
example, web applications that trigger XQuery executions). By setting the server in debug mode, you can intercept
all the XQuery scripts that run on that server. Oxygen XML Developer connects to the MarkLogic server, shows
you the running XQuery scripts, and allows you to debug them. The remote debugging support also allows you to
debug collaboratively. Multiple users can participate in the same debugging session. You can start a debugging
session and another user can continue it, and vice versa.

Working with Modules

MarkLogic has a concept of two types of XQuery modules, library and main modules. A library module is used
to define functions. Library modules cannot be evaluated directly. They are imported, either from other library
modules or from main modules. A main module is used as an entry point that can be executed as an XQuery
program. For more information on these types of modules, see XQuery Library Modules and Main Modules.

Databases and CMS Integration 877

https://docs.marklogic.com/guide/app-dev/import_modules#id_45509

When working with library modules, you need to create a validation scenario and associate it with the module. In
the validation scenario you need to specify a main module as the entry point for validation. The modules need
to be deployed on a MarkLogic server because Oxygen XML Developer will request the server to validate the
modules.

To validate library modules stored on a MarkLogic server, follow these steps:

1. Configure a MarkLogic database connection.
2. Expand the MarkLogic connection in the Data Source Explorer view and open the library modules. The main

module must also be opened from the Data Source Explorer view.
3. Configure a validation scenario for each library module. Specify the main module in the URL of the file to

validate field.

Result: Validation is done on the server that contains the main module. The main module and all other library
modules involved in the validation must be saved. Otherwise, the server will validate what was saved on the
server, without the uncommitted changes. Also, the Content Completion Assistant and the Outline view should
now present the functions from all the modules.

Related Information:
Debugging with MarkLogic on page 878
Configuring a MarkLogic Database Connection on page 876

Debugging with MarkLogic

Oxygen XML Developer includes support for debugging XQuery transformations that are executed against a
MarkLogic database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source and a MarkLogic connection.
2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Developer

accesses. On the server side, debugging must be activated in the XDBC server and in the Task Server section
of the server control console (the switch debug allow). If the debugging is not activated, the MarkLogic server
reports a DBG-TASKDEBUGALLOW error.

Note: An XDBC application server must be running to connect to the MarkLogic server and this XDBC server
will be used to process XQuery expressions against the server. You can change the XDBC application server
that Oxygen XML Developer uses to process XQuery expressions by selecting the Use it to execute queries
action from the contextual menu in the Data Source Explorer view.

3. Open the XQuery file and start the debugging process.

• If you want to debug an XQuery file stored on the MarkLogic server, we recommend you to use the Data
Source Explorer view and open the file from the application server that is involved in the debugging
process. This improves the resolving of any imported modules.

• The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you have a
MarkLogic validation scenario configured for the XQuery file, you can choose to debug the scenario directly.

• Otherwise, switch to the XQuery Debugger perspective, open the XQuery file in the editor, and select the
MarkLogic connection in the XQuery engine selector from the debug control toolbar.

For general information about how a debugging session is started and controlled, see the Working with the
Debugger section.

In a MarkLogic debugging session, you can use step actions and breakpoints to help identify problems. When you
add a breakpoint on a line where the debugger never stops, Oxygen XML Developer displays a warning message.
These warnings are displayed for breakpoints you add either in the main XQuery (which you can open locally or
from the server) or for breakpoints you add in any XQuery that is opened from the connection that participates in
the debugging session. For more information, see Using Breakpoints for Debugging Queries that Import Modules
with MarkLogic on page 879.

Remote Debugging with MarkLogic

Oxygen XML Developer allows you to debug remote applications that use XQuery (for example, web applications
that trigger XQuery executions). Oxygen XML Developer connects to a MarkLogic server, shows you the running

Databases and CMS Integration 878

XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the debugging
queries in the exact context of the application. You can also switch a server to debug mode to intercept all
XQuery scripts.

Oxygen XML Developer also supports collaborative debugging. This feature allows multiple users to participate in
the same debugging session. You can start a debugging session and at a certain point, another user can continue
it.

Important: When using the remote debugging feature, the HTTP and the XDBC servers involved in the debugging
session must have the same module configuration.

To watch our video demonstration about the XQuery debugger for MarkLogic, go to https://www.oxygenxml.com/
demo/XQueryDebuggerforMarkLogic.html.

Related Information:
MarkLogic Development in Oxygen XML Developer on page 877
Configuring a MarkLogic Database Connection on page 876

Using Breakpoints for Debugging Queries that Import Modules with MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place breakpoints in
the modules. When starting a new debugging session, make sure that the modules that you will debug are already
opened in the editor. This is necessary so that the breakpoints in all the modules will be considered. Also, make
sure that there are no other opened modules that are not involved in the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view, open all the modules from the Modules container of the XDBC application
server that performs the debugging.

2. Set breakpoints in the module as needed.
3. Continue debugging the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view and make sure there are no older breakpoints (set on resources that are not part
of the current debugging context).

• Make sure you open the modules from the context of the application server that does the debugging and place
breakpoints there.

Related Information:
MarkLogic Database Connections on page 875
MarkLogic Development in Oxygen XML Developer on page 877

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-

ml' (inherited from MarkLogic 3.2), '1.0-ml', and '1.0'.
• All declared variables are presented as strings. The Value column of the Variables view contains the

expression from the variable declaration. It can be evaluated by copying the expression with the Copy value
action from the contextual menu of the Variables view and pasting it in the XWatch view.

• There is no support for output to source mapping.
• There is no support for showing the trace.
• You can only set breakpoints in imported modules in one of the following cases:

• When you open the module from the context of the application server involved in the debugging, using the
Data Source Explorer view.

• When the debugger automatically opens the modules in the Editor.
• No breakpoints are set in modules from the same server that are not involved in the current debugging

session.
• No support for profiling when an XQuery transformation is executed in the debugger.

Databases and CMS Integration 879

https://www.oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html
https://www.oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html

MarkLogic Contextual Menu Actions

While browsing MarkLogic connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Container Level Nodes

Enable Debug Mode
Switches the server to a debugging mode. For more information, see MarkLogic debugging sessions.

Use it to Execute Queries
The server will be used to process XQuery expressions against it.

Refresh
Performs a refresh on the selected node.

 Module or Folder Level Nodes

Export
Allows you to export the folder on the remote connection to a local folder.

Refresh
Performs a refresh on the selected node.

 Requests Level Nodes

Refresh
Performs a refresh on the selected node.

Cancel all requests
Cancels all queries that are either running or stopped on the application server. You can use this action to
clean up the entire Requests container at the end of your sessions.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Databases and CMS Integration 880

Refresh
Performs a refresh on the selected node.

Compare
Compares two selected resources using the Compare Files tool.

Related Information:
Configuring a MarkLogic Database Connection on page 876
MarkLogic Development in Oxygen XML Developer on page 877
Debugging with MarkLogic on page 878

Documentum xDB (X-Hive/DB) 10 Database Connections

Oxygen XML Developer includes support for Documentum xDB (X-Hive/DB) 10 database connections. Oxygen
XML Developer allows you to browse the structure of a Documentum xDB (X-Hive/DB) 10 database in the Data
Source Explorer view and perform various operations on the resources in the repository.

Figure 400: Documentum xDB (X-Hive/DB) 10 Connection

Configuring a Documentum xDB (X-Hive/DB) 10 Database Connection

Follow this procedure to configure the support for a Documentum xDB (X-Hive/DB) 10 database:

1. Configure Documentum xDB Data Source drivers.
2. Configure a Documentum xDB Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure Documentum xDB (X-Hive/DB) 10 Data Source Drivers

Available in the Enterprise edition only. For this procedure, you need to already have a Documentum xDB server
installed.

To configure a data source for Documentum xDB (X-Hive/DB) 10, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Data Sources panel.
3. Enter a unique name for the data source.

Databases and CMS Integration 881

4. Select Documentum xDB from the driver Type drop-down menu.
5. Click the Add button to add the driver files.

The driver files for the Documentum xDB (X-Hive/DB) 10 database are found in the Documentum xDB (X-Hive/
DB) 10 lib directory from the server installation folder:

• antlr-runtime.jar
• aspectjrt.jar
• icu4j.jar
• xhive.jar
• google-collect.jar

6. Click the OK button to finish the data source configuration.
7. Continue on to configure your Documentum xDB (X-Hive/DB) 10 connection.

How to Configure an Documentum xDB (X-Hive/DB) 10 Connection

To configure a connection to a Documentum xDB (X-Hive/DB) 10 database, follow these steps:

Note: The bootstrap type of X-Hive/DB connections is not supported in Oxygen XML Developer. The following
procedure explains the xhive:// protocol connection type.

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured data source from the Data Source drop-down menu.
5. Enter the connection details.

a) Set the URL property of the connection in the URL field.
If the property is a URL of the form xhive://host:port, the Documentum xDB (X-Hive/DB) 10 connection will
attempt to connect to a Documentum xDB (X-Hive/DB) 10 server running behind the specified TCP/IP port.

b) Set the user name to access the Documentum xDB (X-Hive/DB) 10 engine in the User field.
c) Set the password to access the Documentum xDB (X-Hive/DB) 10 engine in the Password field.
d) Set the name of the database to access from the Documentum xDB (X-Hive/DB) 10 engine in the Database

field.
e) Select the Run XQuery in read / write session (with committing) checkbox if you want to end the session

with a commit. Otherwise, the session ends with a rollback.
6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Documentum xDB (X-Hive/DB) 10 Contextual Menu Actions

While browsing Documentum xDB (X-Hive/DB) 10 connections in the Data Source Explorer view, the various
nodes include the following contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

Add Library
Allows you to add a new library.

Insert XML Instance
Allows you to add a new XML resource directly into the database root. See Documentum xDB (X-Hive/DB)
10 Parser Configuration for more details.

Databases and CMS Integration 882

Insert non-XML Instance
Allows you to add a new non-XML resource directly in the database root.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Catalog Level Nodes

Add AS Models
Allows you to add a new abstract schema model to the selected catalog.

Export
Allows you to export the folder on the remote connection to a local folder.

Set Default Schema
Allows you to set a default DTD to be used for parsing. It is not possible to set a default XML Schema.

Clear Default Schema
Allows you to clear the default DTD. The action is available only if there is a DTD set as default.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Container (Library) Level Nodes

New File
Creates a new file on the connection, in the current folder.

Add Library
Allows you to add a new library.

Import Folders
Imports folders on the server.

Add Local Catalog
Adds a catalog to the selected library. By default, only the root-library has a catalog, and all models are
stored there.

Insert XML Instance
Allows you to add a new XML resource directly into the database root. See Documentum xDB (X-Hive/DB)
10 Parser Configuration for more details.

Insert non-XML Instance
Allows you to add a new non-XML resource directly in the database root.

Export
Allows you to export the folder on the remote connection to a local folder.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Databases and CMS Integration 883

Paste
Pastes the copied selection.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Save As
Allows you to save the selected resource as a file on disk.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Add AS model
Allows you to add an XML schema to the selected XML resource.

Set AS model
Allows you to set an active AS model for the selected XML resource.

Clear AS model
Allows you to clear the active AS model of the selected XML resource.

Properties
Displays the resource properties. Available only for XML resources.

Set Default Schema
Allows you to set the selected DTD to be used as default for parsing. The action is available only for DTD.

Clear Default Schema
Allows you to unset the selected DTD. The action is available only if the selected DTD is the current default
to be used for parsing.

Databases and CMS Integration 884

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

Documentum xDB (X-Hive/DB) 10 Parser Configuration for Adding XML Instances

When an XML instance document is added to a Documentum xDB (X-Hive/DB) 10 connection or library, it is
parsed with an internal XML parser of the database server. The following options are available for configuring this
parser:

• DOM Level 3 parser configuration parameters. More about each parameter can be found here: DOM Level 3
Configuration.

• Documentum xDB (X-Hive/DB) 10 specific parser parameters (for more information, consult the Documentum
xDB (X-Hive/DB) 10 manual):

• xhive-store-schema - If selected, the corresponding DTD or XML schemas are stored in the catalog during
validated parsing.

• xhive-store-schema-only-internal-subset - Stores only the internal sub-set of the document (not an
external sub-set). This option modifies the xhive-store-schema (only has a function when that parameter is
set to true, and when a DTD is involved). Select this option if you only want to store the internal sub-set of
the document (not the external sub-set).

• xhive-ignore-catalog - Ignores the corresponding DTD and XML schemas in the catalog during validated
parsing.

• xhive-psvi - Stores psvi information about elements and attributes. Documents parsed with this feature
turned on give access to psvi information and enable support of data types by XQuery queries.

• xhive-sync-features - With this convenience setting turned on, parameter settings of XhiveDocumentIf
are synchronized with the parameter settings of LSParser. Note that parameter settings xhive-psvi and
schema-location are always synchronized.

Troubleshooting Documentum xDB

Question:

I am able to access my XML Database in the Data Source Explorer and open files for reading but when I try to
save changes to a file back into the database, I receive the following error: "Cannot save the file. DTD factory
class org.apache.xerces.impl.dv.dtd.DTDDVFactoryImpl does not extend from DTDDVFactory". How can I fix
this?

Answer:

xhive.jar contains a MANIFEST.MF with a classpath:

Class-Path: core/antlr-runtime.jar core/aspectjrt.jar core/fastutil-shrinked.jar
 core/google-collect.jar core/icu4j.jar core/lucene-regex.jar core/lucene.jar
 core/serializer.jar core/xalan.jar core/xercesImpl.jar

Since the driver was configured to use xhive.jar directly from the xDB installation (where many other JARS
are located), core/xercesImpl.jar from the xDB installation directory is loaded even though it is not
specified in the list of JARS from the data source driver configuration (it is in the classpath from xhive.jar -
MANIFEST.MF). A simple workaround for this issue is to copy ONLY the JAR files used in the driver configuration
to a separate folder and configure the data source driver to use them from there.

Databases and CMS Integration 885

http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#DOMConfiguration

MySQL Database Connections

Oxygen XML Developer includes support for MySQL database connections. Oxygen XML Developer allows you to
browse the structure of a SQL Server database in the Data Source Explorer view, open tables in the Table Explorer
view, and perform various operations on the resources in the repository.

Configuring a MySQL Database Connection

To configure the support for a MySQL database, follow this procedure:

1. Configure MySQL Data Source drivers.
2. Configure a MySQL Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure MySQL Data Source Drivers

To connect to a MySQL server, you need to create a generic JDBC type data source based on the MySQL JDBC
driver available on the MySQL website.

To configure this data source, follow these steps:

1. Go to https://www.oxygenxml.com/database_drivers.html and download the appropriate MySQL driver.
2. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Figure 401: Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.
5. Select Generic JDBC in the driver Type drop-down list.
6. Click the Add Files button and select the MySQL driver file that you downloaded.

The driver file for the MySQL server is called mysql-com.jar.
7. Select the most appropriate Driver class.
8. Click the OK button to finish the data source configuration.

Databases and CMS Integration 886

http://www.mysql.com/downloads/connector/j/
http://www.mysql.com/downloads/connector/j/
https://www.oxygenxml.com/database_drivers.html

9. Continue on to configure your MySQL connection.

How to Configure a MySQL Connection

To configure a connection to a MySQL server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Figure 402: Connection Configuration Dialog Box

3. Enter a unique name for the connection.
4. Select the MySQL data source in the Data Source drop-down list.
5. Enter the connection details.

a) Enter the URL of the MySQL server.
b) Enter the user name for the connection to the MySQL server.
c) Enter the password for the connection to the MySQL server.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

Generic JDBC Database Connections

Oxygen XML Developer includes support for Generic JDBC database connections.

Configuring a Generic JDBC Database Connection

To configure the support for a generic JDBC database, follow this procedure:

1. Configure Generic JDBC Data Source drivers.
2. Configure a Generic JDBC Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure Generic JDBC Data Source Drivers

Starting with version 17, Oxygen XML Developer comes bundled with Java 8, which does not provide built-in
access to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC bridge
or use a platform-independent distribution of Oxygen XML Developer along with a Java VM version 7 or 6.

Databases and CMS Integration 887

To configure a generic JDBC data source, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Data Sources panel.
3. Enter a unique name for the data source.
4. Select Generic JDBC in the driver Type drop-down list.
5. Add the driver file(s) using the Add Files button.
6. Select the most appropriate Driver class.
7. Click the OK button to finish the data source configuration.
8. Continue on to configure a generic JDBC connection.

How to Configure a Generic JDBC Connection

To configure a connection to a generic JDBC database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select the Generic JDBC data source in the Data Source drop-down menu.
5. Enter the connection details.

a) Enter the URL of the generic JDBC database, with the following
format:jdbc: <subprotocol>: <subname>.

b) Enter the user name for the connection to the generic JDBC database.
c) Enter the password for the connection to the generic JDBC database.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

JDBC-ODBC Database Connections

Oxygen XML Developer includes support for JDBC-ODBC database connections.

How to Configure a JDBC-ODBC Connection

Starting with version 17, Oxygen XML Developer comes bundled with Java 8, which does not provide built-in
access to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC bridge
or use a platform-independent distribution of Oxygen XML Developer along with a Java VM version 7 or 6.

To configure a connection to an ODBC data source, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.

The dialog box for configuring a database connection is displayed.

Databases and CMS Integration 888

Figure 403: Connection Configuration Dialog Box

3. Enter a unique name for the connection.
4. Select JDBC-ODBC Bridge in the Data Source drop-down list.
5. Enter the connection details.

a) Enter the URL of the ODBC source.
b) Enter the user name of the ODBC source.
c) Enter the password of the ODBC source.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

BaseX Database Connections

Oxygen XML Developer includes support for BaseX database connections using a WebDAV connection. BaseX
is a light-weight XML database engine and XQuery processor. Oxygen XML Developer allows you to browse the
structure of a BaseX database in the Data Source Explorer view and perform XQuery executions.

How to Configure a BaseX Connection

To configure a BaseX connection, follow these steps:

1. First of all, make sure the BaseX HTTP Server is started. For details about starting the BaseX HTTP server,
go to http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server. The configuration file for the HTTP server is
named .basex and is located in the BaseX installation directory. This file helps you to find out which port the
HTTP server using. The default port for BaseX WebDAV is 8984.

2. To ensure that everything is functioning, open a WebDAV URL inside a browser and check to see if it
works. For example, the following URL retrieves a document from a database named TEST: http://
localhost:8984/webdav/TEST/etc/factbook.xml.

3. Once you are sure that the BaseX WebDAV service is working, you can configure the WebDAV connection in
Oxygen XML Developer as described in How to Configure a WebDAV Connection on page 892. The WebDAV
URL should resemble this: http://{hostname }:{port}/webdav/. If the BaseX server is running on your
own machine and it has the default configuration, the data required by the WebDAV connection is:

• WebDAV URL: http://localhost:8984/webdav
• User: admin
• Password: admin

Databases and CMS Integration 889

http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server

4. Once the WebDAV connection is created, to view your connection, go to the Data Source Explorer view (if the
view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the
Database perspective.

BaseX Contextual Menu Actions

While browsing BaseX connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

New Folder
Creates a new folder on the connection.

Import Files
Allows you to add a new file on the connection, in the current folder.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Folder Level Nodes

New File
Creates a new file on the connection, in the current folder.

New Folder
Creates a new folder on the connection.

Import Folders
Imports folders on the server.

Import Files
Allows you to add a new file on the connection, in the current folder.

Export
Allows you to export the folder on the remote connection to a local folder.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Paste
Pastes the copied selection.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Databases and CMS Integration 890

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

Base X XQJ Connection

XQuery execution is possible in a BaseX connection through an XQJ connection.

BaseX XQJ Data Source

First of all, create an XQJ data source as described in How to Configure an XQJ Data Source on page 892.
The BaseX XQJ API-specific files that must be added in the configuration dialog box are xqj-api-1.0.jar,
xqj2-0.1.0.jar and basex-xqj-1.2.3.jar (the version names of the JAR file may differ). These libraries
can be downloaded from xqj.net/basex/basex-xqj-1.2.3.zip. As an alternative, you can also find the
libraries in the BaseX installation directory, in the lib sub-directory.

BaseX XQJ Connection

The next step is to create an XQJ connection.

For a default BaseX configuration, the following connection details apply (you can modify them when necessary):

• Port: 1984

Databases and CMS Integration 891

http://xqj.net/basex/basex-xqj-1.2.3.zip

• serverName: localhost
• user: admin
• password: admin

XQuery Execution

Now that the XQJ connection is configured, open the XQuery file you want to execute in Oxygen XML Developer
and create an XQuery Transformation on page 700. In the Transformer drop-down menu, select the name of the
XQJ connection you created. Apply the transformation scenario and the XQuery will be executed.

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML
documents. An example of an XQuery engine that implements the XQJ API is Zorba.

1. If your XQJ Implementation is native, make sure the directory containing the native libraries of the engine is
added to your system environment variables: to PATH - on Windows, to LD_LIBRARY_PATH - on Linux, or to
DYLD_LIBRARY_PATH - on OS X. Restart Oxygen XML Developer after configuring the environment variables.

2. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
3. Click the New button in the Data Sources panel.
4. Enter a unique name for the data source.
5. Select XQuery API for Java (XQJ) in the Type combo box.
6. Press the Add button to add XQJ API-specific files.

You can manage the driver files using the Add, Remove, Detect, and Stop buttons.
Oxygen XML Developer detects any implementation of javax.xml.xquery.XQDataSource and presents it
in Driver class field.

7. Select the most suited driver in the Driver class combo box.
8. Click the OK button to finish the data source configuration.
9. Continue on to configure the XQJ connection.

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select one of the previously configured XQJ data sources in the Data Source combo box.
5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the selected
data source.

6. Click the OK button to finish the connection configuration.

WebDAV Connections
Oxygen XML Developer includes support for WebDAV server connections. Oxygen XML Developer allows you to
browse the structure of a WebDAV connection in the Data Source Explorer view and perform various operations
on the resources in the repository.

How to Configure a WebDAV Connection

By default, Oxygen XML Developer contains built-in data source drivers for WebDAV connections. Based on this
data source, you can create a WebDAV connection for browsing and editing data from a database that provides a
WebDAV interface. The connection is available in the Data Source Explorer view.

To configure a WebDAV connection, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.

Databases and CMS Integration 892

http://www.zorba.io/home

2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select one of the WebDAV data sources in the Data Source drop-down menu.
5. Enter the connection details:

a) Set the URL to the WebDAV repository in the field WebDAV URL.
b) Set the user name that is used to access the WebDAV repository in the User field.
c) Set the password that is used to access the WebDAV repository in the Password field.

6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.
To watch our video demonstration about the WebDAV support in Oxygen XML Developer, go to https://
www.oxygenxml.com/demo/WebDAV_Support.html.

WebDAV Contextual Menu Actions

While browsing WebDAV connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

New Folder
Creates a new folder on the connection.

Import Files
Allows you to add a new file on the connection, in the current folder.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Folder Level Nodes

New File
Creates a new file on the connection, in the current folder.

New Folder
Creates a new folder on the connection.

Import Folders
Imports folders on the server.

Import Files
Allows you to add a new file on the connection, in the current folder.

Export
Allows you to export the folder on the remote connection to a local folder.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Databases and CMS Integration 893

https://www.oxygenxml.com/demo/WebDAV_Support.html
https://www.oxygenxml.com/demo/WebDAV_Support.html

Paste
Pastes the copied selection.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

SQL Execution Support
The database support in Oxygen XML Developer includes support for writing SQL statements, syntax highlighting,
folding, and dragging and dropping from the Data Source Explorer view. It also includes transformation scenarios
for executing the statements, and the results are displayed in the Table Explorer view.

Databases and CMS Integration 894

Drag and Drop from Data Source Explorer View

Drag and drop operations from the Data Source Explorer view to the SQL Editor allows you to create SQL
statements quickly by inserting the names of tables and columns in the SQL statements.

1. Configure a database connection (see the specific procedure for your database server in the Database
Connection Support section).

2. Browse to the table you will use in your statement.
3. Drag the table or a column of the table into the editor where a SQL file is open.

Drag and drop actions are available both on the table and on its fields. A pop-up menu is displayed in the SQL
editor.

Figure 404: SQL Statement Editing with Drag and Drop

4. Select the type of statement from the pop-up menu.

Depending on your choice, dragging a table results in one of the following statements being inserted into the
document:

• SELECT `field1`,`field2`, FROM `catalog`. `table` (for example: SELECT
`DEPT`,`DEPTNAME`,`LOCATION` FROM `camera`.`cameraDesc`)

• UPDATE `catalog`. `table` SET `field1`=, `field2`=,.... (for example: UPDATE `camera`.`cameraDesc`
SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

• INSERT INTO`catalog`. `table` (`field1`,`field2`,) VALUES (, ,) (for example: INSERT INTO
`camera`.`cameraDesc` (`DEPT`,`DEPTNAME`,`LOCATION`) VALUES (, ,))

• DELETE FROM `catalog`. `table` (for example: DELETE FROM `camera`.`cameraDesc`)

Depending on your choice, dragging a column results in one of the following statements being inserted into
the document:

Databases and CMS Integration 895

• SELECT `field` FROM `catalog`. `table` (for example: SELECT `DEPT` FROM `camera`.`cameraDesc`
)

• UPDATE `catalog`. `table` SET `field`= (for example: UPDATE `camera`.`cameraDesc` SET `DEPT`=)
• INSERT INTO`catalog`. `table` (`field1) VALUES () (for example: INSERT INTO

`camera`.`cameraDesc` (`DEPT`) VALUES ())
• DELETE FROM `catalog`. `table` (for example: DELETE FROM `camera`.`cameraDesc` WHERE

`DEPT`=)

SQL Validation

SQL validation support is offered for IBM DB2. Note that if you choose a connection that does not support SQL
validation, you will receive a warning when trying to validate. The SQL document is validated using the connection
from the associated transformation scenario.

Executing SQL Statements

The steps for executing an SQL statement on a relational database are as follows:

1. Configure a transformation scenario using the Configure Transformation Scenario(s) action from the
toolbar or the Document > Transformation menu.
A SQL transformation scenario needs a database connection. You can configure a connection using the

Preferences button from the SQL transformation dialog box.
The dialog box contains the list of existing scenarios that apply to SQL documents.

2. Set parameter values for SQL placeholders using the Parameters button from the SQL transformation dialog
box.
For example, in SELECT * FROM `test`.`department` where DEPT = ? or DEPTNAME = ? the
two parameters can be configured for the place holders (?) in the transformation scenario.

When the SQL statement is executed, the first placeholder is replaced with the value set for the first parameter
in the scenario, the second placeholder is replaced by the second parameter value, and so on.

Restriction: When a stored procedure is called in an SQL statement executed on an SQL Server database,
mixing inline parameter values with values specified using the Parameters button of the scenario dialog box
is not recommended. This is due to a limitation of the SQL Server driver for Java applications. An example of
stored procedure that is not recommended: call dbo.Test(22, ?).

3. Execute the SQL scenario by clicking the OK or Apply associated button.

The result of a SQL transformation is displayed in a view at the bottom of the Oxygen XML Developer window.
4. View more complex return values of the SQL transformation in a separate editor panel.

A more complex value returned by the SQL query (for example, an XMLTYPE or CLOB value) cannot be
displayed entirely in the result table.
a) Right-click the cell containing the complex value.
b) Select the action Copy cell from the contextual menu.

The action copies the value in the clipboard.
c) Paste the value into an appropriate editor.

For example, you can paste the value in an opened XQuery editor panel of Oxygen XML Developer.

XQuery and Databases
XQuery is a native XML query language that is useful for querying XML views of relational data to create XML
results. It also provides the mechanism to efficiently and easily extract information from Native XML Databases
(NXD) and relational data. The following database systems supported in Oxygen XML Developer offer XQuery
support:

• Native XML Databases:

• Berkeley DB XML
• eXist
• MarkLogic (validation support available starting with version 5)

Databases and CMS Integration 896

• Documentum xDB (X-Hive/DB) 10
• Relational Databases:

• IBM DB2
• Microsoft SQL Server (validation support not available)
• Oracle (validation support not available)

Related Information:
Editing XQuery Documents on page 448

Build Queries with Drag and Drop from the Data Source Explorer View

When a query is edited in the XQuery editor, the XPath expressions can be composed quickly by dragging them
from the Data Source Explorer view and dropping them into the editor panel.

1. Configure the data source drivers for the particular relational database in the Data Sources preferences page.
2. Configure the connection for the particular relational database in the Data Sources preferences page.
3. Browse the connection in the Data Source Explorer view, expanded to the table or column that you want to

insert in the query.
4. Drag the table or column name to the XQuery editor panel.
5. Drop the table or column name where the XPath expression is needed.

An XPath expression that selects the dragged name is inserted in the XQuery document at the cursor position.

XQuery Validation When Connected to a Database

With Oxygen XML Developer, you can validate your XQuery documents when connected to a database. When
you open an XQuery document from a connection that supports validation (for example, MarkLogic, or eXist), by
default Oxygen XML Developer uses this connection for validation. If you open an XQuery file using a MarkLogic
connection, the validation resolves imports better.

Related Information:
XQuery Validation on page 448

XQuery Transformation for Databases

XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or document.
Data is stored in relational databases but it is often required that the data be extracted and transformed as XML
when interfacing to other components and services. Also, it is an XPath-based querying language supported by
most NXD vendors. To perform a query, you need an XQuery transformation scenario.

1. Configure the data source drivers and the connection for the particular database.
2. Configure an XQuery transformation scenario.

a) Click the Configure Transformation Scenario toolbar button or go to menu Document >
Transformation > Configure Transformation Scenario.

The Configure Transformation Scenario dialog box is opened.
b) Click the New button toward the bottom of the dialog box.
c) Select XML Transformation with XQUERY.

The New Scenario dialog box for configuring an XQuery scenario is opened.

Databases and CMS Integration 897

Figure 405: New Scenario Dialog Box

d) Insert the scenario name in the dialog box for editing the scenario.
e) Choose the database connection in the Transformer drop-down list.
f) Configure any other parameters as needed.

For an XQuery transformation, the output tab has an option called Sequence that allows you to run an
XQuery in lazy mode. The amount of data extracted from the database is controlled from the Size limit on
Sequence view option in the XQuery preferences page. If you choose Perform FO Processing in the FO
Processor tab, the Sequence option is ignored.

g) Click the OK button to finish editing the scenario.
Once the scenario is associated with the XQuery file, the query can include calls to specific XQuery functions
that are implemented by that engine. The available functions depend on the target database engine selected in
the scenario. For example, for eXist and Berkeley DB XML, the Content Completion Assistant lists the functions
supported by that database engine. This is useful for only inserting calls to the supported functions (standard
XQuery functions or extension ones) into the query .

Note: An XQuery transformation is executed against a Berkeley DB XML server as a transaction using the
query transaction support of the server.

3. Run the transformation scenario.
To view a more complex value returned by the query that cannot be entirely displayed in the XQuery query
result table at the bottom of the Oxygen XML Developer window (for example, an XMLTYPE or CLOB value), do
the following:

• Right-click that table cell.
• Select the Copy cell action from the contextual menu to copy the value into the clipboard.
• Paste the value wherever you need it (for example, in an opened XQuery editor panel of Oxygen XML

Developer).

Related Information:
XML Transformation with XQuery on page 675
This type of transformation specifies the transform parameters and location of an XQuery file that is applied to
the edited XML document.

Databases and CMS Integration 898

XQuery XQJ Transformation on page 899

XQuery XQJ Transformation

XQuery API for Java (XQJ) refers to the common Java API for the W3C XQuery 1.0 specification. The XQJ API
enables you to execute XQuery against an XML data source.

Oxygen XML Developer supports any transformer that offers an XQJ API implementation and it be used for
validating XQuery or transforming XML documents.

To configure the support for XQJ, do the following:

1. Configure an XQJ Data Source.
2. Configure an XQJ Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML
documents. An example of an XQuery engine that implements the XQJ API is Zorba.

1. If your XQJ Implementation is native, make sure the directory containing the native libraries of the engine is
added to your system environment variables: to PATH - on Windows, to LD_LIBRARY_PATH - on Linux, or to
DYLD_LIBRARY_PATH - on OS X. Restart Oxygen XML Developer after configuring the environment variables.

2. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
3. Click the New button in the Data Sources panel.
4. Enter a unique name for the data source.
5. Select XQuery API for Java (XQJ) in the Type combo box.
6. Press the Add button to add XQJ API-specific files.

You can manage the driver files using the Add, Remove, Detect, and Stop buttons.
Oxygen XML Developer detects any implementation of javax.xml.xquery.XQDataSource and presents it
in Driver class field.

7. Select the most suited driver in the Driver class combo box.
8. Click the OK button to finish the data source configuration.
9. Continue on to configure the XQJ connection.

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select one of the previously configured XQJ data sources in the Data Source combo box.
5. Fill-in the connection details.

The properties presented in the connection details table are automatically detected depending on the selected
data source.

6. Click the OK button to finish the connection configuration.

XQuery Database Debugging

Oxygen XML Developer includes a debugging interface that helps you to detect and solve problems with XQuery
transformations that are executed against MarkLogic and Berkeley DB XML databases.

For more information about the debugging support in Oxygen XML Developer, see Debugging XSLT Stylesheets
and XQuery Documents on page 922.

Databases and CMS Integration 899

http://www.zorba.io/home

Debugging with MarkLogic

Oxygen XML Developer includes support for debugging XQuery transformations that are executed against a
MarkLogic database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source and a MarkLogic connection.
2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Developer

accesses. On the server side, debugging must be activated in the XDBC server and in the Task Server section
of the server control console (the switch debug allow). If the debugging is not activated, the MarkLogic server
reports a DBG-TASKDEBUGALLOW error.

Note: An XDBC application server must be running to connect to the MarkLogic server and this XDBC server
will be used to process XQuery expressions against the server. You can change the XDBC application server
that Oxygen XML Developer uses to process XQuery expressions by selecting the Use it to execute queries
action from the contextual menu in the Data Source Explorer view.

3. Open the XQuery file and start the debugging process.

• If you want to debug an XQuery file stored on the MarkLogic server, we recommend you to use the Data
Source Explorer view and open the file from the application server that is involved in the debugging
process. This improves the resolving of any imported modules.

• The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective. If you have a
MarkLogic validation scenario configured for the XQuery file, you can choose to debug the scenario directly.

• Otherwise, switch to the XQuery Debugger perspective, open the XQuery file in the editor, and select the
MarkLogic connection in the XQuery engine selector from the debug control toolbar.

For general information about how a debugging session is started and controlled, see the Working with the
Debugger section.

In a MarkLogic debugging session, you can use step actions and breakpoints to help identify problems. When you
add a breakpoint on a line where the debugger never stops, Oxygen XML Developer displays a warning message.
These warnings are displayed for breakpoints you add either in the main XQuery (which you can open locally or
from the server) or for breakpoints you add in any XQuery that is opened from the connection that participates in
the debugging session. For more information, see Using Breakpoints for Debugging Queries that Import Modules
with MarkLogic on page 879.

Remote Debugging with MarkLogic

Oxygen XML Developer allows you to debug remote applications that use XQuery (for example, web applications
that trigger XQuery executions). Oxygen XML Developer connects to a MarkLogic server, shows you the running
XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the debugging
queries in the exact context of the application. You can also switch a server to debug mode to intercept all
XQuery scripts.

Oxygen XML Developer also supports collaborative debugging. This feature allows multiple users to participate in
the same debugging session. You can start a debugging session and at a certain point, another user can continue
it.

Important: When using the remote debugging feature, the HTTP and the XDBC servers involved in the debugging
session must have the same module configuration.

To watch our video demonstration about the XQuery debugger for MarkLogic, go to https://www.oxygenxml.com/
demo/XQueryDebuggerforMarkLogic.html.

Related Information:
MarkLogic Development in Oxygen XML Developer on page 877
Configuring a MarkLogic Database Connection on page 876

Using Breakpoints for Debugging Queries that Import Modules with MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place breakpoints in
the modules. When starting a new debugging session, make sure that the modules that you will debug are already

Databases and CMS Integration 900

https://www.oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html
https://www.oxygenxml.com/demo/XQueryDebuggerforMarkLogic.html

opened in the editor. This is necessary so that the breakpoints in all the modules will be considered. Also, make
sure that there are no other opened modules that are not involved in the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view, open all the modules from the Modules container of the XDBC application
server that performs the debugging.

2. Set breakpoints in the module as needed.
3. Continue debugging the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view and make sure there are no older breakpoints (set on resources that are not part
of the current debugging context).

• Make sure you open the modules from the context of the application server that does the debugging and place
breakpoints there.

Related Information:
MarkLogic Database Connections on page 875
MarkLogic Development in Oxygen XML Developer on page 877

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-

ml' (inherited from MarkLogic 3.2), '1.0-ml', and '1.0'.
• All declared variables are presented as strings. The Value column of the Variables view contains the

expression from the variable declaration. It can be evaluated by copying the expression with the Copy value
action from the contextual menu of the Variables view and pasting it in the XWatch view.

• There is no support for output to source mapping.
• There is no support for showing the trace.
• You can only set breakpoints in imported modules in one of the following cases:

• When you open the module from the context of the application server involved in the debugging, using the
Data Source Explorer view.

• When the debugger automatically opens the modules in the Editor.
• No breakpoints are set in modules from the same server that are not involved in the current debugging

session.
• No support for profiling when an XQuery transformation is executed in the debugger.

Debugging with Berkeley DB XML

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is
supported in the Oxygen XML Developer XQuery Debugger. The same restrictions and peculiarities apply for the
Berkeley debugger as for the MarkLogic debugger.

Content Management System (CMS) Integration
This chapter explains how you can use Oxygen XML Developer with Documentum CMS and Microsoft SharePoint.
You can use the plugin support to develop your own integration with other content management systems..

All the major CMS vendors that are listed in the CMS Solution Partners section of our website also provide CMS
integration with Oxygen XML Developer.

Related Information:
General Configuration of an Oxygen XML Developer Plugin on page 944
Working with Databases on page 849

Databases and CMS Integration 901

https://www.oxygenxml.com/partners.html#solutionpartners%28cms%29

Integration with Documentum (CMS) (deprecated)
Important: Starting with version 17.0, the support for Documentum (CMS) is deprecated and will no longer be
actively maintained.

Oxygen XML Developer provides support for browsing and managing Documentum (CMS) connections in the
Data Source Explorer view. You can easily create new resources on the repository, copy and move them using
contextual actions or the drag and drop support, or edit and transform the documents in the editor.

Oxygen XML Developer supports Documentum (CMS) version 6.5 and 6.6 with Documentum Foundation
Services 6.5 or 6.6 installed.

Attention: It is recommended to use the latest 1.6.x Java version. It is possible that the Documentum
(CMS) support will not work properly if you use other Java versions.

Figure 406: Documentum (CMS) Connection

Configuring a Documentum (CMS) Database Connection

Follow this procedure to configure the support for a Documentum (CMS) database:

1. Configure Documentum xDB Data Source drivers.
2. Configure a Documentum xDB Connection.
3. To view your connection, go to the Data Source Explorer view (if the view is not displayed, it can be opened by

selecting it from the Window > Show View menu) or switch to the Database perspective.

How to Configure Documentum (CMS) Data Source Drivers

Available in the Enterprise edition only.

To configure a Documentum (CMS) data source you need the Documentum Foundation Services Software
Development Kit (DFS SDK) corresponding to your server version. The DFS SDK can be found in the Documentum
(CMS) server installation kit or it can be downloaded from EMC Community Network.

Note: The DFS SDK can be found in the form of an archive named for Documentum (CMS) 6.5 (for example, emc-
dfs-sdk-6.5.zip).

To configure a data source for Documentum (CMS), follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. In the Data Sources panel click the New button.

Databases and CMS Integration 902

http://www.emc.com/utilities/globalsiteselect.jhtml?checked=true

3. Enter a unique name for the data source.
4. Select Documentum (CMS) from the driver type combo box.
5. Press the Choose DFS SDK Folder button.
6. Select the folder where you have unpacked the DFS SDK archive file.

If you have indicated the correct folder the following Java libraries (JAR files) will be added to the list (some
variation of the library names is possible in future versions of the DFS SDK):

• lib/java/emc-bpm-services-remote.jar
• lib/java/emc-ci-services-remote.jar
• lib/java/emc-collaboration-services-remote.jar
• lib/java/emc-dfs-rt-remote.jar
• lib/java/emc-dfs-services-remote.jar
• lib/java/emc-dfs-tools.jar
• lib/java/emc-search-services-remote.jar
• lib/java/ucf/client/ucf-installer.jar
• lib/java/commons/*.jar (multiple JAR files)
• lib/java/jaxws/*.jar (multiple JAR files)
• lib/java/utils/*.jar (multiple JAR files)

Note: If for some reason the JAR files are not found, you can add them manually by using the Add Files and
Add Recursively buttons and navigating to the lib/java folder from the DFS SDK.

7. Click the OK button to finish the data source configuration.
8. Continue on to configure your Documentum connection.

How to Configure a Documentum (CMS) Connection

Available in the Enterprise edition only.

To configure a connection for a Documentum (CMS) server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. In the Connections panel click the New button.
3. Enter a unique name for the connection.
4. Select one of the previously configured Documentum (CMS) data sources in the Data Source combo box.
5. Fill-in the connection details:

• URL - The URL to the Documentum (CMS) server: http://<hostname>:<port>
• User - The user name to access the Documentum (CMS) repository.
• Password - The password to access the Documentum (CMS) repository.
• Repository - The name of the repository to log into.

6. Click the OK button to finish the configuration of the connection.

Known Issues with Documentum (CMS)

The following are known issues with the Documentum (CMS):

• There is a known problem in the UCF Client implementation for Mac OS X from Documentum 6.5 that
prevents you from viewing or editing XML documents from the repository on Mac OS X. The UCF Client is the
component responsible for file transfer between the repository and the local machine. This component is
deployed automatically from the server. Documentum 6.6 does not exhibit this problem.

Note: This issue was reproduced with Documentum 6.5 SP1. In Documentum 6.6 this is no longer
reproducing.

• For the Documentum driver to work faster on Linux, you need to specify to the JVM to use a weaker random
generator, instead of the very slow native implementation. This can be done by modifying in the Oxygen XML
Developer startup scripts (or in the *.vmoptions file) the system property:

-Djava.security.egd=file:/dev/./urandom

Databases and CMS Integration 903

Documentum (CMS) Contextual Menu Actions

While browsing Documentum (CMS) connections in the Data Source Explorer view, the various nodes include the
following contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

New Cabinet
Creates a new cabinet in the repository. The cabinet properties are:

• Type - The type of the new cabinet (default is dm_cabinet).
• Name - The name of the new cabinet.
• Title - The title property of the cabinet.
• Subject - The subject property of the cabinet.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Container (Cabinet) Level Nodes

New Folder
Creates a new folder in the current cabinet / folder. The folder properties are the following:

• Path - Shows the path where the new folder will be created.
• Type - The type of the new folder (default is dm_folder).
• Name - The name of the new folder.
• Title - The title property of the folder.
• Subject - The subject property of the folder.

New Document
Creates a new document in the current cabinet / folder. The document properties are the following:

• Path - Shows the path where the new document will be created.
• Name - The name of the new document.
• Type - The type of the new document (default is dm_document).
• Format - The document content type format.

Import
Imports local files / folders in the selected cabinet / folder of the repository. Actions available when
performing an import:

• Add Files - Opens a file browse dialog box and allows you to select files to add to the list.
• Add Folders - Opens a folder browse dialog box that allows you to select folders to add to the list. The

subfolders will be added recursively.
• Edit - Opens a dialog box where you can change the properties of the selected file / folder from the list.
• Remove - Removes the selected files / folders from the list.

Export
Allows you to export the folder on the remote connection to a local folder.

Rename
Renames the current resource

Databases and CMS Integration 904

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Edit
Checks out and opens the selected resource in the editor (if it is not already checked out).

Edit with
Checks out and opens the selected resource in the specified editor or tool (if it is not already checked out).

Open (Read-only)
Opens the selected resource in the editor. The resources are marked as read-only in the editor using a lock
icon on the file tab. If you want to edit those resources, select the Can edit read only files option in the
Editor preferences page.

Open with
Opens the selected resource in the specified editor or tool.

Check Out
Checks out the selected resource from the repository. The action is not available if the resource is already
checked out.

Check In
Opens the Check In dialog box that allows you to check in the selected resource (commits changes) into
the repository and configure some properties for the resource. The action is only available if the resource
is checked out.

Figure 407: Check In Dialog Box

Databases and CMS Integration 905

The following resource properties can be configured in this dialog box:

• Name - The resource name in the repository.
• Version - Allows you to choose what version the resource will have after being checked in.
• Version label - The label of the updated version.
• Description - An optional description of the resource.
• Keep Locks - When this option is selected, the updated resource is checked in to the repository but it

also keeps it locked.
• Make this the current version - Makes the updated resource the current version (will have the CURRENT

version label).

Cancel Checkout
Cancels the checkout process and loses all modifications since the checkout. Action is only available if
the resource is checked out.

Export
Allows you to export the folder on the remote connection to a local folder.

Copy
Copies the selected resource to another location in the tree. This action is not available on virtual
document descendants. This action can also be performed with drag and drop while holding the Ctrl
(Meta on OS X) key pressed.

Move
Moves the selected resource to another location in the tree. Action is not available on virtual document
descendants and on checked out resources. This action can also be performed with drag and drop.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Rename
Renames the current resource

Delete
Deletes the current container.

Add Relationship
Adds a new relationship for the selected resource. This action can also be performed with drag and drop
between resources.

Convert to Virtual Document
Allows you to convert a simple document to a virtual document. Action is available only if the resource is a
simple document.

Convert to Simple Document
Allows you to convert a virtual document to a simple document. Action is available only if the resource is a
virtual document with no descendants.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

Databases and CMS Integration 906

Integration with Microsoft SharePoint
Oxygen XML Developer provides support for browsing and managing SharePoint connections in the Data Source
Explorer view. You can easily create new resources on the repository, copy and move them using contextual
actions or the drag and drop support, or edit and transform the documents in the editor.

Note: You can access documents stored on SharePoint Online for Office 365 sites that use either Cloud identity
(default) or Federated identity (ADFS) as the authentication method.

Restriction: The SharePoint connection is only available in the Enterprise edition of Oxygen XML Developer.

Figure 408: SharePoint Connection

Related Information:
Working with Databases on page 849

How to Configure a SharePoint Connection

By default, Oxygen XML Developer contains built-in data source drivers for SharePoint. Use this data source to
create a connection to a SharePoint server that will be available in the Data Source Explorer view.

To configure a SharePoint connection, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to Data Sources.
2. In the Connections panel click the New button.
3. Enter a unique name for the connection.
4. Select SharePoint in the Data Source combo box.
5. Fill-in the connection details:

a) Set the URL to the SharePoint repository in the field SharePoint URL.
b) Set the server domain in the Domain field. If you are using a SharePoint 365 account, leave this field empty.
c) Set the user name to access the SharePoint repository in the User field.
d) Set the password to access the SharePoint repository in the Password field.

6. To view your connection, go to the SharePoint Browser view (if the view is not displayed, it can be opened by
selecting it from the Window > Show View menu).

Databases and CMS Integration 907

To watch our video demonstration about connecting to repository located on a SharePoint server, go to
https://www.oxygenxml.com/demo/SharePoint_Support.html.

SharePoint Browser View

The SharePoint Browser view allows you to connect to a SharePoint repository and perform SharePoint-specific
actions on the available resources. To display this view, go to Window > Show View > SharePoint Browser.

Figure 409: SharePoint Browser View

The view is split in several functional areas:

Connection Area

The following controls are available:

• The Site combo box allows you to select and connect to an already defined SharePoint connection.
• The Disconnect action terminates the current connection.
• The Settings drop-down menu contains actions that help you to quickly define a new connection or

manage the existing ones from the Data Source options page: New SharePoint Connection and Configure
Database Sources. Also, here you can choose one of the predefined view layouts.

SharePoint Site Navigation Area

If there is no connection selected in the Site combo box, this area is left blank and promotes the actions that
allow you to quickly add SharePoint connections. Otherwise, the navigation area presents the SharePoint site
structure in a tree-like fashion with various node types (such as sites, libraries, and folders).

Depending on the type of node, a contextual menu offers customized actions that can be performed on that node.
The contextual menu of a folder allows you to create new folders and documents, import folders and files, and to
rename and delete the folder.

Note: The rename and delete actions are not available for library root folders (folders located at first level in a
SharePoint library).

Databases and CMS Integration 908

https://www.oxygenxml.com/demo/SharePoint_Support.html

Each library node displays a drop-down menu next to its name where you can select what you want to display for
the current library node. This functionality is also available on the contextual menu of the node.

Figure 410: Drop-Down Menu to Select Which Items to Display

Folder Content Area

The content of a folder is displayed in a tabular form, where each row represents the properties of a folder or
document. The list of columns and the way the documents and folders are organized depends on the currently
selected view of the parent library.

Table 35: Contextual Menu Actions for the Folder Area

Available for
Action Description

folders documents

Open Displays the content of the currently selected folder.

Opens the current document for editing.

Rename Renames the current node on server.

Import Import files or folders into the currently selected folder.

Delete Deletes the current node from the server.

Copy Location Copies to clipboard the URL of the current node.

Check Out Reserves the current document for your use so that other
users cannot change it while you are editing it.

Check In Commits on the server the changes you made to the
document, so that other users can see them. It also makes
the document available for editing to other users.

Discard Check Out Discards the previous checkout operation, making the file
available for editing to other users.

Refresh Queries the server to refresh the available properties of the
current node.

Drag and Drop You can drag documents from the SharePoint Browser
view and drop them in the main editor area to open them
with ease.

You can filter and sort the displayed items. To display the available filters of a column, click the filter widget
located on the column header. You can apply multiple filters at the same time.

Note: A column can be filtered or sorted only if it was configured this way on the server side.

Databases and CMS Integration 909

Figure 411: Column Filter

Related Information:
How to Configure a SharePoint Connection on page 907

SharePoint Contextual Menu Actions

While browsing SharePoint connections in the Data Source Explorer view, the various nodes include the following
contextual menu actions:

 Connection Level Nodes

Configure Database Sources
Opens the Data Sources preferences page where you can configure both data sources and connections.

Disconnect
Stops the connection.

New Folder
Creates a new folder on the connection.

Import Files
Allows you to add a new file on the connection, in the current folder.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Folder Level Nodes

New File
Creates a new file on the connection, in the current folder.

New Folder
Creates a new folder on the connection.

Import Folders
Imports folders on the server.

Import Files
Allows you to add a new file on the connection, in the current folder.

Export
Allows you to export the folder on the remote connection to a local folder.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Paste
Pastes the copied selection.

Databases and CMS Integration 910

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

 Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Developer downloads the selected resource to a local temporary
folder and opens the selected resource in the system application that is currently set as the default
application associated with that type of resource. You can then edit the resource, save it, and when you
switch the focus back to the Data Source Explorer view, Oxygen XML Developer will detect that there was
a change and will ask if you want to upload the edited resource to the server.

Cut
Removes the current selection and places it in the clipboard.

Copy
Copies the current selection into the clipboard.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for
various actions, such as opening or transforming the resources.

Check Out
Checks out the selected document on the server.

Check In
Checks in the selected document on the server. This action opens the Check In dialog box. In this dialog
box, the following options are available:

• Minor Version - Increments the minor version of the file on the server.
• Major Version - Increments the major version of the file on the server.
• Overwrite - Overwrites the latest version of the file on the server.
• Comment - Allows you to comment on a file that you check in.

Discard Check Out
Discards the previous checkout operation, making the file available for editing to other users.

Rename
Renames the current resource

Delete
Deletes the current container.

Refresh
Performs a refresh on the selected node.

Properties
Shows various properties of the current container.

Databases and CMS Integration 911

Find/Replace in Files
Opens the Find/Replace in Files dialog box that allows you to find and replace text in multiple files from the
connection.

Compare
Compares two selected resources using the Compare Files tool.

Databases and CMS Integration 912

Importing Data 13
Topics:

• Import from Text Files
• Import from MS Excel Files
• Import Database Data as an XML Document
• Import from HTML Files
• Import Content Dynamically

Computer systems and databases contain data in incompatible formats and exchanging data between these systems
can be very time consuming. Converting the data to XML can greatly reduce the complexity and create data that can be
read by various types of applications.

Oxygen XML Developer offers support for importing text files, MS Excel files, Database Data, and HTML files into XML
documents. The XML documents can be further converted into other formats using the Transform features.

Import from Text Files
To import a text file into an XML file, follow these steps:

1. Go to File > Import > Text File.
A Select text file dialog box is displayed.

2. Select the URL of the text file.
3. Select the encoding of the text file.
4. Click the Next button.

The Import Criteria dialog box is displayed.

913

Figure 412: Import Criteria Dialog Box

5. Configure the settings for the conversion.
a) Select the Field delimiter for the import settings. You can choose between the following: Comma,

Semicolon, Tab, Space, or Pipe.
b) The Import settings section presents the input data in a tabular form. By default, all data items are

converted to element content (symbol), but this can be overridden by clicking the individual column
headers. Clicking a column header once causes the data from this column to be converted to attribute
values (symbol). Clicking a second time causes the column data to be ignored (symbol) when
generating the XML file. You can cycle through these three options by continuing to click the column
header.

c) First row contains field names - If this option is selected, the default column headers are replaced (where
such information is available) by the content of the first row. In other words, the first row is interpreted as
containing the field names. The changes are also visible in the preview panel.

d) Customize - This button opens a Presentation Names dialog box that allows you to edit the name, XML
name, and conversion criterion for the root and row elements. The XML names can be edited by double-
clicking the desired item and entering the label. The conversion criteria can also be modified by selecting
one of the following option in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

e) Import Settings - Clicking this button opens the Import preferences page that allows you to configure
more import options.

f) The XML Import Preview panel contains an example of what the generated XML document looks like.
g) Open in editor - If selected, the new XML document created from the imported text file is opened in the

editor.
h) Save in file - If selected, the new XML document is saved in the specified path.

Importing Data 914

6. Click Import to generate the XML document.

Import from MS Excel Files
Oxygen XML Developer provides support for importing MS Excel files into an XML file.

Import Wizard Method

By default, this method supports importing Excel 97/2000/XP/2003 formats out-of-the-box. To import
spreadsheet data from Excel 2007 or newer, additional libraries are needed before using this procedure. See
Import Data from MS Excel 2007 or Newer on page 916 for instructions on adding more libraries.

To use the Import wizard to import an Excel file into an XML file, follow these steps:

1. Go to File > Import > MS Excel file.
2. Select the URL of the Excel file.

The sheets of the document you are importing are presented in the Available Sheets section of this dialog
box.

3. Click the Next button to proceed to the next stage of the wizard.

Figure 413: Import Wizard

4. Configure the settings for the conversion. This stage of the wizard offers the following options:

Importing Data 915

Import settings section
Presents the input data in a tabular form. By default, all data items are converted to element content (
symbol), but this can be overridden by clicking the individual column headers. Clicking a column header
once causes the data from this column to be converted to attribute values (symbol). Clicking a second
time causes the column data to be ignored (symbol) when generating the XML file. You can cycle
through these three options by continuing to click the column header.

First row contains field names
If this option is selected, the default column headers are replaced (where such information is available) by
the content of the first row. In other words, the first row is interpreted as containing the field names. The
changes are also visible in the preview panel.

Customize
This button opens a Presentation Names dialog box that allows you to edit the name, XML name, and
conversion criterion for the root and row elements. The XML names can be edited by double-clicking the
desired item and entering the label. The conversion criteria can also be modified by selecting one of the
following option in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

 Import Settings
Clicking this button opens the Import preferences page that allows you to configure more import options.

Import formatted data (as displayed in Excel)
If this option is selected, the imported data retains the Excel data formatting (such as the representation
of numeric values or dates). If deselected, the data formatting is not imported.

XML Import Preview panel
Contains an example of what the generated XML document will look like.

Open in editor
If selected, the new XML document created from the imported file is opened in the editor.

Save in file
If selected, the new XML document is saved in the specified path.

5. Click Import to generate the XML document.

Import Data from MS Excel 2007 or Newer
To import spreadsheet data from Excel 2007 or newer (.xlsx), Oxygen XML Developer needs additional libraries
from the release 3.10 of the Apache POI project.

To add the libraries, follow these steps:

1. Download version 3.10 of the Apache POI project from http://archive.apache.org/dist/poi/release/bin/. The
specific ZIP file that you need is: poi-bin-3.10-FINAL-20140208.zip.

2. Unpack poi-bin-3.10-FINAL-20140208.zip.
3. Copy the following .jar files in the lib directory of the installation folder of Oxygen XML Developer :

• dom4j-1.6.1.jar
• poi-ooxml-3.10-FINAL-20140208.jar
• poi-ooxml-schemas-3.10-FINAL-20140208.jar
• xmlbeans-2.3.0.jar

Result: You can now use the Import wizard to import data from Excel 2007 or newer.

Import Database Data as an XML Document
To import the data from a relational database table as an XML document, follow these steps:

1. Go to File > Import > Database Data to start the Import wizard.

This opens a Select database table dialog box that lists all the defined database connections:

Importing Data 916

http://archive.apache.org/dist/poi/release/bin/

Figure 414: Select Database Table Dialog Box

2. Select the connection to the database that contains the appropriate data.
Only connections configured in relational data sources can be used to import data.

3. If you want to edit, delete, or add a data source or connection, click the Configure Database Sources button.
The Preferences/Data Sources option page is opened.

4. Click Connect.
5. In the list of sources, expand a schema and choose the required table.
6. Click the Next button.

The Import Criteria dialog box is opened with a default query string in the SQL Query pane.

Importing Data 917

Figure 415: Import from Database Criteria Dialog Box

7. Configure the settings for the conversion.
a) SQL Preview - If this button is pressed, the Settings pane displays the labels that are used in the XML

document and the first five lines from the database. By default, all data items are converted to element
content (symbol), but this can be overridden by clicking the individual column headers. Clicking a
column header once causes the data from this column to be converted to attribute values (symbol).
Clicking a second time causes the column data to be ignored (symbol) when generating the XML file.
You can cycle through these three options by continuing to click the column header.

b) Customize - This button opens a Presentation Names dialog box that allows you to edit the name, XML
name, and conversion criterion for the root and row elements. The XML names can be edited by double-
clicking the desired item and entering the label. The conversion criteria can also be modified by selecting
one of the following option in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

c) Import Settings - Clicking this button opens the Import preferences page that allows you to configure
more import options.

d) The XML Import Preview panel contains an example of what the generated XML document looks like.
e) Open in editor - If selected, the new XML document created from the imported file is opened in the editor.
f) Save in file - If selected, the new XML document is saved in the specified path.
g) Generate XML Schema - Allows you to specify the path of the generated XML Schema file.

8. Click Import to generate the XML document.

Import from HTML Files
Oxygen XML Developer offers support for importing HTML files into an XML document.

Importing Data 918

Import Wizard Method

To use the Import wizard to import from HTML files, follow these steps:

1. Go to File > Import > HTML File. The Import HTML wizard is displayed.
2. Enter the URL of the HTML document.
3. Select the type of the resulting XHTML document:

• XHTML5
• XHTML 1.0 Transitional
• XHTML 1.0 Strict

4. Click the OK button.

Result: The resulting document is an XHTML file containing a DOCTYPE declaration that references the
XHTML DTD definition on the Web. The parsed content of the imported file is transformed to XHTML5, XHTML
Transitional, or XHTML Strict depending on the option you chose.

Import Content Dynamically
Along with the built-in support for various useful URL protocols (such as HTTP or FTP), Oxygen XML Developer
also provides special support for a convert protocol that can be used to chain predefined processors to
dynamically import content from various sources.

A dynamic conversion URL chains various processors that can be applied, in sequence, on a target resource and
has the following general syntax:

convert:/processor=xslt;ss=urn:processors:excel2d.xsl/processor=excel!/
urn:files:sample.xls

The previous example first applies a processor (excel) on a target identified by the identifier
(urn:files:sample.xls) and converts the Excel™ resource to XML. The second applied processor (xslt)
applies an XSLT stylesheet identified using the identifier (urn:processors:excel2d.xsl) over the resulting
content from the first applied processor. These identifiers are all mapped to real resources on disk via an XML
catalog that is configured in the application, as in the following example:

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <rewriteURI uriStartString="urn:files:" rewritePrefix="./resources/"/>
 <rewriteURI uriStartString="urn:processors:" rewritePrefix="./processors/"/>
</catalog>

The target resource part of the conversion URL must always follow the !/ pattern. It can be any of the following:

• An absolute URL that points to a resource.
• An identifier that will be resolved to an actual resource via the XML Catalog support in the application. In the

example above, the urn:files:sample.xls target resource is resolved via the XML catalog.
• A relative location. This location can only be resolved to an actual resource URL when the application has

enough information about the location where the URL is referenced.

For example, for a DITA map with a topicref such as:

<topicref href="convert:/.../processor=excel!/resources/sample.xls"/>

the resources/sample.xls path will be resolved relative to the DITA map location.

This type of URL can be opened in the application by using the Open URL action from the File menu. It can also be
referenced from existing XML resources via xi:include or as a topic reference from a DITA map.

A GitHub project that contains various dynamic conversion samples for producing DITA content from various
sources (and then publishing it) can be found here: https://github.com/oxygenxml/dita-glass.

Importing Data 919

https://github.com/oxygenxml/dita-glass

Conversion Processors

A set of predefined conversion processors is provided in Oxygen XML Developer. Each processor has its own
parameters that can be set to control the behavior of the conversion process. All parameters that are resolved to
resources are passed through the XML catalog mapping.

The following predefined conversion processors are included:

• xslt Processor - Converts an XML input using the Saxon EE XSLT processor. The ss parameter indicates
the stylesheet resource to be loaded. All other specified parameters will be set as parameters to the XSLT
transformation.

convert:/processor=xslt;ss=urn:processors:convert.xsl;p1=v1!/urn:files:sample.xml
• xquery Processor - Converts an XML input using the Saxon EE XQuery processor. The ss parameter

indicates the XQuery script to be loaded. All other specified parameters will be set as parameters to the XSLT
transformation.

convert:/processor=xquery;ss=urn:processors:convert.xquery;p1=v1!/
urn:files:sample.xml

• excel Processor - Converts an Excel™ input to an XML format that can later be converted by other piped
processors. It has a single parameter sn, which indicates the name of the sheet that needs to be converted.
If this parameter is missing, the XML will contain the combined content of all sheets included in the Excel™

document.

convert:/processor=excel;sn=test!/urn:files:sample.xls
• java Processor - Converts an input to another format by applying a specific Java method. The jars

parameter is a comma-separated list of JAR libraries, or folders that libraries will be loaded from. The ccn
parameter is the fully qualified name of the conversion class that will be instantiated. The conversion class
needs to have a method with the following signature:

 public void convert(String systemID, String originalSourceSystemID,
 InputStream is, OutputStream os, LinkedHashMap<String, String> properties)
 throws IOException

convert:/processor=java;jars=libs;ccn=test.JavaToXML!/
urn:files:java/WSEditorBase.java

• js Processor - Converts an input to another format by applying a JavaScript method. The js parameter
indicates the script that will be used. The fn parameter is the name of the method that will be called from the
script. The method must take a string as an argument and return a string. If any of the parameters are missing,
an error is thrown and the conversion stops.

convert:/processor=js;js=urn:processors:md.js;fn=convertExternal!/
urn:files:sample.md

• json Processor - Converts a JSON input to XML. It has no parameters.

convert:/processor=json!/urn:files:personal.json
• xhtml Processor - Converts HTML content to well-formed XHTML. It has no parameters.

convert:/processor=xhtml!/urn:files:test.html
• wrap Processor - Wraps content in a tag name making it well-formed XML. The rn parameter indicates the

name of the root tag to use. By default, it is wrapper. The encoding parameter specifies the encoding that
should be used to read the content. By default, it is UTF8. As an example, this processor can be used if you
want to process a comma-separated values file with an XSLT stylesheet to produce XML content. The CSV file
is first wrapped as well-formed XML, which is then processed with an xslt processor.

convert:/processor=wrap!/urn:files:test.csv
• cache Processor - Caches the converted content obtained from the original document to a temporary file.

The cache will be used on subsequent uses of the same URL, thus increasing the speed for the application
returning the converted content. If the original URL points to the local disk, the cache will be automatically
invalidated when the original file content gets modified. Otherwise, if the original URL points to a remote

Importing Data 920

resource, the cache will need to be invalidated by reloading (File > Reload (F5)) the URL content that is
opened in the editor.

convert:/processor=cache/processor=xslt;…..!/urn:files:test.csv

Reverse Conversion Processors

All processors defined above can also be used for saving content back to the target resource if they are defined
in the URL as reverse processors. Reverse processors are evaluated right to left. These reverse processors allow
round-tripping content to and from the target resource.

As an example, the following URL converts HTML to DITA when the URL is opened using the h2d.xsl stylesheet
and converts DITA to HTML when the content is saved in the application using the d2h.xsl stylesheet.

convert:/processor=xslt;ss=h2d.xsl/rprocessor=xslt;ss=d2h.xsl!/
urn:files:sample.html

Important: If you are publishing a DITA map that has such conversion URL references inside, you need to edit
the transformation scenario and set the value of the parameter fix.external.refs.com.oxygenxml to true. This will
instruct Oxygen XML Developer to resolve such references during a special pre-processing stage. Depending on
the conversion, you may also require additional libraries to be added using the Libaries button in the Advanced
tab of the transformation scenario.

Related Information:

Importing Data 921

Debugging XSLT Stylesheets and XQuery Documents 14
Topics:

• Debugger Layout
• Working with the XSLT / XQuery Debugger
• Debugging Java Extensions
• Supported Processors for XSLT / XQuery Debugging
• Performance Profiling of XSLT Stylesheets and XQuery Documents

Oxygen XML Developer includes a powerful debugging interface that helps you to detect and solve problems with XSLT
and XQuery transformations.

XSLT Debugger Perspective

The XSLT Debugger perspective allows you to detect problems in an XSLT transformation by executing the process
step by step. To switch the focus to this perspective, select the XSLT Debugger button in the top-right corner of the
interface or Window > Open perspective > XSLT Debugger.

XQuery Debugger Perspective

The XQuery Debugger perspective allows you to detect problems in an XQuery transformation process by executing
the process step by step in a controlled environment and inspecting the information provided in the special views. To
switch the focus to this perspective, select the XQuery Debugger button in the top-right corner of the interface or
Window > Open perspective > XQuery Debugger.

XSLT/XQuery Debugging Overview

The XSLT Debugger and XQuery Debugger perspectives allows you to test and debug XSLT 1.0 / 2.0 / 3.0 stylesheets
and XQuery 1.0 / 3.0 documents including complex XPath 2.0 / 3.0 expressions. The interface presents simultaneous
views of the source XML document, the XSLT/XQuery document and the result document. As you go step by step
through the XSLT/XQuery document the corresponding output is generated step by step, and the corresponding
position in the XML file is highlighted. At the same time, special views provide various types of debugging information
and events useful to understand the transformation process.

The following set of features allow you to test and solve XSLT/XQuery problems:

• Support for XSLT 1.0 stylesheets (using Saxon 6.5.5 and Xalan XSLT engines), XSLT 2.0 / 3.0 stylesheets and XPath
2.0 / 3.0 expressions that are included in the stylesheets (using Saxon 9.7.0.15 XSLT engine) and XQuery 1.0 / 3.0
(using Saxon 9.7.0.15 XQuery engine).

• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.
• Output to source mapping between every line of output and the instruction element / source context that generated

it.
• Breakpoints on both source and XSLT/XQuery documents.
• Call stack on both source and XSLT/XQuery documents.
• Trace history on both source and XSLT/XQuery documents.
• Support for XPath expression evaluation during debugging.
• Step into imported/included stylesheets as well as included source entities.
• Available templates and hits count.
• Variables view.
• Dynamic output generation.

922

Debugger Layout
The XML and XSL files are displayed in Text mode. The Grid mode is available only in the Editor perspective.

The XSLT/XQuery Debugger perspective contains the following components:

• Source Document View (XML) - Displays and allows the editing of XML files (documents).
• XSLT/XQuery Document View (XSLT/XQuery) - Displays and allows the editing of XSL files (stylesheets) or

XQuery documents.
• Output View - Displays the output that results from inputting a document (XML) and a stylesheet (XSL) or

XQuery document in the transformer. The transformation result is written dynamically while the transformation
is processed. Several actions are available in the contextual menu for this view, including Find/Replace,

Copy, and Format and Indent. There are two types of output views: a Text view (with XML syntax
highlights) and XHTML view. For large outputs, the XHTML view can be disabled (see Debugger Settings).

• Control Toolbar - Contains a variety of actions to help you configure and control the debugging process.
• Information Views - The information views at the bottom of the editor display various types of information to

help you understand the transformation process.

Tip: The Output view and the various other information views are dockable so that you can configure the
workspace according to your preferences.

Figure 416: Debugger Interface

XML documents and XSL stylesheets or XQuery documents that were opened in the Editor perspective are
automatically sorted into the first two panes. When multiple files of each type are opened, the individual
documents and stylesheets are separated using the familiar tab management system of the Editor perspective.
Selecting a tab brings the document or stylesheet into focus and enables editing without the need to go back to
the Editor perspective.

In Debugger mode, the normal editor toolbar is not available. However, the functions are still accessible from the
Document menu and the contextual menus.

Bookmarks are replaced in the Debugger perspective by breakpoints.

Debugging XSLT Stylesheets and XQuery Documents 923

During debugging, the current execution node is highlighted in both document (XML) and XSLT/XQuery views.

Control Toolbar
The Control toolbar contains all the actions that you need to configure and control the debugging process. The
following actions are described as they appear in the toolbar from left to right.

Figure 417: Control Toolbar

XML source selector
The current selection represents the source document used as input by the transformation engine. The
selection list contains all opened files (XML files being emphasized). This option allows you to use other file
types also as source documents. In an XQuery debugging session this selection field can be set to the default
value NONE, because usually XQuery documents do not require an input source.

XSL / XQuery selector
The current selection represents the stylesheet or XQuery document to be used by the transformation engine.
The selection list contains all opened files (XSLT / XQuery files being emphasized).

Link with editor
When selected, the XML and XSLT/XQuery selectors display the names of the files opened in the central
editor panels. This button is toggled off by default.

Output selector
The selection represents the output file specified in the associated transformation scenario. You can specify
the path by using the text field, the Insert Editor Variables button, or the Browse button.

Configure parameters
Opens a dialog box that allows you to configure the XSLT / XQuery parameters to be used by the
transformation.

Libraries
Allows you to add and remove the Java classes and JARS used as XSLT extensions.

/ Turn on/off profiling
Enables / Disables current transformation profiling.

Enable XHTML output
Enables the rendering of the output in the XHTML output view during the transformation process. For
performance issues, disable XHTML output when working with very large files. Note that only XHTML
conformant documents can be rendered by this view. To view the output result of other formats, such as
HTML, save the Text output area to a file and use an external browser for viewing.

When starting a debug session from the Editor perspective by using the Debug Scenario action, the state of
this toolbar button reflects the state of the Show as XHTML output option from the scenario.

Turn on/off output to source mapping

Enables or disables the output to source mapping between every line of output and the instruction element /
source context that generated it.

Debugger preferences

Quick link to Debugger preferences page.

XSLT / XQuery engine selector
Lists the processors available for debugging XSLT and XQuery transformations.

Debugging XSLT Stylesheets and XQuery Documents 924

XSLT / XQuery engine advanced options
Advanced options available for Saxon 9.7.0.15.

Step into
Starts the debugging process and runs until the next instruction is encountered.

Step over

Run until the current instruction and its sub-instructions are over. Usually this will advance to the next sibling
instruction.

Figure 418: Step over

Step out

Run until the parent of the current instruction is over. Usually this will advance to the next sibling of the parent
instruction.

Figure 419: Step out

Run
Starts the debugging process. The execution of the process is paused when a breakpoint is encountered or
the transformation ends.

Run to cursor
Starts the debugging process and runs until one of the following conditions occur: the line of cursor is
reached, a valid breakpoint is reached or the execution ends.

Run to end
Runs the transformation until the end, without taking into account enabled breakpoints, if any.

Pause
Request to pause the current transformation as soon as possible.

Stop
Request to stop the current transformation without completing its execution.

Show current execution nodes
Reveals the current debugger context showing both the current instruction and the current node in the XML
source. Possible displayed states:

•
Entering () or leaving () an XML execution node.

Debugging XSLT Stylesheets and XQuery Documents 925

•
Entering () or leaving () an XSL execution node.

•
Entering () or leaving () an XPath execution node.

Note: When you set a MarkLogic server as a processor, the Show current execution nodes button is
named Refresh current session context from server. Click this button to refresh the information in all the
views.

Note: For some of the XSLT processors (Saxon-HE/PE/EE) the debugger could be configured to step into the
XPath expressions affecting the behavior of the following debugger actions: Step into, Step over or Step Out.

Related Information:
Advanced Saxon HE/PE/EE XQuery Transformation Options on page 678

Debugging Information Views
The information views at the bottom of the editor is comprised of two panes that are used to display various
types of information used to understand the transformation process. For each information type there is a
corresponding tab. While running a transformation, relevant events are displayed in the various information views.
This enables the developer to obtain a clear view of the transformation progress. By using the debug controls,
developers can easily isolate parts of stylesheet. Therefore, they may be more easily understood and modified.

The information types include the following:

Left side information views

• Context node view
• XWatch view
• Breakpoints view
• Messages view (XSLT only)
• Variables view
• Invocation Tree view

Right side information views

• Stack view
• Output Mapping Stack view
• Trace view
• Templates view (XSLT only)
• Nodes/Values Set view
• Hotspots view

Tip: The information views are dockable so that you can configure the workspace according to your preferences.

Context Node View

The context node is valid only for XSLT debugging sessions and is a source node corresponding to the XSL
expression that is evaluated. It is also called the context of execution. The context node implicitly changes as the
processor hits various steps (at the point where XPath expressions are evaluated). This node has the same value
as evaluating '.' (dot) XPath expression in XWatch view. The value of the context node is presented as a tree in the
Context Node view. If the view is not displayed, it can be opened by selecting it from the Window > Show View
menu.

Debugging XSLT Stylesheets and XQuery Documents 926

Figure 420: Context node view

The context node is presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are
displayed using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented
before the node name. The value of the selected attribute or node is displayed in the right side panel. The Context
view also presents the current mode of the XSLT processor if this mode differs from the default one.

The title bar displays the current element index and the number of elements that compose the current context
(this information is not available if you choose Xalan or Saxon 6 as processing engine).

XPath Watch (XWatch) View

The XWatch view shows XPath expressions evaluated during the debugging process. If the view is not displayed,
it can be opened by selecting it from the Window > Show View menu.

Expressions are evaluated dynamically as the processor changes its source context. When you type an XPath
expression in the Expression column, Oxygen XML Developer supports you with syntax highlight and content
completion assistance.

Figure 421: XPath Watch View

Table 36: XWatch columns

Column Description

Expression XPath expression to be evaluated (XPath 1.0 or 2.0 /
3.0 compliant).

Value Result of XPath expression evaluation. Value has a
type (see the possible values in the section Variables
View). For Node Set results, the number of nodes in
the set is shown in parenthesis.

Debugging XSLT Stylesheets and XQuery Documents 927

Important: Remarks about working with the XWatch view:

• Expressions that reference variable names are not evaluated.
• The expression list is not deleted at the end of the transformation (it is preserved between debugging

sessions).
• To insert a new expression, click the first empty line of the Expression column and start typing. As an

alternative, right-click and select the Add action. Press (Enter) on the cell to add and evaluate.
• To delete an expression, click its Expression column and delete its content. As an alternative, right-click and

select the Remove action. Press (Enter) on the cell to commit changes.
• If the expression result type is a Node Set, click it (Value column) and its value is displayed in the Nodes/

Values Set view.
• The Copy, Add, Remove and Remove All actions are available in every row's contextual menu.

Breakpoints View

The Breakpoints view lists all breakpoints that are set on opened documents. If the view is not displayed, it can
be opened by selecting it from the Window > Show View menu. Breakpoints can be inserted in XSLT/XQuery
documents and XML documents in XSLT/XQuery debugging sessions.

Once you insert a breakpoint, it is automatically added to the list in the Breakpoints view and you can edit its
associated condition. A breakpoint can have an associated break condition that represents an XPath expression
evaluated in the current debugger context. In order to be processed, their evaluation result should be a boolean
value. A breakpoint with an associated condition only stops the execution of the Debugger if the breakpoint
condition is evaluated as true.

Figure 422: Breakpoints View

The Breakpoints view contains the following columns:

• Enabled - If selected, the current condition is evaluated and taken into account.
• Resource - Resource file and number of the line where the breakpoint is set. The Entire path of resource file is

available as tooltip.
• Condition - XSLT/XQuery expression to be evaluated during debugging. The expression will be evaluated at

every debug step.

Clicking a record highlights the breakpoint line in the document.

Note: The breakpoints list is not deleted at the end of a transformation (it is preserved between debugging
sessions).

The following actions are available in the contextual menu of the table:
Go to

Moves the cursor to the source of the breakpoint.
Run to Breakpoint

Runs the debugger up to the point of this particular breakpoint and ignores the others (regardless of whether
they were previously enabled or disabled).

Debugging XSLT Stylesheets and XQuery Documents 928

Enable
Enables the breakpoint.

Disable
Disables the breakpoint. A disabled breakpoint will not be evaluated by the Debugger.

Add
Allows you to add a new breakpoint and breakpoint condition.

Edit
Allows you to edit an existing breakpoint.

Remove
Deletes the selected breakpoint.

Enable all
Enables all breakpoints.

Disable all
Disables all breakpoints.

Remove all
Removes all breakpoints.

Related Information:
Inserting Breakpoints on page 936

Messages View

xsl:message instructions are one way to signal special situations encountered during transformation as well as a
raw way of doing the debugging. The Messages view is available only for XSLT debugging sessions and shows all
xsl:message calls executed by the XSLT processor during transformation. If the view is not displayed, it can be
opened by selecting it from the Window > Show View menu.

Figure 423: Messages View

Table 37: Messages columns

Column Description

Message Message content.

Terminate Signals if processor terminates the transformation
or not once it encounters the message (yes/no
respectively).

Resource Resource file where xsl:message instruction
is defined and the message line number. The
complete path of the resource is available as tooltip.

The following actions are available in the contextual menu:
Go to

Highlight the XSL fragment that generated the message.
Copy

Copies to clipboard message details (system ID, severity info, description, start location, terminate state).

Debugging XSLT Stylesheets and XQuery Documents 929

Important:

• Clicking a record from the table highlights the xsl:message declaration line.
• Message table values can be sorted by clicking the corresponding column header. Clicking the column header

switches the sorting order between: ascending, descending, no sort.

Stack View

The Stack view shows the current execution stack of both source and XSLT/XQuery nodes. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

During transformation two stacks are managed: one of source nodes being processed and the other for XSLT/
XQuery nodes being processed. Oxygen XML Developer shows both node types into one common stack. The
source (XML) nodes are preceded by a red color icon while XSLT/XQuery nodes are preceded by a green color
icon. The advantage of this approach is that you can always see the source scope on which an XSLT/XQuery
instruction is executed (the last red color node on the stack). The stack is oriented upside down.

Figure 424: Stack View

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line
containing the XSLT element that is displayed on the selected line from the view.

Table 38: Stack columns

Column Description

Order number, represents the depth of the node (0 is
the stack base).

XML/XSLT/XQuery Node Node from source or stylesheet document currently
being processed. One particular stack node is the
document root, noted as #document.

Attributes Attributes of the node (a list of id="value" pairs).

Resource Resource file where the node is located. The entire
path is available as tooltip.

Important: Remarks:

• Clicking a record from the stack highlights that node's location inside resource.
• Using Saxon, the stylesheet elements are qualified with XSL proxy, while using Xalan you only see their names.

(example: xsl:template using Saxon and template using Xalan).
• Only the Saxon processor shows element attributes.
• The Xalan processor shows also the built-in rules.

Output Mapping Stack View

The Output Mapping Stack view displays context data and presents the XSLT templates/XQuery elements that
generated specific areas of the output. If the view is not displayed, it can be opened by selecting it from the
Window > Show View menu.

Debugging XSLT Stylesheets and XQuery Documents 930

Figure 425: Output Mapping Stack view

The Go to action of the contextual menu takes you in the editor panel at the line containing the XSLT element
displayed in the Output Mapping Stack view.

Table 39: Output Mapping Stack columns

Column Description

The order number in the stack of XSLT templates/
XQuery elements. Number 0 corresponds to the
bottom of the stack in the status of the XSLT/
XQuery processor. The highest number corresponds
to the top of the stack.

XSL/XQuery Node The name of an XSLT template/XQuery element that
participated in the generation of the selected output
area.

Attributes The attributes of the XSLT template/XQuery node.

Resource The name of the file containing the XSLT template/
XQuery element.

Important: Remarks:

• Clicking a record highlights that XSLT template definition/XQuery element inside the resource (XSLT stylesheet
file/XQuery file).

• Saxon only shows the applied XSLT templates having at least one hit from the processor. Xalan shows all
defined XSLT templates, with or without hits.

• The table can be sorted by clicking the corresponding column header. When clicking a column header the
sorting order switches between: ascending, descending, no sort.

• Xalan shows also the built-in XSLT rules.

Related Information:
Identify the XSLT / XQuery Expression that Generated Particular Output on page 937
Stack View on page 930
Trace History View on page 931
Templates View on page 933

Trace History View

Usually the XSLT/XQuery processors signal the following events during transformation:

• - Entering a source (XML) node.
• - Leaving a source (XML) node.
• - Entering an XSLT/XQuery node.

Debugging XSLT Stylesheets and XQuery Documents 931

• - Leaving an XSLT/XQuery node.

The Trace History view catches all these events, so you can see how the process evolved. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

The red icon lines denote source nodes while the green icon lines denote XSLT/XQuery nodes. It is possible to
save the element trace in a structured XML document. The action is available on the contextual menu of the view.
Thus, you have the possibility of comparing the trace results from multiple debug sessions.

Figure 426: Trace History View

The contextual menu contains the following actions:
Go to

Moves the selection in the editor panel to the line containing the XSLT element or XML element that is
displayed on the selected line from the view;

Export to XML
Saves the entire trace list into XML format.

Table 40: Trace History columns

Column Description

Depth Shows you how deep the node is nested in the XML
or stylesheet structure. The bigger the number,
the more nested the node is. A depth 0 node is the
document root.

XML/XSLT/XQuery Node Represents the node from the processed source
or stylesheet document. One particular node is the
document root, noted as #document. Every node is
preceded by an arrow that represents what action
was performed on it (entering or leaving the node).

Attributes Attributes of the node (a list of id="value" pairs).

Resource Resource file where the node is located. The
complete path of the resource file is provided as
tooltip.

Important: Remarks:

• Clicking a record highlights that node's location inside the resource.
• Only the Saxon processor shows the element attributes.
• The Xalan processor shows also the built-in rules.

Debugging XSLT Stylesheets and XQuery Documents 932

Templates View

The xsl:template is the basic element for stylesheets transformation. The Templates view is only available during
XSLT debugging sessions and shows all xsl:template instructions used by the transformation. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Being able to see the number of hits for each of the templates allows you to get an idea of the stylesheet
coverage by template rules with respect to the input source.

Figure 427: Templates view

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line
containing the XSLT template that is displayed on the selected line from the view.

Table 41: Templates columns

Column Description

Match The match attribute of the xsl:template.

Hits The number of hits for the xsl:template. Shows how many times the XSLT processor used this
particular template.

Priority The template priority as established by XSLT processor.

Mode The mode attribute of the xsl:template.

Name The name attribute of the xsl:template.

ResourceThe resource file where the template is located. The complete path of the resource file is
available as tooltip.

Important: Remarks:

• Clicking a record highlights that template definition inside the resource.
• Saxon only shows the applied templates having at least one hit from the processor. Xalan shows all defined

templates, with or without hits.
• Template table values can be sorted by clicking the corresponding column header. When clicking a column

header the sorting order switches between: ascending, descending, no sort.
• Xalan shows also the built-in rules.

Nodes/Values Set View

The Nodes/Values Set view is always used in relation with The Variables view and the XWatch view. If the view is
not displayed, it can be opened by selecting it from the Window > Show View menu. It shows an XSLT node set
value in a tree form. The node set view is updated as response to the following events:

• You click a variable having a node set value in one of the above 2 views.
• You click a tree fragment in one of the above 2 views.
• You click an XPath expression evaluated to a node set in one of the above 2 views.

Debugging XSLT Stylesheets and XQuery Documents 933

Figure 428: Node Set view

The nodes / values set is presented in a tree-like fashion. The total number of items is presented in the title bar.
Nodes from a defined namespace bound to a prefix are displayed using the qualified name. If the namespace is
not bound to a prefix the namespace URI is presented before the node name. The value of the selected attribute
or node is displayed in the right side panel.

Important: Remarks:

• For longer values in the right side panel, the interface displays it with an ellipsis (...) at the end. A more detailed
value is available as a tooltip when hovering over it.

• Clicking a record highlights the location of that node in the source or stylesheet view.

Variables View

The Variables view displays variables and parameters (local and global), along with their values. If the view is not
displayed, it can be opened by selecting it from the Window > Show View menu.

Variables and parameters play an important role during an XSLT/XQuery transformation. Oxygen XML Developer
uses the following icons to differentiate variables and parameters:

• - Global variable.
• - Local variable.
• - Global parameter.
• - Local parameter.

The following value types are available:

• Boolean
• String
• Date - XSLT 2.0 / 3.0 only.
• Number
• Set
• Object
• Fragment - Tree fragment.
• Any
• Undefined - The value was not yet set, or it is not accessible.

Note:

When Saxon 6.5 is used, if the value is unavailable, then the following message is displayed in the Value field:
"The variable value is unavailable".

When Saxon 9 is used:

• If the variable is not used, the Value field displays "The variable is declared but never used".
• If the variable value cannot be evaluated, the Value field displays "The variable value is unavailable".

• Document
• Element
• Attribute

Debugging XSLT Stylesheets and XQuery Documents 934

• ProcessingInstruction
• Comment
• Text
• Namespace
• Evaluating - Value under evaluation.
• Not Known - Unknown types.

Figure 429: Variables View

Table 42: Variables Columns

Column Description

Name Name of variable / parameter.

Value Type Type of variable/parameter.

Value Current value of variable / parameter.

The value of a variable (the Value column) can be copied to the clipboard for pasting it to other editor area with
the action Copy value from the contextual menu of the table from the view. This is useful in case of long and
complex values that are not easy to remember by looking at them once.

Important: Remarks:

• Local variables and parameters are the first entries presented in the table.
• Clicking a record highlights the variable definition line.
• Variable values could differ depending on the transformation engine used or stylesheet version set.
• If the value of the variable is a node set or a tree fragment, clicking it causes the Node Set view to be shown

with the corresponding set of values.
• Variable table values can be sorted by clicking the corresponding column header. Clicking the column header

switches between the orders: ascending, descending, no sort.

Multiple Output Documents in XSLT 2.0 and XSLT 3.0
For XSLT 2.0 and XSLT 3.0 stylesheets that store the output in multiple files by using the xsl:result-
document instruction, the content of the file created in this way is displayed dynamically while the
transformation is running in an output view. There is one view for each xsl:result-document instruction so
that the output is not mixed while still being presented in multiple views.

Working with the XSLT / XQuery Debugger
The topics in this section describe how to work with the debugger in some of the most common use cases. The
information includes the steps typically involved in a debugging process, how to use breakpoints, and how to
identify an expression that generates a particular output.

For even more information, watch our XSLT Debugger video demonstration.

Debugging XSLT Stylesheets and XQuery Documents 935

https://www.oxygenxml.com/demo/XSLT_Debugger.html

Steps in a Typical Debugging Process
To debug a stylesheet or XQuery document, follow this procedure:

1. Open the source XML document and the XSLT/XQuery document.
2. If you are in the Editor perspective, switch to the XSLT Debugger or XQuery Debugger perspective with one of

the following actions:

• Select Window > Open perspective > XSLT Debugger/XQuery Debugger or the XSLT
Debugger/ XQuery Debugger button in the top-right corner of the interface.

• Select Document > XML Document > Debug scenario or use the Debug scenario action on the toolbar..
This action initializes the Debugger perspective with the parameters of the transformation scenario. Any
modification applied to the scenario parameters (the transformer engine, XSLT parameters, transformer
extensions, etc.) will be saved back in the scenario when exiting from the Debugger perspective.

3. Select the source XML document in the XML source selector of the Control toolbar. In the case of XQuery
debugging, if your XQuery document has no implicit source, set the source selector value to NONE.

4. Select the XSLT/XQuery document in the XSLT/XQuery selector of the Control toolbar.
5. Set XSLT/XQuery parameters from the button available on the Control toolbar.
6. Set one or more breakpoints.
7. Step through the stylesheet using the following buttons available on the Control toolbar:

• Step into
• Step over
• Step out
• Run
• Run to cursor
• Run to end
• Pause
• Stop

8. Examine the information in the information views to find the bug in the transformation process.
You may find the procedure for determining the XSLT template/XQuery element that generated an output section
useful for fixing bugs in the transformation.

Related Information:
Identify the XSLT / XQuery Expression that Generated Particular Output on page 937

Using Breakpoints
The Oxygen XML Developer XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather
information about variables and processor execution at particular points. To ensure breakpoints are persistent
between work sessions, they are saved at project level. You can set a maximum of 100 breakpoints per project.

Related Information:
Breakpoints View on page 928

Inserting Breakpoints

Breakpoints can be set in XSLT/XQuery documents and XML documents in XSLT/XQuery debugging sessions.

To insert a breakpoint, follow these steps:

1. Click the line where you want to insert the breakpoint in the XML source document or the XSLT/XQuery
document.
You can only set breakpoints on the XML source in XSLT or XQuery debugging sessions.
Breakpoints are automatically created on the ending line of a start tag, even if you click a different line.

Debugging XSLT Stylesheets and XQuery Documents 936

2. Click the vertical stripe on the left side of the editor panel or select Create Breakpoint (Shift+F7) from the
Edit > Breakpoints menu.

Once you insert a breakpoint, it is automatically added to the list in the Breakpoints view and you can edit
its associated condition. A breakpoint can have an associated break condition that represents an XPath
expression evaluated in the current debugger context. In order to be processed, their evaluation result should
be a boolean value. A breakpoint with an associated condition only stops the execution of the Debugger if the
breakpoint condition is evaluated as true.

Figure 430: Example: Breakpoints

Related Information:
Breakpoints View on page 928

Removing Breakpoints

Only one action is required to remove a breakpoint:

Click the breakpoint icon () in the vertical stripe on the left side of the editor panel or right-click the
breakpoint and select Renove or Remove all.

Identify the XSLT / XQuery Expression that Generated Particular Output
To quickly spot the XSLT templates or XQuery expressions with problems it is important to know what XSLT
template in the XSLT stylesheet (or XQuery expression in the XQuery document) and what element in the source
XML document generated a specified area in the output.

Some of the debugging capabilities (for example, Step in) can be used for this purpose. Using Step in you can see
how output is generated and link it with the XSLT/XQuery element being executed in the current source context.
However, this can become difficult on complex XSLT stylesheets or XQuery documents that generate a large
output.

You can click the text from the Text output view or XHTML output view and the editor will select the XML source
context and the XSLT template/XQuery element that generated the text. Also, inspecting the whole stack of
XSLT templates/XQuery elements that determined the state of the XSLT/XQuery processor at the moment of
generating the specified output area speeds up the debugging process.

1. Switch to the XSLT Debugger or XQuery Debugger perspective with one of the following actions:

• Select Window > Open perspective > XSLT Debugger/XQuery Debugger or the XSLT
Debugger/ XQuery Debugger button in the top-right corner of the interface.

• Select Document > XML Document > Debug scenario or use the Debug scenario action on the toolbar..
This action initializes the Debugger perspective with the parameters of the transformation scenario. Any
modification applied to the scenario parameters (the transformer engine, XSLT parameters, transformer
extensions, etc.) will be saved back in the scenario when exiting from the Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar. In the case of XQuery
debugging without an implicit source choose the NONE value.

3. Select the XSLT/XQuery document in the XSLT/XQuery selector of the Control toolbar.
4. Select the XSLT/XQuery engine in the XSLT/XQuery engine selector of the Control toolbar.
5. Set XSLT/XQuery parameters from the button available on the Control toolbar.
6. Apply the XSLT stylesheet or XQuery transformation using the Run to end button that is available on the

Control toolbar.
7. Inspect the mapping by clicking a section of the output from the Text view tab or from the XHTML view tab of

the Output document view .

Debugging XSLT Stylesheets and XQuery Documents 937

Figure 431: XHTML Output to Source Mapping

Debugging XSLT Stylesheets and XQuery Documents 938

Figure 432: Text Output to Source Mapping

This action will highlight the XSLT / XQuery element and the XML source context. This XSLT template/XQuery
element that is highlighted in the XSLT/XQuery editor represents only the top of the stack of XSLT templates/
XQuery elements that determined the state of the XSLT/XQuery processor at the moment of generating the
clicked output section. In the case of complex transformations inspecting the whole stack of XSLT templates/
XQuery elements speeds up the debugging process. This stack is available in the Output Mapping Stack view.

Related Information:
Output Mapping Stack View on page 930
Trace History View on page 931
Templates View on page 933

Debugging Java Extensions
The XSLT/XQuery debugger does not step into Java classes that are configured as XSLT/XQuery extensions of
the transformation. To step into Java classes, inspect variable values, and set breakpoints in Java methods, you
can set up a Java debug configuration in an IDE (such as the Eclipse SDK) as described in the following steps:

1. Create a debug configuration.
a) Set at least 256 MB as heap memory for the Java virtual machine (recommended 512 MB) by setting the -

Xmx parameter in the debug configuration (for example, “-Xmx512m”).

Debugging XSLT Stylesheets and XQuery Documents 939

b) Make sure the [OXYGEN_INSTALL_DIR]/lib/oxygen.jar file and your Java extension classes are on
the Java classpath.
The Java extension classes should be the same classes that were set as an extension of the XSLT/XQuery
transformation in the debugging perspective.

c) Set the class ro.sync.exml.Oxygen as the main Java class of the configuration.
The main Java class ro.sync.exml.Oxygen is located in the oxygen.jar file.

2. Start the debug configuration.
Now you can set breakpoints and inspect Java variables as in any Java debugging process executed in the
selected IDE (Eclipse SDK, and so on.).

Supported Processors for XSLT / XQuery Debugging
The following built-in XSLT processors are integrated in the debugger and can be selected in the Control Toolbar:

• Saxon 9.7.0.15 HE (Home Edition) - a limited version of the Saxon 9 processor, capable of running XSLT 1.0,
XSLT 2.0 / 3.0 basic and XQuery 1.0 transformations, available in both the XSLT debugger and the XQuery one,

• Saxon 9.7.0.15 PE (Professional Edition) - capable of running XSLT 1.0 transformations, XSLT 2.0 basic ones
and XQuery 1.0 ones, available in both the XSLT debugger and the XQuery one,

• Saxon 9.7.0.15 EE (Enterprise Edition) - a schema aware processor, capable of running XSLT 1.0
transformations, XSLT 2.0 /3.0 basic ones, XSLT 2.0 / 3.0 schema aware ones and XQuery 1.0 / 3.0 ones,
available in both the XSLT debugger and the XQuery debugger,

• Saxon 6.5.5 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger,
• Xalan 2.7.1 - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger.

Performance Profiling of XSLT Stylesheets and XQuery Documents
This chapter explains the user interface and how to use the profiler for finding performance problems in XSLT
transformations and XQuery ones.

XSLT/XQuery Performance Profiling Overview
Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery
transformation to not meet customer expectations or you are trying to proactively identify issues prior to
deploying your XSLT/XQuery transformation, using the XSLT/XQuery profiler feature is essential to helping you
save time and ultimately ensure a better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processors that could be used for
debugging and it is available from the debugging perspective.

Enabling and disabling the profiler is controlled by the / Profiler button from the debugger control toolbar.
The XSLT/XQuery profiler is off by default. This option is not available during a debugger session so you should
set it before starting the transformation.

Working with XSLT/XQuery Profiler
Profiling activity is linked with debugging activity, so the first step in profiling is to switch to the debugging
perspective and follow the corresponding procedure for debugging (see Steps in a Typical Debugging Process on
page 936).

Immediately after turning the profiler on two new information views are added to the current debugger
information views:

• Invocation tree view on left side
• Hotspots view on right side

Profiling data is available only after the transformation ends successfully.

Debugging XSLT Stylesheets and XQuery Documents 940

Looking to the right side (Hotspots view), you can immediately spot the time the processor spent in each
instruction. As an instruction usually calls other instructions the used time of the called instruction is extracted
from the duration time of the caller (the hotspot only presents the inherent time of the instruction).

Looking to the left side (Invocation tree view), you can examine how style instructions are processed. This result
view is also named call-tree, as it represents the order of style processing. The profiling result shows the duration
time for each of the style-instruction including the time needed for its called children.

Figure 433: Source backmapping

In any of the above views you can use the backmapping feature to find the XSLT stylesheet or XQuery expression
definition. Clicking the selected item cause Oxygen XML Developer to highlight the XSLT stylesheet or XQuery
expression source line where the instruction is defined.

When navigating through the trees by opening instruction calls, Oxygen XML Developer automatically expands
instructions that are only called by one other instruction themselves.

The profiling data can be saved into XML and HTML format. On any of the above views, use the contextual menu
and select the corresponding choice. Basically saving HTML means saving XML and applying an XSLT stylesheet
to render the report as XML. These stylesheets are included in the Oxygen XML Developer distribution (see the
subfolder [OXYGEN_INSTALL_DIR]/frameworks/profiler/) so you can make your own report based on the
profiling raw data.

If you want to change the XSLT/XQuery profiler settings, use the contextual menu and choose the corresponding
View settings entry.

CAUTION: Profiling exhaustive transformation may run into an OutOfMemory error due to the large
amount of information being collected. If this is the case you can close unused projects when running the
profiling or use high values for Java VM options -Xms and -Xmx. If this does not help you can shorten
your source XML file and try again.

To watch our video demonstration about the XSLT/XQuery Profiler, go to https://www.oxygenxml.com/demo/
XSLT_Profiling.html.

Invocation Tree View

The Invocation Tree view shows a top-down call tree that represents how XSLT instructions or XQuery
expressions are processed. If the view is not displayed, it can be opened by selecting it from the Window > Show
View menu.

Debugging XSLT Stylesheets and XQuery Documents 941

https://www.oxygenxml.com/demo/XSLT_Profiling.html
https://www.oxygenxml.com/demo/XSLT_Profiling.html

Figure 434: Invocation Tree View

The entries in the invocation tree include a few possible icons that indicate the following:

• - Points to a call whose inherent time is insignificant compared to its total time.
• - Points to a call whose inherent time is significant compared to its total time (greater than 1/3rd of its total

time).

Every entry in the invocation tree includes textual information that depends on the XSLT/XQuery profiler settings:

• A percentage number of the total time that is calculated with respect to either the root of the tree or the calling
instruction.

• A total time measurement in milliseconds or microseconds. This is the total execution time that includes calls
into other instructions.

• A percentage number of the inherent time that is calculated with respect to either the root of the tree or the
calling instruction.

• An inherent time measurement in milliseconds or microseconds. This is the inherent execution time of the
instruction.

• An invocation count that shows how often the instruction has been invoked on this call-path.
• An instruction name that contains also the attributes description.

Hotspots View

The Hotspots view displays a list of all instruction calls that lie above the threshold defined in the XSLT/XQuery
profiler settings. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 435: Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated and
shown.

Every hotspot is described by the values from the following columns:

• Instruction - The name of the instruction.

Debugging XSLT Stylesheets and XQuery Documents 942

• Time - The inherent time in milliseconds or microseconds of how much time has been spent in the hotspot,
along with a bar whose length is proportional to this value. All calls into this instruction are summed up
regardless of the particular call sequence.

• Hits - The invocation count of the hotspot entry.

If you click the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it that depends on the XSLT/XQuery profiler
settings:

• A percentage number that is calculated with respect to either the total time or the called instruction.
• A time measured in milliseconds or microseconds of how much time has been contributed to the parent

hotspot on this call-path.
• An invocation count that shows how often the hotspot has been invoked on this call-path.

Note: This is not the number of invocations of this instruction.
• An instruction name that also contains its attributes.

Debugging XSLT Stylesheets and XQuery Documents 943

Using the Oxygen XML SDK 15
Topics:

• Extending Oxygen XML Developer with Plugins

Oxygen XML Developer has an SDK that can be used as a base to develop frameworks and plugins. The SDK is
a Java library available under the Oxygen XML SDK licensing terms and is delivered with a set of examples that
demonstrate how to extend Oxygen XML functionality through API calls. The SDK is available on our website at https://
www.oxygenxml.com/oxygen_sdk.html.

Extending Oxygen XML Developer with Plugins
A plugin is a software component that adds extra functionality to the standalone version of the application using
a series of application-provided extension points.

This chapter explains how to write and install a plugin for the standalone version of Oxygen XML Developer.
The Plugins Development Kit contains sample plugins (source and compiled Java code) and the Javadoc API
necessary for developing custom plugins.

If you want to customize the Oxygen XML Developer Eclipse plugin you can look at the Eclipse IDE Integration
Sample Project to see how an Eclipse plugin can interact with the Oxygen XML Developer APIs.

General Configuration of an Oxygen XML Developer Plugin
The Oxygen XML Developer functionality can be extended with plugins that implement a clearly specified API. On
the Oxygen XML Developer website, there is an SDK with sample plugins (source and compiled Java code) and
the Javadoc API necessary for developing custom plugins.

The minimal implementation of a plugin must provide:

• A Java class that extends the ro.sync.exml.plugin.Plugin class.
• A Java class that implements the ro.sync.exml.plugin.PluginExtension interface.
• A plugin descriptor file called plugin.xml.

A ro.sync.exml.plugin.PluginDescriptor object is passed to the constructor of the subclass of the
ro.sync.exml.plugin.Plugin class. It contains the following data items about the plugin:

• basedir (File object) - The base directory of the plugin.
• description (String object) - The description of the plugin.
• name (String object) - The name of the plugin.
• vendor (String object) - The vendor name of the plugin.
• version (String object) - The plugin version.
• id (String object) - A unique identifier.
• classLoaderType - You can choose between preferOxygenResources (default value) and

preferReferencedResources. When choosing preferOxygenResources, the libraries that are
referenced in the Oxygen XML Developer lib directory will have precedence over those referenced
in the plugin.xml configuration file, if they have the same package names. When choosing
preferReferencedResources, the libraries that are referenced in the plugin.xml configuration file will
have precedence over those found in the Oxygen XML Developer lib directory, if they have the same package
names.

The plugin descriptor is an XML file that defines how the plugin is integrated in Oxygen XML Developer and what
libraries are loaded. The structure of the plugin descriptor file is fully described in a DTD grammar located in

944

https://www.oxygenxml.com/sdk_agreement.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_standalone_plugins.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_eclipse_integration.html
https://www.oxygenxml.com/oxygen_sdk/oxygen_eclipse_integration.html
https://www.oxygenxml.com/oxygen_sdk_maven.html

[OXYGEN_INSTALL_DIR]/plugins/plugin.dtd. Here is a sample plugin descriptor used by the Capitalize
Lines sample plugin:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="Capitalize Lines"
 description="Capitalize the first character on each line"
 version="1.0.0"
 vendor="SyncRO"
 class="ro.sync.sample.plugin.caplines.CapLinesPlugin">
 <runtime>
 <library name="lib/caplines.jar"/>
 </runtime>
 <extension type="selectionProcessor"
 class="ro.sync.sample.plugin.caplines.CapLinesPluginExtension"
 keyboardShortcut="ctrl shift EQUALS"/>
</plugin>

If your plugin is of the Selection, Document or General types, and thus contributes an action either to the
contextual menu or to the main menu of the Text editing mode, then you can assign a keyboard shortcut for it.
You can use the keyboardShortcut attribute for each extension element to specify the desired shortcut.

Tip: To compose string representations of the desired shortcut keys you can go to the Oxygen XML Developer
Menu Shortcut Keys preferences page, press Edit on any action, press the desired key sequence and use the
representation that appears in the Edit dialog box.

Referencing Libraries

To reference libraries, use either of the following elements:

• <library name="libraryName" scope="global"/> - To point to specific libraries.

Note: You can use the ${oxygenInstallDir} editor variable as part of the value of the name attribute. You
can also use a system variable (${system(var.name)}) or environment variable (${env(VAR_NAME)}).

• <librariesFolder name="libraryFolderPath" scope="global"/> - To point to multiple libraries
located in the specified folder.

Both elements support the scope attribute that defines the loading priority. It can have one of the following three
values:

• local - The library is loaded in the plugin's own class loader. This is the default behavior.
• global - The library is loaded in the main application class loader as the last library in the list (as if it would be

present in the application lib directory).
• globalHighPriority - The library is loaded in the main application class loader as the first library in the list

(useful to patch certain resources located in other JARs of the application).

Installing an Oxygen XML Developer Plugin
Choose one of the following methods to install a plugin in Oxygen XML Developer:

Automatic Method

To install a new add-on, follow these steps:

1. Go to Help > Install new add-ons.
2. In the displayed dialog box, fill-in the Show add-ons from with the update site that hosts add-ons. If you

want to see all Oxygen XML Developer default add-ons, choose the ALL AVAILABLE SITES option from the
Show add-ons from drop down. The add-ons list contains the name, status, update version, Oxygen XML
Developer version, and the type of the add-on (either framework, or plugin). A short description of each add-on
is presented under the add-ons list.

Note: To see all the add-ons from the remote update site, deselect Show only compatible add-ons and Show
only the latest version of the add-ons. Incompatible add-ons are shown only to acknowledge their presence
on the remote update site. You cannot install an incompatible add-on.

3. By default, only the latest versions of the add-ons that are compatible with the current version of Oxygen XML
Developer are displayed.

4. Choose the add-ons you want to install, press the Next button, then follow the on-screen instructions.

Using the Oxygen XML SDK 945

Note: Accepting the license agreement of the add-on is a mandatory step in the installation process.

Note: All add-ons are installed in the extensions directory inside the Oxygen XML Developer preferences
directory.

Manual Method

To manually install a plugin in Oxygen XML Developer, follow these steps:

1. Go to the Oxygen XML Developer installation directory and locate the plugins directory.

Note: The plugins directory contains all the plugins available to Oxygen XML Developer.
2. In the plugins directory, create a subfolder to store the plugin files.
3. In the new folder, place the plugin descriptor file (plugin.xml), the Java classes of the plugin, and the other

files that are referenced in the descriptor file.
4. Restart Oxygen XML Developer.

Types of Plugin Extensions Available with the SDK
A plugin can have one or more defined plugin extensions that provide functionality to the application. This section
presents the plugin extensions that are available.

Additional Framework Plugin Extension
This type of plugin allows you to add a new framework straight from the plugin.

To specify additional frameworks, edit the plugin descriptor and add extension elements that point to them, as
in the following example:

<extension type="AdditionalFrameworks" path="framework_directory"/>

The path attribute should be a sub-directory of the plugin. If the plugin is installed as an add-on, the new
framework will be set as read-only and editing it will only be possible if you duplicate it. If the plugin is installed in
the [OXYGEN_INSTALL_DIR]/plugins directory, the new frameworks will be editable.

Components Validation Plugin Extension
This type of plugin allows you to customize the menus, toolbars, and other components by enabling or filtering
them from the user interface.

This plugin provides the following API:

• The interface ComponentsValidatorPluginExtension - There is one method that must be implemented:

• getComponentsValidator() - Returns a ro.sync.exml.ComponentsValidator implementation
class used for validating the menus, toolbars, and their actions.

• The ComponentsValidator interface provides methods to filter various features from being added to the
GUI of Oxygen XML Developer:

• validateMenuOrTaggedAction(String[] menuOrActionPath) - Checks if a menu or a tag action
from a menu is allowed and returns a boolean value. A tag is used to uniquely identifying an action. The
String[] argument is the tag of the menu / action and the tags of its parent menus if any.

• validateToolbarTaggedAction(String[] toolbarOrAction) - Checks if an action from a
toolbar is allowed and returns a boolean value. The String[] argument is the tag of the action from a
toolbar and the tag of its parent toolbar if any.

• validateComponent(String key) - Checks if the given component is allowed and returns a boolean
value. The String argument is the tag identifying the component. You can remove toolbars entirely using
this callback.

• validateAccelAction(String category, String tag) - Checks if the given accelerator action is
allowed to appear in the GUI and returns a boolean value. An accelerator action can be uniquely identified
so it will be removed both from toolbars or menus. The first argument represents the action category, the
second is the tag of the action.

Using the Oxygen XML SDK 946

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/ComponentsValidator.html

• validateContentType(String contentType) - Checks if the given content type is allowed and
returns a boolean value. The String argument represents the content type. You can instruct Oxygen
XML Developer to ignore content types such as text / xsl or text / xquery.

• validateOptionPane(String optionPaneKey) - Checks if the given options page can be added in
the preferences option tree and returns a boolean value. The String argument is the option pane key.

• validateOption(String optionKey) - Checks if the given option can be added in the option page
and returns a boolean value. The String argument is the option key. This method is mostly used for
internal use and it is not called for each option in a preferences page.

• validateLibrary(String library) - Checks if the given library is allowed to appear listed in the
About dialog box and returns a boolean value. The String argument is the library. This method is mostly
for internal use.

• validateNewEditorTemplate(EditorTemplate editorTemplate) - Checks if the given template
for a new editor is allowed and returns a boolean value. The EditorTemplate argument is the editor
template. An EditorTemplate is used to create an editor for a given extension. You can thus filter what
appears in the list of the New dialog box.

• isDebuggerperspectiveAllowed() - Checks if the debugger perspective is allowed and returns a
boolean value.

• validateSHMarker(String marker) - Checks if the given marker is allowed and returns a boolean
value. The String argument represents the syntax highlight marker to be checked. If you decide to filter
certain content types, you can also filter the syntax highlight options so that the content type is no longer
present in the Preferences options tree.

• validateToolbarComposite(String toolbarCompositeTag) - Checks if the toolbar composite is
available. A toolbar composite is a toolbar component such as a drop-down menu.

Tip: The best way to decide what to filter is to observe the values that Oxygen XML Developer passes when these
callbacks are called. You have to create an implementation for this interface that lists in the console all values
received by each function. Then you can decide on the values to filter and act accordingly.

Custom Protocol Plugin Extension
This type of plugin allows you to work with a custom designed protocol for retrieving and storing files.

It provides the following API:

• The interface URLStreamHandlerPluginExtension - There is one method that must be implemented:

• getURLStreamHandler(String protocol) - It takes as an argument the name of the protocol and
returns a URLStreamHandler object, or null if there is no URL handler for the specified protocol.

This type of plugin extension can be usually combined with a Workspace Access plugin extension that can add a
custom toolbar with custom actions for opening documents from a certain source.

As an alternative, two older plugin extensions can also be used to add a toolbar action for showing a custom URL
chooser:

• With the help of the URLChooserPluginExtension2 interface, it is possible to create your own dialog box
that works with the custom protocol. This interface provides two methods:

• chooseURLs(StandalonePluginWorkspace workspaceAccess) - Returns a URL[] object that
contains the URLs the user decided to open with the custom protocol. You can invoke your own URL
chooser dialog box here and then return the chosen URLs having your own custom protocol. You have
access to the workspace of Oxygen XML Developer.

• getMenuName() - Returns a String object that is the name of the entry added in the File menu.
• With the help of the URLChooserToolbarExtension interface, it is possible to provide a toolbar entry that

is used for launching the custom URLs chooser from the URLChooserPluginExtension implementation.
This interface provides two methods:

• getToolbarIcon() - Returns the javax.swing.Icon image used on the toolbar.
• getToolbarTooltip() - Returns a String that is the tooltip used on the toolbar button.

Lock Handler Plugin Extension
This type of plugin extension is used for locking resources from a specific protocol.

Using the Oxygen XML SDK 947

It provides the following API:

• The interface LockHandlerFactoryPluginExtension.

You need to implement the following two methods:

• LockHandler getLockHandler()

Gets the lock handler for the current handled protocol. Might be null if not supported.
• boolean isLockingSupported(String protocol)

Checks if a lock handler can be provided for a specific protocol.

To use this type of extension in your plugin, create an extension of LockHandlerFactory type in your
plugin.xml file and specify the class implementing LockHandlerFactoryPluginExtension:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomLockHandler">
 <runtime>

 </runtime>

 <extension type="LockHandlerFactory"
 class="LockHandlerFactoryPluginExtensionImpl"/>

</plugin>

Open Redirect Plugin Extension
This type of plugin is useful for opening multiple files with only one open action.

For example, when a zip archive or an ODF file or an OOXML file is open in the Archive Browser view a
plugin of this type can decide to open a file also from the archive in an XML editor panel. This file can be the
document.xml main file from an OOXML file archive or a specific XML file from a zip archive.

The plugin must implement the interface OpenRedirectExtension. It only has one callback: redirect(URL)
that receives the URL of the file opened by the Oxygen XML Developer user. If the plugin decides to open also
other files it must return an array of information objects (OpenRedirectInformation[]) that correspond to
these files. Such an information object must contain the URL that is opened in a new editor panel and the content
type (for example, text/xml). The content type is used for determining the type of editor panel. A null content
type allows auto-detection of the file type.

Option Page Plugin Extension
This type of plugin extension allows you to add custom Preferences pages.

The extension must implement the ro.sync.exml.plugin.option.OptionPagePluginExtension
interface. The provided callbacks allow you to create a custom Swing component that will be added to the page
and to react to various calls to persistently save the page settings using the OptionsStorage API.

All preferences pages that are contributed by a plugin are listed in the Preferences dialog box in the Plugins
category. As long as the added preferences page has the same name as its plugin, it will be promoted to the first
level of the hierarchy within the Plugins category.

The plugin.xml configuration file can specify one or more such extensions using constructs like this:

<extension type="OptionPage" class="my.pack.CustomOptionPagePluginExtension"/>

Resource Locking Custom Protocol Plugin Extension
This type of plugin allows you to work with a custom designed protocol for retrieving and storing files and it can
lock a resource when opening it in Oxygen XML Developer.

This type of plugin extends the custom protocol plugin type with resource locking support and provides the
following API:

• The interface URLStreamHandlerWithLockPluginExtension - The plugin receives callbacks following
the simple protocol for resource locking and unlocking imposed by Oxygen XML Developer.

There are two additional methods that must be implemented:

Using the Oxygen XML SDK 948

• getLockHandler() - Returns a LockHandler implementation class with the implementation of the lock
specific methods from the plugin.

• isLockingSupported(String protocol) - Returns a boolean that is true if the plugin accepts to
manage locking for a certain URL protocol scheme (such as ftp, http, https, or customName).

Targeted URL Stream Handler Plugin Extension
This type of plugin can be used when it is necessary to impose custom URL stream handlers for specific URLs.

This plugin extension can handle the following protocols: http, https, ftp or sftp, for which Oxygen XML
Developer usually provides specific fixed URL stream handlers. If it is set to handle connections for a specific
protocol, this extension will be asked to provide the URL stream handler for each opened connection of a URL
having that protocol.

To use this type of plugin, you have to implement the
ro.sync.exml.plugin.urlstreamhandler.TargetedURLStreamHandlerPluginExtension interface,
that provides the following methods:

• boolean canHandleProtocol(String protocol)

This method checks if the plugin can handle a specific protocol. If this method returns true for a specific
protocol, the getURLStreamHandler(URL) method will be called for each opened connection of a URL
having this protocol.

• URLStreamHandler getURLStreamHandler(URL url)

This method provides the URL handler for the specified URL and it is called for each opened connection of a
URL with a protocol for which the canHandleProtocol(String) method returns true.

If this method returns null, the default Oxygen XML Developer URLStreamHandler is used.

To use this type of extension in your plugin, create an extension of TargetedURLHandler type in your
plugin.xml file and specify the class that implements TargetedURLStreamHandlerPluginExtension:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomTargetedURLStreamHandlerPlugin">
 <runtime>

 </runtime>

 <extension type="TargetedURLHandler"
 class="CustomTargetedURLStreamHandlerPluginExtension"/>

</plugin>

This extension can be useful in situations when connections opened from a specific host must be handled in
a particular way. For example, the Oxygen XML Developer HTTP URLStreamHandler may not be compatible
for sending and receiving SOAP using the SUN Web Services implementation. In this case, you can override the
stream handler (set by Oxygen XML Developer) to use the default SUN URLStreamHandler, since it is more
compatible with sending and receiving SOAP requests.

public class CustomTargetedURLStreamHandlerPluginExtension
 implements TargetedURLStreamHandlerPluginExtension {

 @Override
 public boolean canHandleProtocol(String protocol) {
 boolean handleProtocol = false;
 if ("http".equals(protocol) || "https".equals(protocol)) {
 // This extension handles both HTTP and HTTPS protocols
 handleProtocol = true;
 }
 return handleProtocol;
 }

 @Override
 public URLStreamHandler getURLStreamHandler(URL url) {
 // This method is called only for the URLs with a protocol
 // where canHandleProtocol(String) method returns true (HTTP and HTTPS)

 URLStreamHandler handler = null;

 String host = url.getHost();
 String protocol = url.getProtocol();
 if ("some_host".equals(host)) {
 // When there are connections opened from some_host, the SUN HTTP(S)

Using the Oxygen XML SDK 949

 // handlers are used
 if ("http".equals(protocol)) {
 handler = new sun.net.www.protocol.http.Handler();
 } else {
 handler = new sun.net.www.protocol.https.Handler();
 }
 }
 return handler;
 }
}

Workspace Access Plugin Extension
This type of plugin allows you to contribute actions to the main menu and toolbars, create custom views, interact
with the application workspace, make modifications to opened documents, and add listeners for various events.

Many complex integrations (such as integrations with Content Management Systems) usually requires access
to some workspace resources such as toolbars, menus, views, and editors. This type of plugin is also useful
because it allows you to make modifications to the XML content of an opened editor.

The plugin must implement the ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension
interface. The callback method applicationStarted of this interface allows access to a parameter of the
ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace type (allows for API access
to the application workspace).

The StandalonePluginWorkspace interface has three methods that can be called to customize toolbars,
menus, and views:

• addToolbarComponentsCustomizer - Contributes to or modifies existing toolbars. You can specify
additional toolbar IDs in the associated plugin.xml descriptor file using the following construct:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
 <runtime>

 </runtime>

 <extension type="WorkspaceAccess"/>

 <toolbar id="SampleID" initialSide="NORTH" initialRow="1"/>
</plugin>

The toolbar element adds a toolbar in the Oxygen XML Developer interface and allows you to contribute
your own plugin-specific actions. The following attributes are supported:

• id - Unique identifier for the toolbar.
• initialSide - Specifies the place where the toolbar is initially displayed. The allowed values are NORTH

and SOUTH.
• initialRow - Specifies the initial row on the specified side where the toolbar is displayed. For example,

the first toolbar has an initial row of 0 and the next toolbar has an initial row of 1.

The ro.sync.exml.workspace.api.standalone.ToolbarInfo toolbar component information with the
specified ID will be provided to you by the customizer interface. Therefore, you will be able to provide Swing
components that will appear on the toolbar when the application starts.

• addViewComponentCustomizer - Contributes to or modifies existing views, or contributes to the reserved
custom view. You can specify additional view IDs in the associated plugin.xml descriptor using the
following construct:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
 <runtime>

 </runtime>

 <extension type="WorkspaceAccess"/>

 <view id="SampleID" initialSide="WEST" initialRow="0"/>
</plugin>

The view element adds a view in the Oxygen XML Developer interface and allows you to contribute your own
plugin-specific UI components. The following attributes are supported:

• id - Unique identifier of the view component.

Using the Oxygen XML SDK 950

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/workspace/WorkspaceAccessPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/ToolbarInfo.html

• initialSide - Specifies the place where the view is initially displayed. The allowed values are: NORTH,
SOUTH, EAST, and WEST.

• initialRow - Specifies the initial row on the specified side where the view is displayed. For example, in
Oxygen XML Developer, the Project view has an initial row of 0 and the Outline view has an initial row of 1.
Both views are in the WEST part of the workbench.

• initialState - Specifies the initial state of the view. The allows values are: hidden, docked,
autohide, and floating. By default, the view is visible and docked.

The ro.sync.exml.workspace.api.standalone.ViewInfo view component information with the
specified ID will be provided to you by the customizer interface. Therefore, you will be able to provide Swing
components that will appear on the view when the application starts.

• addMenuBarCustomizer - Contributes to or modifies existing menu components.

Access to the opened editors can be done by first getting access to all URLs opened in the
workspace using the StandalonePluginWorkspace.getAllEditorLocations(int
editingArea) API method. Using the URL of an opened resource, you can gain access to it using the
StandalonePluginWorkspace.getEditorAccess(URL location, int editingArea) API method. A
ro.sync.exml.workspace.api.editor.WSEditor then allows access to the current editing page.

A special editing API is supported for the Text mode
(ro.sync.exml.workspace.api.editor.page.text.WSTextEditorPage).

To be notified when editors are opened, selected, and closed, you can use the
StandalonePluginWorkspace.addEditorChangeListener API method to add a listener.

Adding a Custom View in Oxygen XML Developer

To add a custom view in Oxygen XML Developer, follow this procedure:

1. In your plugins directory, locate the plugin.xml descriptor file. Define the ID of the view you want to add
and specify the location where it will be placed:

<view id="SampleWorkspaceAccessID" initialSide="WEST" initialRow="0"/>

2. In your Workspace Access Plugin Extension on page 950 implementation, where the applicationStarted
callback is received, add a view component customizer like this:

pluginWorkspaceAccess.addViewComponentCustomizer(new ViewComponentCustomizer() {
 public void customizeView(ViewInfo viewInfo) {
 if(
 //The view ID defined in the "plugin.xml"
 "SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {
 cmsMessagesArea = new JTextArea("CMS Session History:");
 viewInfo.setComponent(new JScrollPane(cmsMessagesArea));
 viewInfo.setTitle("CMS Messages");
 viewInfo.setIcon(Icons.getIcon(Icons.CMS_MESSAGES_CUSTOM_VIEW_STRING));
 }
 }
});

3. Define the cmsMessagesArea as a static field (if you can access the messages area from anywhere in your
code).

Related Information:

Workspace Access Plugin Extension (JavaScript-Based)
This is a JavaScript-based plugin extension that allows you to contribute actions to the main menu and toolbars,
create custom views, interact with the application workspace, make modifications to opened documents, and add
listeners for various events.

This extension can use the same API as the Workspace Access plugin extension, but the implementation is
JavaScript-based and uses the bundled Rhino library to create and work with Java API from the JavaScript code.

The plugin descriptor file (named plugin.xml) needs to reference a JavaScript file, as in the following example:

<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">
<plugin
 id="unique.id.value"
 name="Add Action To DITA Maps Manager popup-menu"
 description="Plugin adds action to DITA Maps Manager contextual menu."
 version="1.0"
 vendor="Syncro Soft"

Using the Oxygen XML SDK 951

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/WSEditor.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/editor/page/text/WSTextEditorPage.html
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Scripting_Java

 class="ro.sync.exml.plugin.Plugin"
 classLoaderType="preferReferencedResources">
 <extension type="WorkspaceAccessJS" href="wsAccess.js"/>
</plugin>

In the example above, the JavaScript file wsAccess.js, located in the plugin folder, will be called. This
JavaScript file needs to have two JavaScript methods defined inside. Methods that will be called when the
application starts and when it ends:

function applicationStarted(pluginWorkspaceAccess) {
..........
}

function applicationClosing(pluginWorkspaceAccess) {
..........
}

In regards to the applicationStarted callback, besides using the
ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace API with the
pluginWorkspaceAccesspluginWorkspaceAccess parameter, you can also use a globally defined field
called jsDirURL that points to the folder where the JavaScript file is located.

Below is a much larger example with a JavaScript Workspace Access plugin extension implementation that adds
a new action in the contextual menu. The action starts the notepad.exe application and passes the reference to
the currently selected topicref to it.

function applicationStarted(pluginWorkspaceAccess) {
 Packages.java.lang.System.err.println("Application started "
 + pluginWorkspaceAccess);
 edChangedListener = {
 /*Called when a DITA Map is opened*/
 editorOpened: function (editorLocation) {
 Packages.java.lang.System.err.println("\nrunning " + editorLocation);
 /*Get the opened DITA Map*/
 editor = pluginWorkspaceAccess.getEditorAccess(editorLocation,
 Packages.ro.sync.exml.workspace.api.PluginWorkspace.DITA_MAPS_EDITING_AREA);
 ditaMapPage = editor.getCurrentPage();
 /*Add listener called when right-click is done in the DITA Maps manager*/
 customizerObj = {
 customizePopUpMenu: function (popUp, ditaMapDocumentController) {
 Packages.java.lang.System.err.println("RIGHT CLICK" + popUp);
 tree = ditaMapPage.getDITAMapTreeComponent();
 /*Selected tree path*/
 sel = tree.getSelectionPath();
 if (sel != null) {
 selectedElement = sel.getLastPathComponent();
 /*Reference attribute*/
 href = selectedElement.getAttribute("href");
 if (href != null) {
 try {
 /*Create absolute reference*/
 absoluteRef = new Packages.java.net.URL(selectedElement.getXMLBaseURL(),
 href.getValue());
 Packages.java.lang.System.err.println("Computed absolute reference "
 + absoluteRef);
 mi = new Packages.javax.swing.JMenuItem("Run notepad");
 popUp.add(mi);
 actionPerfObj = {
 actionPerformed: function (e) {
 try {
 Packages.java.lang.Runtime.getRuntime().exec("notepad.exe "
 + pluginWorkspaceAccess.getUtilAccess().locateFile(absoluteRef));
 }
 catch (e1) {
 e1.printStackTrace();
 }
 }
 }
 mi.addActionListener(new JavaAdapter(Packages.java.awt.event.ActionListener,
 actionPerfObj));
 }
 catch (e1) {
 Packages.java.lang.System.err.println(e1);
 }
 }
 }
 }
 }

 ditaMapPage.setPopUpMenuCustomizer(new Packages.ro.sync.exml.workspace.api.
editor.page.ditamap.DITAMapPopupMenuCustomizer(customizerObj));
 }
 }
 edChangedListener = new JavaAdapter(Packages.ro.sync.exml.workspace.api.
listeners.WSEditorChangeListener, edChangedListener);
 pluginWorkspaceAccess.addEditorChangeListener(
 edChangedListener,

Using the Oxygen XML SDK 952

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/workspace/api/standalone/StandalonePluginWorkspace.html

 Packages.ro.sync.exml.workspace.api.PluginWorkspace.DITA_MAPS_EDITING_AREA);
}

 function applicationClosing(pluginWorkspaceAccess) {
 Packages.java.lang.System.err.println("Application closing "
 + pluginWorkspaceAccess);
}

For more information and some samples, see GitHub Project with Multiple Workspace Access JavaScript-Based
Plugin Samples.

XML Refactoring Operations Plugin Extension
This type of plugin allows you to specify one or more directories where the XML Refactoring operation resources
are loaded.

The RefactoringOperationsProvider extension can be used to specify the location where custom XML
Refactoring operation resources (XQuery Update script or XSLT stylesheet and Operation Descriptor files) are
stored. Oxygen XML Developer will scan the specified locations to load the custom operations when the XML
Refactoring tool is opened, and allows you to share your custom refactoring operations.

Example: XML Refactoring Operations Plugin Extension

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">

<plugin
 id="refactoring.operations"
 name="Refactoring operations plugin"
 description="Contains operation descriptors and related scripts"
 version="1.0">
 <extension type="RefactoringOperationsProvider">
 <folder path="customDir/"/>
 <folder path="customDir2"/>
 </extension>
</plugin>

Plugin Extensions Designed to Work only in the Text Editing Mode

These plugin extensions operate only when editing documents in the Text mode. They are mounted automatically
by the application on the contextual menu in the Plugins submenu.

General Plugin Extension
This type of plugin allows you to invoke custom code to interact with the workspace in Text mode.

This plugin is the most general plugin type and provides a limited API:

• The interface GeneralPluginExtension - Intended for general-purpose plugins, kind of external
tools but triggered from the Plugins menu. The implementing classes must provide the method
process(GeneralPluginContext), which must provide the plugin processing. This method takes as a
parameter a GeneralPluginContext object.

• The class GeneralPluginContext - Represents the context in which the general plugin extension does
its processing. The getPluginWorkspace() method allows you access to the workspace of Oxygen XML
Developer.

Selection Plugin Extension
This type of plugin allows you to manage selections of text.

A selection plugin can be applied to both XML and non-XML documents. The plugin is started by making a
selection in the editor, then selecting the corresponding menu item from the Plugins submenu in the contextual
menu of Text mode.

This plugin type provides the following API:

• The interface SelectionPluginExtension - The context containing the selected text is
passed to the extension and the processed result is going to replace the initial selection. The
process(GeneralPluginContext) method must return a SelectionPluginResult object that
contains the result of the processing. The String value returned by the SelectionPluginResult object
can include editor variables such as ${caret} and ${selection}.

• The SelectionPluginContext object represents the context. It provides four methods:

• getSelection() - Returns a String that is the current selection of text.

Using the Oxygen XML SDK 953

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins

• getFrame() - Returns a Frame that is the editing frame.
• getPluginWorkspace() - Returns access to the workspace of Oxygen XML Developer.
• getDocumentURL() - Returns the URL of the current edited document.

Related Information:
Editor Variables on page 147

Example - Uppercase Plugin

The following plugin is called UppercasePlugin and is an example of a Selection plugin.. It is used in Oxygen
XML Developer for capitalizing the characters in the current selection. This example consists of two Java classes
and the plugin descriptor file (plugin.xml):

• UppercasePlugin.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.Plugin;
import ro.sync.exml.plugin.PluginDescriptor;

public class UppercasePlugin extends Plugin {
 /**
 * Plugin instance.
 */
 private static UppercasePlugin instance = null;

 /**
 * UppercasePlugin constructor.
 *
 * @param descriptor Plugin descriptor object.
 */
 public UppercasePlugin(PluginDescriptor descriptor) {
 super(descriptor);

 if (instance != null) {
 throw new IllegalStateException("Already instantiated !");
 }
 instance = this;
 }

 /**
 * Get the plugin instance.
 *
 * @return the shared plugin instance.
 */
 public static UppercasePlugin getInstance() {
 return instance;
 }
}

• UppercasePluginExtension.java:

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.selection.SelectionPluginContext;
import ro.sync.exml.plugin.selection.SelectionPluginExtension;
import ro.sync.exml.plugin.selection.SelectionPluginResult;
import ro.sync.exml.plugin.selection.SelectionPluginResultImpl;

public class UppercasePluginExtension implements SelectionPluginExtension {
 /**
 * Convert the text to uppercase.
 *
 *@param context Selection context.
 *@return Uppercase plugin result.
 */
 public SelectionPluginResult process(SelectionPluginContext context) {
 return new SelectionPluginResultImpl(
 context.getSelection().toUpperCase());
 }
}

• plugin.xml:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="UpperCase"
 description="Convert the selection to uppercase"
 version="1.0.0"
 vendor="SyncRO"
 class="ro.sync.sample.plugin.uppercase.UppercasePlugin">
 <runtime>
 <library name="lib/uppercase.jar"/>

Using the Oxygen XML SDK 954

 </runtime>
 <extension type="selectionProcessor"
 class="ro.sync.sample.plugin.uppercase.UppercasePluginExtension"/>
</plugin>

Document Plugin Extension
This type of plugin allows you to manage the current document.

The document plugin type can only be applied to an XML document. It can modify the current document that is
received as a callback parameter.

The plugin is started by selecting the corresponding menu item from the Plugins submenu in the contextual menu
of Text mode. It provides the following API:

• Interface DocumentPluginExtension - Receives the context object containing the current document. The
process(GeneralPluginContext) method can return a DocumentPluginResult object containing a
new document.

• DocumentPluginContext object - Represents the context and provides three methods:

• getDocument() - Returns a javax.swing.text.Document object that represents the current
document.

• getFrame() - Returns a java.awt.Frame object that represents the editing frame.
• getPluginWorkspace() - Returns access to the workspace of Oxygen XML Developer.

Oxygen XML Developer Plugin How to...
This section includes information about how to implement complex plugins.

How to Write a CMS Integration Plugin

To have a complete integration between Oxygen XML Developer and a CMS, you usually have to write a plugin
that combines the following two available plugin extensions:

• Workspace Access
• Custom protocol

The usual set of requirements for an integration between Oxygen XML Developer and the CMS are as follows:

• Contribute to the Oxygen XML Developer toolbars and main menu with your custom Check Out and Check In
actions:

• Check Out triggers your custom dialog boxes that allow you to browse the remote CMS and choose the
resources you want to open.

• Check In allows you to send the modified content back to the server.

You can use the Workspace Access plugin extension (and provided sample Java code) for all these
operations.

• When Check Out is called, use the Oxygen XML Developer API to open your custom URLs (URLs created
using your custom protocol). It is important to implement and use a Custom Protocol extension to be notified
when the files are opened and saved and to be able to provide the content for the relative references the files
may contain to Oxygen XML Developer . Your custom java.net.URLStreamHandler implementation
checks out the resource content from the server, stores it locally and provides its content. Sample Check Out
implementation:

 /**
 * Sample implementation for the "Check Out" method.
 *
 * @param pluginWorkspaceAccess (Workspace Access plugin).
 * @throws MalformedURLException
 */
 private void checkOut(StandalonePluginWorkspace pluginWorkspaceAccess)
throws MalformedURLException {
 //TODO Show the user a custom dialog box for browsing the CMS
 //TODO after user selected the resource create a URL with a custom protocol
 //which will uniquely map to the resource on the CMS using the URLHandler
 //something like:
 URL customURL = new URL("mycms://host/path/to/file.xml");
 //Ask Oxygen to open the URL
 pluginWorkspaceAccess.open(customURL);
 //Oxygen will then your custom protocol handler to provide the contents for
 //the resource "mycms://host/path/to/file.xml"
 //Your custom protocol handler will check out the file in a temporary

Using the Oxygen XML SDK 955

 //directory, for example, and provide the content from it.
 //Oxygen will also pass through your URLHandler if you have any relative
 //references which need to be opened/obtained.
 }

Figure 436: Check Out Process Diagram

Each phase is described below:

1. Browse CMS repository
2. User chooses a resource
3. Use API to open custom URL: mycms://path/to/file.xml
4. Get content of URL: mycms://path/to/file.xml
5. Get content of resource
6. Store on disk for faster access
7. Retrieve content from disk if already checked out
8. Retrieved content

• Contribute a special Browse CMS action to every dialog box in Oxygen XML Developer where a URL can be
chosen to perform a special action (such as the Reuse Content or Insert Image action). Sample code:

 //Add an additional browse action to all dialog boxes/places
 //where Oxygen allows selecting a URL.
 pluginWorkspaceAccess.addInputURLChooserCustomizer
(new InputURLChooserCustomizer() {
 public void customizeBrowseActions
(List<Action> existingBrowseActions, final InputURLChooser chooser) {
 //IMPORTANT, you also need to set a custom icon on the action
 //for situations when its text is not used for display.
 Action browseCMS = new AbstractAction("CMS") {
 public void actionPerformed(ActionEvent e) {
 URL chosenResource = browseCMSAndChooseResource();
 if (chosenResource != null) {
 try {
 //Set the chosen resource in the combo box chooser.
 chooser.urlChosen(chosenResource);
 } catch (MalformedURLException e1) {
 //
 }
 }
 }
 };
 existingBrowseActions.add(browseCMS);
 }
 });

Using the Oxygen XML SDK 956

When inserting references to other resources using the actions already implemented in Oxygen XML
Developer, the reference to the resource is made by default relative to the absolute location of the edited XML
file. You can gain control over the way in which the reference is made relative for a specific protocol like this:

 //Add a custom relative reference resolver for your custom protocol.
 //Usually when inserting references from one URL to another Oxygen
 //makes the inserted path relative.
 //If your custom protocol needs special relativization techniques then
 //it should set up a custom relative
 //references resolver to be notified when resolving needs to be done.
 pluginWorkspaceAccess.addRelativeReferencesResolver(
 //Your custom URL protocol for which you already have a
 //custom URLStreamHandlerPluginExtension set up.
 "mycms",
 //The relative references resolver
 new RelativeReferenceResolver() {
 public String makeRelative(URL baseURL, URL childURL) {
 //Return the referenced path as absolute for example.
 //return childURL.toString();
 //Or return null for the default behavior.
 return null;
 }
 });

• Write the plugin.xml descriptor file. Your plugin combines the two extensions using a single set of libraries.
The descriptor would look like this:

<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
 name="CustomCMSAccess"
 description="Test"
 version="1.0.0"
 vendor="ACME"
 class="custom.cms.CMSAccessPlugin">
 <runtime>
 <library name="lib/cmsaccess.jar"/>
 </runtime>
 <!--Access to add actions to the main menu and toolbars or to add custom views.-->
 <!--See the "CustomWorkspaceAccessPluginExtension" Java sample for more details-->
 <extension type="WorkspaceAccess"
 class="custom.cms.CustomWorkspaceAccessPluginExtension"/>
 <!--The custom URL handler that will communicate with the CMS implementation-->
 <!--See the "CustomProtocolURLHandlerExtension" Java sample for more details-->
 <extension type="URLHandler"
 class="custom.cms.CustomProtocolURLHandlerExtension"/>
</plugin>

• Create a cmsaccess.jar JAR archive containing your implementation classes.
• Copy your new plugin directory in the plugins subfolder of the Oxygen XML Developer install folder and start

Oxygen XML Developer.

Class Loading Issues

It is possible that the Java libraries you have specified in the plugin libraries list conflict with the ones
already loaded by Oxygen XML Developer. To instruct the plugin to prefer its libraries over the ones
used by Oxygen XML Developer, you can add the following attribute on the <plugin> root element:
classLoaderType="preferReferencedResources" from the plugin.xml descriptor file.

A Late Delegation Class Loader (the main class loader in Oxygen XML Developer) is a
java.net.URLClassLoader extension that prefers to search classes in its own libraries list and only if a class
is not found there to delegate to the parent class loader.

The main Oxygen XML Developer Class Loader uses as libraries all JARS specified in the
[OXYGEN_INSTALL_DIR]\lib directory. Its parent class loader is the default JVM Class loader. For each plugin
instance, a separate class loader is created having as parent the Oxygen XML Developer Class Loader.

The plugin class loader can be either a standard java.net.URLClassLoader or a
LateDelegationClassLoader (depending on the attribute classLoaderType in the plugin.xml). Its
parent class loader is always the Oxygen XML Developer LateDelegationClassLoader.

If you experience additional problems, such as:

java.lang.LinkageError: ClassCastException:
attempting to cast
jar:file:/C:/jdk1.6.0_06/jre/lib/rt.jar!/
javax/xml/ws/spi/Provider.class
tojar:file:/D:/Program
 Files/Oxygen XML Editor
 12/plugins/wspcaccess/../../xdocs/lib/jaxws/

Using the Oxygen XML SDK 957

jaxws-api.jar!/javax/xml/ws/spi/Provider.class
 at javax.xml.ws.spi.Provider.provider(
Provider.java:94) at
 javax.xml.ws.Service.<init>(Service.java:56)
...

The cause could be the fact that some classes are instantiated using the context class loader of the current
thread. The most straightforward fix is to write your code in a try/finally statement:

ClassLoader oldClassLoader =
 Thread.currentThread().getContextClassLoader();
try {
 //This is the implementation of the
 //WorkspaceAccessPluginExtension plugin interface.
 Thread.currentThread().setContextClassLoader(
 CustomWorkspaceAccessPluginExtension.
 this.getClass().getClassLoader());
 //WRITE YOUR CODE HERE
} finally {
 Thread.currentThread().
 setContextClassLoader(oldClassLoader);
}

How to Write A Custom Protocol Plugin

To create a custom protocol plugin, follow these steps:

1. Write the handler class for your protocol that implements the java.net.URLStreamHandler interface.
Be careful to provide ways to encode and decode the URLs of your files.

2. Write the plugin class by extending ro.sync.exml.plugin.Plugin.
3. Write the plugin extension class that implements the

ro.sync.exml.plugin.urlstreamhandler.URLStreamHandlerPluginExtension interface.

It is necessary that the plugin extension for the custom protocol implements the
URLStreamHandlerPluginExtension interface. Without it, you cannot use your plugin, because Oxygen
XML Developer is not able to find the protocol handler.

You can choose also to implement the URLChooserPluginExtension interface. It allows you to write and
display your own customized dialog box for selecting resources that are loaded with the custom protocol.

An implementation of the extension URLHandlerReadOnlyCheckerExtension allows you to:

• Mark a resource as read-only when it is opened.
• Switch between marking the resource as read-only and read-write while it is edited.

It is useful when opening and editing CMS resources.
4. Write the plugin.xml descriptor file.

Remember to set the name of the plugin class to the one from the second step and the plugin extension class
name with the one you have chosen at step 3.

5. Create a JAR archive with all these files.
6. Install your new plugin in the plugins subfolder of the Oxygen XML Developer install folder.

Packing and Deploying Plugins or Frameworks as Add-ons

Packing a Plugin or Framework as an Add-on

This procedure is suitable for developers who want a better control over the add-on package or those who want to
automate some of the steps:

1. Pack the plugin or framework as a ZIP file or a Java Archive. Note that you should pack the entire root
directory not just its contents.

2. Digitally sign the package. Note that you can perform this step only if you have created a Java Archive at the
previous step. You will need a certificate signed by a trusted authority. To sign the JAR you can either use the
jarsigner command line tool inside Oracle's Java Development Kit. ([JDK_DIR]/bin/jarsigner.exe)
or, if you are working with Apache Ant, you can use the signjar task (a front for the jarsigner command
line tool).

Using the Oxygen XML SDK 958

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/Plugin.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLStreamHandlerPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLChooserPluginExtension.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/exml/plugin/urlstreamhandler/URLHandlerReadOnlyCheckerExtension.html

Note: The benefit of having a signed add-on is that you can verify the integrity of the add-on issuer. If you do
not have such a certificate you can generate one yourself using the keytool command line tool. This approach
is mostly recommended for tests since anyone can create a self signed certificate.

3. Create a descriptor file. You can use a template that Oxygen XML Developer provides. To use this template,
go to File > New and select the Oxygen add-ons update site template. Once deployed, this descriptor file is
referenced as update site.

Alternatively, you can use the Add-ons Packager plugin by following this procedure:

1. Install the Add-ons Packager plugin from https://www.oxygenxml.com/InstData/Addons/optional/
updateSite.xml as described in the Installing Add-ons procedure.

2. Restart Oxygen XML Developer. If the add-on is correctly installed, the Add-ons packager toolbar action is
available.

3. Invoke the Add-ons packager toolbar action and input the required information in the displayed dialog box.
4. Press OK to complete the packaging process.

Deploying an Add-on

To deploy an add-on, copy the ZIP or Java Archive file and the descriptor file to an HTTP server. The URL to this
location serves as the Update Site URL.

How to Share a Class Loader Between a Framework and Plugin

In some cases you may need to extend the functionality of Oxygen XML Developer both through a framework and
through a plugin. Normally, a framework and a plugin both run in their own private classloader. If the framework
and the plugin use the same JAVA extensions/classes, it is recommended that they share the same classloader.
This way, the common classes are loaded by only one Class Loader and they will both use the same static objects
and have the ability to cast objects between one another.

To do this, open the Preferences dialog box (Options > Preferences), go to Document Type Association, select the
document type, go to the Classpath tab, and in the Use parent classloader from plugin with ID fields introduce
the ID of the plugin. This ID is declared in the configuration file of the plugin.

Important: The shared classes must be specified only in the configuration files of the plugin, and not in the
configuration file and the document type class path at the same time.

Creating and Running Automated Tests
If you have developed complex custom plugin or framework (document types), the best way to test your
implementation and ensure that further changes will not interfere with the current behavior is to make automated
tests for your customization.

An Oxygen XML Developer standalone installation includes a main oxygen.jar library located in the
[OXYGEN_INSTALL_DIR]. That JAR library contains a base class for testing developer customizations named:
ro.sync.exml.workspace.api.PluginWorkspaceTCBase.

To develop JUnit tests for your customizations using the Eclipse workbench, follow these steps:

1. Create a new Eclipse Java project and copy to it the entire contents of the [OXYGEN_INSTALL_DIR].
2. Add all JAR libraries present in the [OXYGEN_INSTALL_DIR]/lib directory to the Java Build Path->Libraries

tab. Make sure that the main JAR library oxygen.jar or oxygenAuthor.jar is the first one in the Java
classpath by moving it up in the Order and Export tab.

3. Click Add Library and add the JUnit and JFCUnit libraries.
4. Create a new Java class that extends ro.sync.exml.workspace.api.PluginWorkspaceTCBase.
5. Pass the following parameters on to the constructor of the super class:

• File installationFolder - The file path to the main application installation directory. If not specified,
it defaults to the folder where the test is started.

• File frameworksFolder - The file path to the frameworks directory. It can point to a custom
framework directory where it resides.

• File pluginsFolder - The file path to the plugins directory. It can point to a custom plugin directory
where it resides.

Using the Oxygen XML SDK 959

https://www.oxygenxml.com/InstData/Addons/optional/updateSite.xml
https://www.oxygenxml.com/InstData/Addons/optional/updateSite.xml
https://github.com/junit-team/junit/wiki/Download-and-Install
https://sourceforge.net/projects/jfcunit/

• File optionsFolder - The folder that contains the application options. If not specified, the application
will auto-detect the location based on the started product ID.

• String licenseKey - The license key used to license the test class.
• int productID - The ID of the product and should be one of the

following: PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT,
PluginWorkspaceTCBase.XML_EDITOR_PRODUCT, or
PluginWorkspaceTCBase.XML_DEVELOPER_PRODUCT.

6. Create test methods that use the API in the base class to open XML files and perform various actions on
them. Your test class could look something like this:

public class MyTestClass extends PluginWorkspaceTCBase {

/**
 * Constructor.
 */
public MyTestClass() throws Exception {
 super(null, new File("frameworks"), new File("plugins"), null,
"------START-LICENSE-KEY------\n" +
 "\n" +
 "Registration_Name=Developer\n" +
 "\n" +
 "Company=\n" +
 "\n" +
 "Category=Enterprise\n" +
 "\n" +
 "Component=XML-Editor, XSLT-Debugger, Saxon-SA\n" +
 "\n" +
 "Version=14\n" +
 "\n" +
 "Number_of_Licenses=1\n" +
 "\n" +
 "Date=09-04-2012\n" +
 "\n" +
 "Trial=31\n" +
 "\n" +
 "SGN=MCwCFGNoEGJSeiC3XCYIyalvjzHhGhhqAhRNRDpEu8RIWb8icCJO7HqfVP4++A\\=\\=\n" +
 "\n" +
"-------END-LICENSE-KEY-------",
 PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT);
 }

 /**
 * <p>Description: TC for opening a file and using a bold operation</p>
 * <p>Bug ID: EXM-20417</p>
 *
 * @author radu_coravu
 *
 * @throws Exception
 */
public void testOpenFileAndBoldEXM_20417() throws Exception {
 WSEditor ed = open(new File
("D:/projects/eXml/test/authorExtensions/dita/sampleSmall.xml").toURL());
 //Move caret
 moveCaretRelativeTo("Context", 1, false);

 //Insert
 invokeAuthorExtensionActionForID("bold");
 assertEquals("<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" +
 "<!DOCTYPE task PUBLIC \"-//OASIS//DTD DITA Task//EN\"
 \"http://docs.oasis-open.org/dita/v1.1/OS/dtd/task.dtd\">\n" +
 "<task id=\"taskId\">\n" +
 " <title>Task title</title>\n" +
 " <prolog/>\n" +
 " <taskbody>\n" +
 " <context>\n" +
 " <p>Context for the current task</p>\n" +
 " </context>\n" +
 " <steps>\n" +
 " <step>\n" +
 " <cmd>Task step.</cmd>\n" +
 " </step>\n" +
 " </steps>\n" +
 " </taskbody>\n" +
 "</task>\n" +
 "", getCurrentEditorXMLContent());
 }
}

Debugging a Plugin Using the Eclipse Workbench
To debug problems in the code of a plugin without having to re-bundle the plugin's Java classes in a JAR library,
follow these steps:

1. Download and install Oxygen XML Developer.

Using the Oxygen XML SDK 960

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html

2. Set up the Oxygen SDK following this set of instructions.
3. Create an Eclipse Java Project (for example, MyPluginProject) from one of the sample plugins (the

Workspace Access plugin, for example).
4. In the MyPluginProject folder, create a folder called myPlugin. In this new folder copy the plugin.xml

file from the sample plugin. Modify the added plugin.xml to add a library reference to the directory where
Eclipse copies the compiled output. To find out where this directory is located, invoke the contextual menu
of the project (in the Project view), and go to Build Path > Configure Build Path. Then inspect the value of the
Default output folder text box.

Example: If the compiled output folder is classes, then the you need to add in the plugin.xml the following
library reference:

<library name="../classes"/>

5. Copy the plugin.dtd from the [OXYGEN_INSTALL_DIR]/plugins folder in the root MyPluginProject
folder.

6. In the MyPluginProject build path add external JAR references to all the JAR libraries in the
[OXYGEN_INSTALL_DIR]/lib folder. Now your MyPluginProject should compile successfully.

7. In the Eclipse IDE, create a new Java Application configuration for debugging. Set the Main class box to
ro.sync.exml.Oxygen. Click the Arguments tab and add the following code snippet in the VM arguments
input box, making sure that the path to the plugins directory is the correct one:

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m
-XX:MaxPermSize=384m -Dcom.oxygenxml.editor.plugins.dir=D:\projects
\MyPluginProject

Note: If you need to configure the plugin for Oxygen XML Developer, set the
com.oxygenxml.app.descriptor to ro.sync.exml.DeveloperFrameDescriptor.

8. Add a breakpoint in the source of one of your Java classes.
9. Debug the created configuration. When the code reaches your breakpoint, the Eclipse IDE debugging

perspective should take over.

Debugging an Oxygen SDK Extension Using the Eclipse Workbench
To debug problems in an extension code without having to bundle its Java classes in a JAR library, perform the
following steps:

1. Download and install Oxygen XML Developer.
2. Create an Eclipse Java Project (for example, MySDKProject) with the corresponding Java sources (for

example, a custom implementation of the ro.sync.ecss.extensions.api.StylesFilter interface).
3. In the Project build path add external JAR references to all the JAR libraries in the [OXYGEN_INSTALL_DIR]/

lib folder. Now your Project should compile successfully.
4. Start the standalone version of Oxygen XML Developer from the [OXYGEN_INSTALL_DIR] and in the

Document Type Association preferences page, edit the document type (for example, DITA) to open the
Document Type configuration dialog box. In the Classpath tab, add a reference to your Project's classes
directory and in the Extensions tab, select your custom StylesFilter extension as a value for the CSS
styles filter property. Close the application to save your changes.

5. Create a new Java Application configuration for debugging. The Main Class should be
ro.sync.exml.Oxygen. The given VM Arguments should be

-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m -
XX:MaxPermSize=384m

6. Add a breakpoint in one of the source Java classes.
7. Debug the created configuration. When the code reaches your breakpoint, the Eclipse IDE debugging

perspective should take over.

Disabling a Plugin
To disable a plugin, use one of the following two methods:

Using the Oxygen XML SDK 961

https://www.oxygenxml.com/oxygen_sdk/download.html
https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html

• Open the Preferences dialog box (Options > Preferences), go to Plugins, and deselect the plugin that you want
to disable.

• Create an empty file called plugin.disable next to the plugin configuration file (plugin.xml). The plugin
will be disabled and will no longer be loaded by the application on startup.

Note: This is useful if you want to temporarily stop work on a plugin and use the application without it.

Using the Oxygen XML SDK 962

Tools 16
Topics:

• Refactoring XML Documents
• Generating Sample XML Files
• Converting Schema to Another Schema Language
• Converting Database to XML Schema
• Flatten an XML Schema
• XML to JSON Converter
• Compiling an XSL Stylesheet for Saxon
• Format and Indent (Pretty-Print) Multiple Files
• Generate Documentation
• Canonicalizing Files
• Signing Files
• Verifying Signature
• WSDL SOAP Analyzer
• XML Schema Regular Expressions Builder
• Large File Viewer
• Hex Viewer
• Standalone SVG Viewer
• Tree Editor
• Compare Files
• Compare Directories
• Compare Directories Against a Base (3-Way)
• Syncro SVN Client
• External Tools

Oxygen XML Developer includes a variety of helpful tools to help you accomplish XML-related tasks. This section
presents many of those tools. These tools are available in the Tools menu and some of them can be launched through
keyboard shortcuts or command-line scripts.

Refactoring XML Documents
In the life cycle of XML documents there are instances when the XML structure needs to be changed to
accommodate various needs. For example, when an associated schema is updated, an attribute may have been
removed, or a new element added to the structure.

These types of situations cannot be resolved with a traditional Find/Replace tool, even if the tool accepts regular
expressions. The problem becomes even more complicated if an XML document is computed or referenced from
multiple modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Developer includes a specialized XML
Refactoring tool that helps you manage the structure of your XML documents.

963

XML Refactoring Tool

The XML Refactoring tool is presented in the form of an easy to use wizard that is designed to reduce the time
and effort required to perform various structure management tasks. For example, you can insert, delete, or
rename an attribute in all instances of a particular element that is found in all documents within your project.

To access the tool, select the XML Refactoring action from one of the following locations:

• The Tools menu.
• The Refactoring submenu from the contextual menu in the Project view.

Note: The predefined refactoring operations are also available from the Refactoring submenu in the contextual
menu of Text mode. This is useful because by selecting the operations from the contextual menu, Oxygen XML
Developer considers the editing context to skip directly to the wizard page of the appropriate operation and to
help you by preconfiguring some of the parameter values. For your convenience, the last 5 operations that were
finished or previewed also appear in the Refactoring submenu of the contextual menu in the Project view.

XML Refactoring Wizard

The XML Refactoring tool includes the following wizard pages:
Refactoring operations

The first wizard page presents the available operations, grouped by category. To search for an operation, you
can use the filter text box at the top of the page.

Figure 437: XML Refactoring Wizard

Tools 964

Configure Operation Parameters
The next wizard page allows you to specify the parameters for the refactoring operation. The parameters are
specific to the type of refactoring operation that is being performed. For example, to delete an attribute you
need to specify the parent element and the qualified name of the attribute to be removed.

Figure 438: XML Refactoring 2nd Wizard Page (Delete Attribute Operation)

Scope and Filters
The last wizard page allows you to select the set of files that represent the input of the operation.

Figure 439: XML Refactoring - Scope and Filters Wizard Page

Scope section
In the Scope section, you can select from predefined resource sets (such as the current file, your whole
project, the current DITA map hierarchy for DITA projects, etc.) or you can define your own set of resources
by creating a working set.

Filters
The Filters section includes the following options:

• Include files - Allows you to filter the selected resources by using a file pattern. For example, to restrict
the operation to only analyze build files you could use build*.xml for the file pattern.

Tools 965

• Restrict only to known XML file types - When selected, only resources with a known XML file type will
be affected by the operation.

• Look inside archives - When selected, the resources inside archives will also be affected.

Preview
You can use the Preview button to open a comparison panel where you can review all the changes that will
be made by the refactoring operation before applying the changes.

Finish
After clicking the Finish button, the operation will be processed and Oxygen XML Developer provides no
automatic means for reverting the operations. Any Undo action will only revert changes on the current
document.

Tip: If an operation takes longer than expected you can use the Stop button in the progress bar to cancel the
operation.

Predefined Refactoring Operations
The XML Refactoring tool includes a variety of predefined operations that can be used for common refactoring
tasks. They are grouped by category in the Refactoring operations wizard page. You can also access the
operations from the Refactoring submenu in the contextual menu of Text mode. The operations are also grouped
by category in this submenu. When selecting the operations from the contextual menu, Oxygen XML Developer
considers the editing context to get the names and namespaces of the current element or attribute, and uses this
information to preconfigure some of the parameter values for the selected refactoring operation.

Tip: Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-FO-XQuery / XPath
preferences page where you can configure XPath options and declare namespace prefixes.

The following predefined operations are available:

Refactoring Operations for Attributes

Add/Change attribute
Use this operation to change the value of an attribute or insert a new one. This operation allows you to
specify the following parameters:

• Parent element section

• Element - The parent element of the attribute to be changed, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute section

• Local name - The local name of the affected attribute.
• Namespace - The namespace of the affected attribute.
• Value - The value for the affected attribute.

• Options section

• You can choose between one of the following options for the Operation mode:

• Add the attribute in the parent elements where it is missing
• Change the value in the parent elements where the atrribute already exists
• Both

Delete attribute
Use this operation to remove one or more attributes. This operation requires you to specify the following
parameters:

• Element - The parent element of the attribute to be deleted, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be deleted.

Rename attribute
Use this operation to rename an attribute. This operation requires you to specify the following parameters:

Tools 966

• Element - The parent element of the attribute to be renamed, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be renamed.
• New local name - The new local name of the attribute.

Replace in attribute value
Use this operation to search for a text fragment inside an attribute value and change the fragment to a new
value. This operation allows you to specify the following parameters:

• Target attribute section

• Element - The parent element of the attribute to be modified, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

• Attribute - The name of the attribute to be modified.
• Find / Replace section

• Find - The text fragments to find. You can use Perl-like regular expressions.
• Replace with - The text fragment to replace the target with. This parameter can bind regular expression

capturing groups ($1, $2, etc.) from the find pattern.

Refactoring Operations for Comments

Delete comments
Use this operation to delete comments from one or more elements. This operation requires you specify the
following parameter:

• Element - The target element (or elements) for which comments will be deleted, in the form of a local
name from any namespace, a local name with a namespace prefix, or an XPath expression.

Note: Comments that are outside the root element will not be deleted because the serializer preserves the
content before and after the root.

Refactoring Operations for DITA

Change topic ID to file name
Use this operation to change the ID of a topic to be the same as its file name.

Convert conrefs to conkeyrefs
Use this operation to convert conref attributes to conkeyref attributes.

Convert simple tables to CALS tables
Use this operation to convert DITA simple tables to CALS tables.

Convert to Concept
Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to
Concept).

Convert to Reference
Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to
Reference).

Convert to Task
Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

Convert to Topic
Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting
Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example,
Topic to Troubleshooting).

All of these DITA refactoring actions allow you to choose a scope for the operation and some filters:

Tools 967

• Scope - Select from a variety of options to define the scope for which resources will be affected by the
operation. For example, you can choose to affect all resources in the Project, All opened files, Current DITA
map hierarchy, or just the Current file.

• Filters section

• Include files - Specifies files to be excluded from the operation. You can specify multiple files by separating
them with commas and the patterns can include wildcards (such as * or ?).

• Restrict to known XML file types only - Excludes non-XML file types from the operation.
• Look inside archives - If this option is selected, the scope of the operation will include files inside archives.

Refactoring Operations for Elements

Delete element
Use this operation to delete elements. This operation requires you to specify the following parameter:

• Element - The target element to be deleted, in the form of a local name from any namespace, a local name
with a namespace prefix, or an XPath expression.

Delete element content
Use this operation to delete the content of elements. This operation requires you to specify the following
parameter:

• Element - The target element whose content is to be deleted, in the form of a local name from any
namespace, a local name with a namespace prefix, or an XPath expression.

Insert element
Use this operation to insert new elements. This operation allows you to specify the following parameters:

• Element section

• Local name - The local name of the element to be inserted.
• Namespace - The namespace of the element to be inserted.

• Location section

• XPath- An XPath expression that identifies an existing element to which the new element is relative, in
the form of a local name from any namespace, a local name with a namespace prefix, or other XPath
expressions.

• Position - The position where the new element will be inserted, in relation to the specified existing
element. The possible selections in the drop-down menu are: After, Before, First child, or Last child.

Rename element
Use this operation to rename elements. This operation requires you to specify the following parameters:

• Target elements (XPath) - The target elements to be renamed, in the form of a local name from any
namespace, a local name with a namespace prefix, or other XPath expressions.

• New local name - The new local name of the element.

Unwrap element
Use this operation to remove the surrounding tags of elements, while keeping the content unchanged. This
operation requires you to specify the following parameter:

• Target elements (XPath) - The target elements whose surrounding tags will be removed, in the form of a
local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

Wrap element
Use this operation to surround elements with element tags. This operation allows you to specify the following
parameters:

• Target elements (XPath) - The target elements to be surrounded with tags, in the form of a local name
from any namespace, a local name with a namespace prefix, or other XPath expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element.

Tools 968

• Namespace - The namespace of the Wrapper element.

Wrap element content
Use this operation to surround the content of elements with element tags. This operation allows you to
specify the following parameters:

• Target elements (XPath) - The target elements whose content will be surrounded with tags, in the form of
a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

• Wrapper element section

• Local name - The local name of the Wrapper element that will surround the content of the target.
• Namespace - The namespace of the Wrapper element that will surround the content of the target.

Refactoring Operations for Fragments

Insert XML fragment
Use this operation to insert an XML fragment. This operation allows you to specify the following:

• XML Fragment - The XML fragment to be inserted.
• Location section

• XPath - An XPath expression that identifies an existing element to which the inserted fragment is
relative, in the form of a local name from any namespace, a local name with a namespace prefix, or
other XPath expressions.

• Position - The position where the fragment will be inserted, in relation to the specified existing element.
The possible selections in the drop-down menu are: After, Before, First child, or Last child.

Replace element content with XML fragment
Use this operation to replace the content of elements with an XML fragment. This operation allows you to
specify the following parameters:

• Target elements (XPath) - The target elements whose content will be replaced, in the form of a local name
from any namespace, a local name with a namespace prefix, or other XPath expressions.

• XML Fragment - The XML fragment with which to replace the content of the target element.

Replace element with XML fragment
Use this operation to replace elements with an XML fragment. This operation allows you to specify the
following parameters:

• Target elements (XPath) - The target elements to be replaced, in the form of a local name from any
namespace, a local name with a namespace prefix, or other XPath expressions.

• XML Fragment - The XML fragment with which to replace the target element.

Refactoring Operations for JATSKit

Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0
Use this operation to add an NLM 'BITS' 2.0 DOCTYPE declaration.

Add Blue DOCTYPE - NISO JATS Publishing 1.1
Use this operation to add a JATS 'Blue' 1.1 DOCTYPE declaration.

Normalize IDs
Use this operation to normalize assigned IDs and assigned IDs to elements that are missing them.

All of these JATSKit refactoring actions allow you to choose a scope for the operation and some filters:

• Scope - Select from a variety of options to define the scope for which resources will be affected by the
operation. For example, you can choose to affect all resources in the Project, All opened files, or just the
Current file.

• Filters section

• Include files - Specifies files to be excluded from the operation. You can specify multiple files by separating
them with commas and the patterns can include wildcards (such as * or ?).

• Restrict to known XML file types only - Excludes non-XML file types from the operation.

Tools 969

• Look inside archives - If this option is selected, the scope of the operation will include files inside archives.

Additional Notes

Note: There are some operations that allow <ANY> for the local name and namespace parameters. This
value can be used to select an element or attribute regardless of its local name or namespace. Also, the
<NO_NAMESPACE> value can be used to select nodes that do not belong to a namespace.

Note: Some operations have parameters that accept XPath expressions to match elements or attributes. In
these XPath expressions you can only use the prefixes declared in the Options > Preferences > XML > XSLT-FO-
XQUERY > XPath page. This preferences page can be easily opened by clicking the link in the note (Each prefix
used in an XPath expression must be declared in the Default prefix-namespace mappings section) at the bottom
of the Configure Operation Parameters wizard page.

Custom Refactoring Operations
While Oxygen XML Developer includes a variety of predefined XML refactoring operations to help you accomplish
particular tasks, you can also create custom operations according to your specific needs. For example, you could
create a custom refactoring operation to convert an attribute to an element and insert the element as the first
child of the parent element.

An XML Refactoring operation is defined as a pair of resources:

• An XQuery Update script or XSLT stylesheet that Oxygen XML Developer will run to refactor the XML files.
• An XML Operation Descriptor file that contains information about the operation (such as the name, description,

and parameters).

Figure 440: Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring
Operations wizard page, along with the predefined built-in operations.

After the user chooses an operation and specifies its parameters, Oxygen XML Developer processes an XQuery
Update or XSLT transformation over the input file. This transformation is executed in a safe mode, which implies
the following:

• When loading the document:

Tools 970

• The XInclude mechanism is disabled. This means that the resources included by using XInclude will not be
visible in the transformation.

• The DTD entities will be processed without being expanded.
• The associated DTD will be not loaded, so the default attributes declared in the DTD will not be visible in

the transformation.

• When saving the updated XML document:

• The DOCTYPE will be preserved.

Note: This can be changed using Saxon extension functions in XSLT.
• The DTD entities will be preserved as they are in the original document when the document is saved.
• The attribute values will be kept in their original form without being normalized.
• The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML serialization

since they are not considered important.

The result of this transformation overrides the initial input file.

Note: To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes that are
interpreted internally. The attributes belong to the http://www.oxygenxml.com/ns/xmlRefactoring/
additional_attributes namespace. These attributes should not be taken into account when processing the
input XML document since they are discarded when the transformed document is serialized.

Restriction: Comments or processing instructions that are in any node before or after the root element cannot be
modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be applied on the
root element and the nodes inside it. However, as a work around to this limitation, you can use Saxon extension
functions and the XSLT stylesheet method to implement the new custom XML refactoring operation.

Creating a Custom Refactoring Operation

To create a custom refactoring operation, follow these steps:

1. Create an XQuery Update script or XSLT stylesheet file.
2. Create an XML Refactoring Operation Descriptor file contains the path to the XQuery Update script or XSLT

stylesheet.
3. Store both files in one of the locations that Oxygen XML Developer scans when loading the custom operations.

Result: Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring
Operations wizard page.

Related Information:
Storing and Sharing Refactoring Operations on page 338

Custom Refactoring Script

The first step in creating a custom refactoring operation is to create an XQuery Update script or XSLT stylesheet
that is needed to process the refactoring operations. The easiest way to create this script file is to use the New
document wizard to create a new XQuery or XSLT file and you can use our XQuery method example or XSLT
method example to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script or XSLT stylesheet. For instance, if
you want to rename an element, you may want to declare an external parameter associated with the name of the
element to be renamed. To allow you to specify the value for these parameters, they need to be declared in the
refactoring operation descriptor file that is associated with this operation.

Note: The XQuery Update processing is disabled by default in Oxygen XML Developer. Thus, if you want to create
or edit an XQuery Update script you have to enable this mechanism by creating an XQuery transformation scenario
and choose Saxon EE as the transformation engine. Also, you need to make sure the Enable XQuery update option
is selected in the Saxon processor advanced options.

Note: If you are using an XSLT file, XPath expressions that are passed as parameters will automatically be
rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-FO-XQuery / XPath
preferences page.

Tools 971

The next step in creating a custom refactoring operation is to create an XML Refactoring Operation Descriptor
file contains the path to the XQuery Update script or XSLT stylesheet.

Related Information:
XQuery Update Script for Creating a Custom Operation on page 332
XSLT Stylesheet for Creating a Custom Operation on page 334

Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The easiest
way to do this is to use the New document wizard and choose the XML Refactoring Operation Descriptor
template.

Introduction to the Descriptor File

This file contains information (such as name, description, and id) that is necessarily when loading an XML
Refactoring operation . It also contains the path to the XQuery Update script or XSLT stylesheet that is associated
with the particular operation through the script element.

You can specify a category for your custom operations to logically group certain operations. The category
element is optional and if it is not included in the descriptor file, the default name of the category for the custom
operations is Other operations.

The descriptor file is edited and validated against the following schema: frameworks/xml_refactoring/
operation_descriptor.xsd.

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters
section of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed in
the XML Refactoring tool within the Configure Operation Parameters wizard page for that particular operation.

The value of the first description element in the parameters section will be displayed at the top of the
Configure Operation Parameters wizard page.

To declare a parameter, specify the following information:

• label - This value is displayed in the user interface for the parameter.
• name - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the same as

the one declared in the script.
• type - Defines the type of the parameter and how it will be rendered. There are several types available:

• TEXT - Generic type used to specify a simple text fragment.
• XPATH - Type of parameter whose value is an XPATH expression. For this type of parameter, Oxygen XML

Developer will use a text input with corresponding content completion and syntax highlighting.

Note: The value of this parameter is transferred as plain text to the XQuery Update or XSLT transformation
without being evaluated. You should evaluate the XPath expression inside the XQuery Update script or
XSLT stylesheet. For example, you could use the saxon:evaluate Saxon extension function.

Note: A relative XPath expression is converted to an absolute XPath expression by adding // before it
(//XPathExp). This conversion is done before transferring the XPath expression to the XML refactoring
engine.

Note: When writing XPath expressions, you can only use prefixes declared in the Options > Preferences >
XML > XSLT-FO-XQUERY > XPath options page.

• NAMESPACE - Used for editing namespace values.
• REG_EXP_FIND - Used when you want to match a certain text by using Perl-like regular expressions.
• REG_EXP_REPLACE - Used along with REG_EXP_FIND to specify the replacement string.
• XML_FRAGMENT - This type is used when you want to specify an XML fragment. For this type, Oxygen XML

Developer will display a text area specialized for inserting XML documents.
• NC_NAME - The parameter for NC_NAME values. It is useful when you want to specify the local part of a

QName for an element or attribute.

Tools 972

• BOOLEAN - Used to edit boolean parameters.
• TEXT_CHOICE - It is useful for parameters whose value should be from a list of possible values. Oxygen

XML Developer renders each possible value as a radio button option.
• description - The description of the parameter. It is used by the application to display a tooltip when you

hover over the parameter.
• possibleValues - Contains the list with possible values for the parameter and you can specify the default

value, as in the following example:

<possibleValues onlyPossibleValuesAllowed="true">
 <value name="before">Before</value>
 <value name="after"default="true">After</value>
 <value name="firstChild">First child</value>
 <value name="lastChild">Last child</value>
</possibleValues>

Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen
XML Developer will propose all declared elements or attributes based on the schema associated with the
currently edited file. The following specialized parameters are supported:
elementLocation

This parameter is used to match elements. For this type of parameter, the application displays a text
field where you can enter the element name or an XPath expression. The text from the label attribute is
displayed in the application as the label of the text field. The name attribute is used to specify the name of
the parameter from the XQuery Update script or XSLT stylesheet. If the value of the useCurrentContext
attribute is set to true, the element name from the cursor position is used as proposed values for this
parameter.

Example of an elementLocation:

<elementLocation name="elem_loc" useCurrentContext="false">
 <element label="Element location">
 <description>Element location description.</description>
 </element>
</ ElementLocation>

attributeLocation
This parameter is used to match attributes. For this type of parameter, the application displays two text
fields where you can enter the parent element name and the attribute name (both text fields accept XPath
expressions for a finer match). The text from the label attributes is displayed in the application as the
label of the associated text fields. The name attribute is used to specify the name of the parameter from
the XQuery Update script or XSLT stylesheet. The value of this parameter is an XPath expression that is
computed by using the values of the expression from the element and attribute text fields. For example,
if section is entered for the element and a title is entered for the attribute, the XPath expression would
be computed as //section/@title. If the value of the useCurrentContext attribute is set to true,
the element and attribute name from the cursor position is used as proposed values for the operation
parameters.

Example of an attributeLocation:

<attributeLocation name="attr_xpath" useCurrentContext="true">
 <element label="Element path">
 <description>Element path description.</description>
 </element>
 <attribute label="Attribute" >
 <description>Attribute path description.</description>
 </attribute>
</ AttributeLocation>

elementParameter
This parameter is used to specify elements by local name and namespace. For this type of parameter, the
application displays two combo boxes with elements and namespaces collected from the associated schema
of the currently edited file. The text from the label attribute is displayed in the application as label of the
associated combo. The name attribute is used to specify the name of the parameter from the XQuery Update
script or XSLT stylesheet. If you specify the allowsAny attribute, the application will propose <ANY> as a

Tools 973

possible value for the Name and Namespace combo boxes. You can also use the useCurrentContext
attribute and if its value is set to true, the element name and namespace from the cursor position is used as
proposed values for the operation parameters.

Example of an elementParameter:

<elementParameter id="elemID">
 <localName label="Name" name="element_localName" allowsAny="true"
 useCurrentContext="true">
 <description>Local name of the parent element.</description>
 </localName>
 <namespace label="Namespace" name="element_namespace" allowsAny="true">
 <description>Local name of the parent element</description>
 </namespace>
</elementParameter>

attributeParameter
This parameter is used to specify attributes by local name and namespace. For this type of parameter, the
application displays two combo boxes with attributes and their namespaces collected from the associated
schema of the currently edited file. The text from the label attribute is displayed in the application as the
label of the associated combo box. You can also use the useCurrentContext attribute and if its value is
set to true, the attribute name and namespace from the cursor position is used as proposed values for the
operation parameters.

Note: An attributeParameter is dependant upon an elementParameter. The list of attributes and
namespaces are computed based on the selection in the elementParameter combo boxes.

Example of an attributeParameter:

<attributeParameter dependsOn="elemID">
 <localName label="Name" name="attribute_localName" useCurrentContext="true">
 <description>The name of the attribute to be converted.</description>
 </localName>
 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
 <description>Namespace of the attribute to be converted.</description>
 </namespace>
</attributeParameter>

Note: All predefined operations are loaded from the [OXYGEN_INSTALL_DIR]/refactoring folder.

Related Information:
Example of an Operation Descriptor File with an XSLT Stylesheet on page 336
Example of an Operation Descriptor File with an XQuery Update script on page 333

XSLT Stylesheet for Creating a Custom Operation

To demonstrate creating a custom operation, consider that we have a task where we need to convert an attribute
into an element and insert it inside another element. A specific example would be if you have a project with
a variety of image elements where a deprecated alt attribute was used for the description and you want to
convert all instances of that attribute into an element with the same name and insert it as the first child of the
image element.

Thus, our task is to convert this attribute into an element with the same name and insert it as the first child of the
image element.

Tools 974

Figure 441: Example: Custom XML Refactoring Operation

We can use an XSLT stylesheet to implement the new custom XML refactoring operation. The second
requirement is an XML Refactoring operation descriptor file that contains the path to the XSLT stylesheet.

Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element

The XSLT stylesheet does the following:

• Iterates over all elements from the document that have the specified local name and namespace.
• Finds the attribute that will be converted to an element.
• Adds the new element as the first child of the parent element.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"
 version="2.0">

 <xsl:import
href="http://www.oxygenxml.com/ns/xmlRefactoring/resources/commons.xsl"/>

 <xsl:param name="element_localName" as="xs:string" required="yes"/>
 <xsl:param name="element_namespace" as="xs:string" required="yes"/>
 <xsl:param name="attribute_localName" as="xs:string" required="yes"/>
 <xsl:param name="attribute_namespace" as="xs:string" required="yes"/>
 <xsl:param name="new_element_localName" as="xs:string" required="yes"/>
 <xsl:param name="new_element_namespace" as="xs:string" required="yes"/>

 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="//*[xr:check-local-name($element_localName, ., true())
 and
 xr:check-namespace-uri($element_namespace, .)]">

 <xsl:variable name="attributeToConvert"
 select="@*[xr:check-local-name($attribute_localName, ., true())
 and
 xr:check-namespace-uri($attribute_namespace, .)]"/>

 <xsl:choose>
 <xsl:when test="empty($attributeToConvert)">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]">
 <xsl:copy-of select="."/>
 </xsl:for-each>
 <!-- The new element namespace -->

Tools 975

 <xsl:variable name="nsURI" as="xs:string">
 <xsl:choose>
 <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">
 <xsl:value-of select="''"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$new_element_namespace"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:element name="{$new_element_localName}" namespace="{$nsURI}">
 <xsl:value-of select="$attributeToConvert"/>
 </xsl:element>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

Note: The XSLT stylesheet imports a module library that contains utility functions and variables. The location of
this module is resolved via an XML Catalog set in the XML Refactoring framework.

Example of an Operation Descriptor File That References the XSLT Stylesheet for Creating a Custom Operation
to Convert an Attribute to an Element

After you have developed the XSLT stylesheet, you have to create an XML Refactoring operation descriptor. This
descriptor is used by the application to load the operation details such as name, description, or parameters.

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
 id="convert-attribute-to-element"
 name="Convert attribute to element">
 <description>Converts the specified attribute to an element.
 The new element will be inserted as first child of the attribute's
 parent element.</description>
 <!-- For the XSLT stylesheet option uncomment the following line and comment
 the line referring the XQuery Update script -->
 <!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
 <script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>
 <parameters>
 <description>Specify the attribute to be converted to element.</description>
 <section label="Parent element">
 <elementParameter id="elemID">
 <localName label="Name" name="element_localName" allowsAny="true">
 <description>Local name of the parent element.</description>
 </localName>
 <namespace label="Namespace" name="element_namespace" allowsAny="true">
 <description>Local name of the parent element</description>
 </namespace>
 </elementParameter>
 </section>
 <section label="Attribute">
 <attributeParameter dependsOn="elemID">
 <localName label="Name" name="attribute_localName">
 <description>Name of the attribute to be converted.</description>
 </localName>
 <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
 <description>Namespace of the attribute to be converted.</description>
 </namespace>
 </attributeParameter>
 </section>
 <section label="New element">
 <elementParameter>
 <localName label="Name" name="new_element_localName">
 <description>The name of the new element.</description>
 </localName>
 <namespace label="Namespace" name="new_element_namespace">
 <description>The namespace of the new element.</description>
 </namespace>
 </elementParameter>
 </section>
 </parameters>
</refactoringOperationDescriptor>

Note: If you are using an XSLT file, the line with the script element would look like this:

 <script type="XSLT" href="convert-attribute-to-element.xsl"/>

Tools 976

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Developer when it loads the
custom operation. When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The
following image shows the parameters that can be specified in our example of the custom operation to convert
an attribute to an element:

Figure 442: Example: XML Refactoring Wizard for a Custom Operation

Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and Modify Content Outside
the Root Node

One advantage to using an XSLT stylesheet is that there is limitation when using an XQuery Update script in that
refactoring operations can only be performed on comments or processing instructions that are inside the root
element. Thus, using the XQuery method, comments or processing instructions that are in any node before or after
the root element cannot be modified by an XML Refactoring operation.

The XSLT stylesheet method offers a work around to this limitation through the use of some Saxon extension
functions.

To illustrate the use of these functions, consider the following sample XML file:

<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
 <child></child>
</root>
<!-- comment after root -->
<?pi after root ?>

The following Saxon extension functions can be used to read and modify content outside the root node:

Note: They belong to the http://www.oxygenxml.com/ns/xmlRefactoring/functions namespace.

• get-content-after-root() - Returns the content after root as xs:string.

For the XML above, the call of this function will return the following string value:

<!-- comment after root -->
<?pi after root ?>

• set-content-after-root(xs:string) - Updates the content that will be serialized in the refactored document after
the root node.

Tools 977

The function call set-content-after-root('<!-- Inserted comment -->') will result in
replacing the nodes after the root element with the comment passed as string argument. The XML document
will be modified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
 <child></child>
</root><!-- Inserted comment -->

• get-content-before-root() - Returns the content before root as xs:string.

For the XML above, the call of this function will return the following string value:

<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>

• set-content-before-root(xs:string) - Updates the content that will be serialized in the refactored document
after the root node.

The function call set-content-before-root('<!-- Inserted comment -->') will result
in replacing the nodes before the root element with the comment passed as string argument. The XML
document will be modified as follows:

<!-- Inserted comment --><root>
 <child></child>
</root>
<!-- comment after root -->
<?pi after root ?>

XSLT Example:

To process content after the root node, the XSLT would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs"
 xmlns:xrf="http://www.oxygenxml.com/ns/xmlRefactoring/functions" version="3.0">
 <xsl:template match="/">
 <!-- The comment content that will be inserted after the root element -->
 <xsl:variable name="commentAsText"><!-- COMMENT ADDED FROM XR OPERATION-->
 </xsl:variable>
 <!-- Retrieve the content after the root element as is -->
 <xsl:variable name="after-root-content" as="xs:string"
 select="xrf:get-content-after-root()"/>

 <xsl:variable name="processedContent"
 select="concat($after-root-content, $commentAsText)"/>

 <!-- Update the content after the root element -->
 <xsl:value-of select="xrf:set-content-after-root($processedContent)"/>

 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

Note: The above XSLT retrieves the nodes after the root element as string, appends a new comment, and then
sets back the updated content into the XML document.

Storing and Sharing Refactoring Operations
Oxygen XML Developer scans the following locations when looking for XML Refactoring operations to provide
flexibility:

• A refactoring folder, created inside a directory that is associated to a framework you are customizing.
• A folder that you specify in the Load additional refactoring operations from text box in the XML Refactoring

preferences page.

Tools 978

Note: If you share a project with your team, you can also share the custom operation by doing the following:
Then by doing the following:

1. Save the custom operation in a folder that is part of your project.
2. Switch the XML Refactoring option page to project level:

a. Open the Preferences dialog box (Options > Preferences) and go to XML > XML Refactoring.
b. Select Project Options at the bottom of the dialog box.

3. In the Load additional refactoring operations from text box, use the ${pd} editor variable so that the folder
path is declared relative to the project.

• A folder specified by the XML Refactoring Operations Plugin Extension.
• The refactoring folder from the Oxygen XML Developer installation directory ([OXYGEN_INSTALL_DIR]/

refactoring/).

Sharing Custom Refactoring Operations

The purpose of Oxygen XML Developer scanning multiple locations for the XML Refactoring operations is
to provide more flexibility for developers who want to share the refactoring operations with the other team
members. Depending on your particular use case, you can attach the custom refactoring operations to other
resources, such as framework or projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations
Oxygen XML Developer includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in [OXYGEN_INSTALL_DIR]/
refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be
translated:

• The operation name, description, and category.
• The description of the parameters element.
• The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

${i18n(translation_key)}

Oxygen XML Developer scans the following locations to find the translation.xml files that are used to load
the translation keys:

• A refactoring/i18n folder, created inside a directory that is associated to a customized framework.
• A i18n folder, created inside a directory that is associated to a customized framework.
• An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box (Options >

Preferences), go to XML > XML Refactoring, and specify the folder in the Load additional refactoring
operations from text box.

• An i18n folder located in directories specified through the XML Refactoring Operations Plugin Extension.
• The refactoring/i18n folder from the Oxygen XML Developer installation directory

([OXYGEN_INSTALL_DIR]/refactoring/i18n).

Example: Refactoring Operation Descriptor File with i18n Support

<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove_text_content"
 name="${i18n(Remove_text_content)}">
 <description>${i18n(Remove_text_content_description)}</description>
 <script type="XQUERY_UPDATE" href="remove_text_content.xq"/>
 <parameters>
 <description>${i18n(parameters_description)}</description>
 <parameter label="${i18n(Element_name)}" name="element_localName"
 type="NC_NAME">
 <description>${i18n(Element_name_descriptor)}</description>

Tools 979

 <possibleValues>
 <value default="true" name="value1">${i18n(value_1)}</value>
 <value name="value2">${i18n(value_2)}</value>
 </possibleValues>
 </parameter>
 </parameters>
</refactoringOperationDescriptor>

Generating Sample XML Files
Oxygen XML Developer offers support to generate sample XML files both from XML schema 1.0 and XML
schema 1.1, depending on the XML schema version set in XML Schema preferences page.

To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the
Tools menu. This action is also available in the contextual menu of the schema Design mode. The action opens
the Generate Sample XML Files dialog box that allows you to configure a variety of options for generating the
files.

For more information about this tool, watch our video demonstration about generating sample XML files at
https://www.oxygenxml.com/demo/Generate_Sample_XML_Files.html.

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default values
for these options can be set in the Sample XML Files Generator preferences page. You can also run the tool from
the command line using exported options.

Schema Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The first set of options are found in the Schema tab.

Figure 443: Generate Sample XML Files Dialog Box (Schema Tab)

This tab includes the following options:
URL

Specifies the URL of the Schema location. You can specify the path by using the text field, the history drop-
down menu, or the browsing tools in the Browse drop-down list.

Tools 980

https://www.oxygenxml.com/demo/Generate_Sample_XML_Files.html

Namespace
Displays the namespace of the selected schema.

Root Element
After the schema is selected, this drop-down menu is populated with all root candidates gathered from the
schema. Choose the root of the output XML documents.

Output folder
Path to the folder where the generated XML instances will be saved.

Filename prefix and Extension
You can specify the prefix and extension for the file name that will be generated. Generated file names have
the following format: prefixN.extension, where N represents an incremental number from 0 up to the
specified Number of instances.

Number of instances
The number of XML files to be generated.

Open first instance in editor
When selected, the first generated XML file is opened in the editor.

Namespaces section
You can specify the Default Namespace, as well as the prefixes for the namespaces.

Export settings
Use this button to save the current settings for future use.

Import settings
Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Options Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for
generating the XML files. The Options tab allows you to set specific options for namespaces and elements.

Tools 981

Figure 444: Generate Sample XML Files Dialog Box (Options Tab)

This tab includes the following options:
Namespace / Element table

Allows you to set a namespace for each element name that appears in an XML document instance. The
following prefix-to-namespace associations are available:

• All elements from all namespaces (<ANY> - <ANY>). This is the default setting.
• All elements from a specific namespace.
• A specific element from a specific namespace.

Settings subtab

Namespace
Displays the namespace specified in the table at the top of the dialog box.

Element
Displays the element specified in the table at the top of the dialog box.

Generate optional elements
When selected, all elements are generated, including the optional ones (having the minOccurs attribute
set to 0 in the schema).

Generate optional attributes
When selected, all attributes are generated, including the optional ones (having the use attribute set to
optional in the schema).

Values of elements and attributes
Controls the content of generated attribute and element values. The following choices are available:

• None - No content is inserted.
• Default - Inserts a default value depending of data type descriptor of the particular element or attribute.

The default value can be either the data type name or an incremental name of the attribute or element

Tools 982

(according to the global option from the Sample XML Files Generator preferences page). Note that
type restrictions are ignored when this option is selected. For example, if an element is of a type that
restricts an xs:string with the xs:maxLength facet to allow strings with a maximum length of 3, the
XML instance generator tool may generate string element values longer than 3 characters.

• Random - Inserts a random value depending of data type descriptor of the particular element or
attribute.

Important: If all of the following are true, the Generate Sample XML Files tool outputs invalid values:

• At least one of the restrictions is a regexp.
• The value generated after applying the regexp does not match the restrictions imposed by one of

the facets.

Preferred number of repetitions
Allows you to set the preferred number of repeating elements related to minOccurs and maxOccurs
facets defined in the XML Schema.

• If the value set here is between minOccurs and maxOccurs, then that value is used.
• If the value set here is less than minOccurs, then the minOccurs value is used.
• If the value set here is greater than maxOccurs, then maxOccurs is used.

Maximum recursion level
If a recursion is found, this option controls the maximum allowed depth of the same element.

Type alternative strategy
Used for the xs:alternative element from XML Schema 1.1. The possible strategies are:

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Choice strategy
Used for xs:choice or substitutionGroup elements. The possible strategies are:

• First - The first branch of xs:choice or the head element of substitutionGroup is always used.
• Random - A random branch of xs:choice or a substitute element or the head element of a

substitutionGroup is used.

Generate the other options as comments
If selected, generates the other possible choices or substitutions (for xs:choice and
substitutionGroup). These alternatives are generated inside comments groups so you can
uncomment and use them later. Use this option with care (for example, on a restricted namespace and
element) as it may generate large result files.

Element values subtab
Allows you to add values that are used to generate the content of elements. If there are multiple values, then
the values are used in a random order.

Attribute values subtab
Allows you to add values that are used to generate the content of attributes. If there are multiple values, then
the values are used in a random order.

Export settings
Use this button to save the current settings for future use.

Import settings
Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Advanced Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options
for generating the XML files. The Advanced tab allows you to set some options in regards to output values and
performance.

Tools 983

Figure 445: Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:
Use incremental attribute / element names as default

If selected, the value of an element or attribute starts with the name of that element or attribute. For example,
for an a element the generated values are: a1, a2, a3, and so on. If not selected, the value is the name of the
type of that element / attribute (for example: string, decimal, etc.)

Maximum length
The maximum length of string values generated for elements and attributes.

Discard optional elements after nested level
The optional elements that exceed the specified nested level are discarded. This option is useful for limiting
deeply nested element definitions that can quickly result in very large XML documents.

Export settings
Use this button to save the current settings for future use.

Import settings
Use this button to load previously exported settings.

Running the Generate Sample XML Files Tool from the Command Line
The Generate Sample XML Files tool can be also used from command line by running the script called
xmlGenerator.bat (on Windows) / xmlGenerator.sh (on Mac OS X / Unix / Linux) located in the Oxygen
XML Developer installation folder. The parameters can be set in the dialog box, exported to an XML file on disk
with the Export settings button, and then reused from command line. With the exported settings file, you can
generate the same XML instances from the command line as from the dialog box. For example:

xmlGenerator.bat path_of_CFG_file

The script can be integrated in an external batch process launched from the command line. The command line
parameter of the script is the relative path to the exported XML settings file. The files specified with relative paths
in the exported XML settings will be made absolute relative to the folder where the script is run.

The following example shows such an XML configuration file:

<settings>
 <schemaSystemId>http://www.w3.org/2001/XMLSchema.xsd</schemaSystemId>
 <documentRoot>schema</documentRoot>
 <outputFolder>D:\projects\output</outputFolder>
 <filenamePrefix>instance</filenamePrefix>
 <filenameExtension>xml</filenameExtension>
 <noOfInstances>1</noOfInstances>
 <openFirstInstance>true</openFirstInstance>
 <defaultNamespace><NO_NAMESPACE></defaultNamespace>
 <element namespace="<ANY>" name="<ANY>">
 <generateOptionalElements>false</generateOptionalElements>
 <generateOptionalAttributes>false</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>
 <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="false"/>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>

Tools 984

 </element>
 <element namespace="<NO_NAMESPACE>"
 name="<ANY>">
 <generateOptionalElements>true</generateOptionalElements>
 <generateOptionalAttributes>true</generateOptionalAttributes>
 <valuesForContentType>DEFAULT</valuesForContentType>
 <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
 <maximumRecursivityLevel>1</maximumRecursivityLevel>
 <choicesAndSubstitutions strategy="RANDOM"
 generateOthersAsComments="true"/>
 <elementValue>value1</elementValue>
 <elementValue>value2</elementValue>
 <attribute namespace="<ANY>"
 name="<ANY>">
 <attributeValue>attrValue1</attributeValue>
 <attributeValue>attrValue2</attributeValue>
 </attribute>
 </element>
</settings>

Converting Schema to Another Schema Language
The Generate/Convert Schema tool allows you to convert a DTD or Relax NG (full or compact syntax) schema
or a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where
perfect equivalence is not possible due to limitations of the target language, Oxygen XML Developer generates an
approximation of the source schema. Oxygen XML Developer uses Trang multiple format converter to perform the
actual schema conversions.

To use this tool, select the Generate/Convert Schema (Alt + Shift + C (Command + Alt + C on OS X)) action
from the Tools menu or from the Open with submenu when invoking the contextual menu in the Project view.
This action opens the Generate/Convert Schema dialog box that allows you to configure various options for
conversion.

Figure 446: Generate/Convert Schema Dialog Box

The Generate/Convert Schema dialog box includes the following options:
Input section

Allows you to select the language of the source schema. If the conversion is based on a set of XML files,
rather than just a single XML file, select the XML Documents option and use the file selector to add the XML
files involved in the conversion.

Tools 985

http://www.thaiopensource.com/relaxng/trang.html

Output section
Allows you to select the language of the target schema.

Options
You can choose the Encoding, the maximum Line width, and the Indent size (in number of spaces) for one
level of indentation.

Output file
Specifies the path for the output file that will be generated.

Close dialog when finished
If you deselect this option, the dialog box will remain opened after the conversion so that you can easily
continue to convert more files.

Advanced options
If you select XML 1.0 DTD for the input, you can click this button to access more advance options to further
fine-tune the conversion. The following advanced options are available:

XML 1.0 DTD Input section
These options apply to the source DTD:

• xmlns - Specifies the default namespace, that is the namespace used for unqualified element names.
• attlist-define - Specifies how to construct the name of the definition representing an attribute list

declaration from the name of the element. The specified value must contain exactly one percent
character. This percent character is replaced by the name of element (after colon replacement) and the
result is used as the name of the definition.

• colon-replacement - Replaces colons in element names with the specified chars when constructing the
names of definitions used to represent the element declarations and attribute list declarations in the
DTD.

• any-name - Specifies the name of the definition generated for the content of elements declared in the
DTD as having a content model of ANY.

• element-define - Specifies how to construct the name of the definition representing an element
declaration from the name of the element. The specified value must contain exactly one percent
character. This percent character is replaced by the name of element (after colon replacement) and the
result is used as the name of the definition.

• annotation-prefix - Default values are represented using an annotation attribute
prefix:defaultValue where prefix is the specified value and is bound to http://relaxng.org/
ns/compatibility/annotations/1.0 as defined by the RELAX NG DTD Compatibility Committee
Specification. By default, the conversion engine will use a for prefix unless that conflicts with a prefix
used in the DTD.

• inline-attlist - Instructs the application not to generate definitions for attribute list declarations, but
instead move attributes declared in attribute list declarations into the definitions generated for element
declarations. This is the default behavior when the output language is XSD.

• strict-any - Preserves the exact semantics of ANY content models by using an explicit choice of
references to all declared elements. By default, the conversion engine uses a wildcard that allows any
element

• generate-start - Specifies whether or not the conversion engine should generate a start element. DTD's
do not indicate what elements are allowed as document elements. The conversion engine assumes
that all elements that are defined but never referenced are allowed as document elements.

• xmlns mappings table - Each row specifies the prefix used for a namespace in the input schema.

W3C XML Schema Output section
This section is available if you select W3C XML Schema for the output.

• disable-abstract-elements - Disables the use of abstract elements and substitution groups in the
generated XML Schema. This can also be controlled using an annotation attribute.

• any-process-contents - One of the values: strict, lax, skip. Specifies the value for the
processContents attribute of any elements. The default is skip (corresponding to RELAX NG
semantics) unless the input format is DTD, in which case the default is strict (corresponding to DTD
semantics).

Tools 986

• any-attribute-process-contents - Specifies the value for the processContents attribute of
anyAttribute elements. The default is skip (corresponding to RELAX NG semantics).

Converting Database to XML Schema
Oxygen XML Developer includes a tool that allows you to create an XML Schema from the structure of a
database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the Convert DB Structure to XML Schema action from the Tools menu.

Result: The Convert DB Structure to XML Schema dialog box is opened and your current database
connections are displayed in the Connections section.

2. If the database source is not listed, click the Configure Database Sources button to open the Data Sources
preferences page where you can configure data sources and connections.

3. In the Format for generated schema section, select one of the following formats:

• Flat schema - A flat structure that resembles a tree-like view of the database without references to
elements.

• Hierarchical schema - Display the table dependencies visually, in a type of tree view where dependent
tables are shown as indented child elements in the content model. Select this option if you want to
configure the database columns of the tables to be converted.

4. Click Connect.

Result: The database structure is listed in the Select database tables section according to the format you
chose.

5. Select the database tables that you want to be included in the XML Schema.
6. If you selected Hierarchical schema for the format, you can configure the database columns.

a. Select the database column you want to configure.
b. In the Criterion section you can choose to convert the selected database column as an Element, Attribute,

or to be Skipped in the resulting XML Schema.
c. You can also change the name of the selected database column by changing it in the Name text field.

7. Click Generate XML Schema.

Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

Flatten an XML Schema
You can organize an XML schema linked by xs:include and xs:import statements on several levels. In some
cases, working on such a schema as if it were a single file is more convenient than working on multiple files
separately. The Flatten Schema operation allows you to flatten an entire hierarchy of XML schemas. Starting
with the main XML schema, Oxygen XML Developer calculates its hierarchy by processing the xs:include and
xs:import statements.

The Flatten Schema action is available from the Tools menu or the contextual menu in Text mode. The action
opens the Flatten Schema dialog box that allows you to configure the operation.

Tools 987

Figure 447: Flatten Schema Dialog Box

For the main schema file and for each imported schema, a new flattened schema is generated in the specified
output folder. These schemas have the same name as the original ones.

Note: If necessary, the operation renames the resulted schemas to avoid duplicated file names.

A flattened XML schema is obtained by recursively adding the components of the included schemas into the
main one. This means Oxygen XML Developer replaces the xs:include, xs:redefine, and xs:override
elements with the ones coming from the included files.

Options in the Flatten Schema Dialog Box

The following options are available in the Flatten Schema dialog box:

File name
The name of the output file.

Output directory
The path of the output directory where the flattened schema file will be saved.

Open the flattened XML Schema file in editor
Opens the main flattened schema in the editing area after the operation completes.

Use the XML Catalogs when collecting the referenced XML Schemas
Enables the imported and included schemas to be resolved through the available XML Catalogs.

Note: Changing this option triggers the recalculation of the dependencies graph for the main schema.

Process the imported XML Schemas resolved through the XML Catalogs
Specifies whether or not the imported schemas that were resolved through an XML Catalog are also
processed.

Flatten the imported XML Schema(s)
Specifies whether or not the imported schemas are flattened.

Note: For the schemas skipped by the flatten operation, no files are created in the output folder and the
corresponding import statements remain unchanged.

Tools 988

Flatten Schema from the Command Line

The Flatten Schema tool can be also ran from command line by using the following command:

• flattenSchema.bat on Windows
• sh flattenSchemaMac.sh on OS X
• sh flattenSchema.sh on Unix/Linux

The command line accepts the following parameters:

• -in:inputSchemaURL - The input schema URL.
• -outDir:outputDirectory - The directory where the flattened schemas should be saved.
• -flattenImports:<boolean_value> - Controls whether or not the imported XML Schemas should be

flattened. The default value true.
• -useCatalogs:<boolean_value> - Controls if the references to other XML Schemas should be resolved

through the available XML Catalogs. The default value false.
• -flattenCatalogResolvedImports:<boolean_value> - Controls whether or not the imported

schemas that were resolved through the XML Catalogs should be flattened. The default value is true.

Note: This option is used only when -useCatalogs is set to true.
• -verbose - Provides information about the current flatten XML Schema operation.
• --help | -help | --h | -h - Prints the available parameters for the operation.

Example: Command Line Example for Windows

flattenSchema.bat -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
 -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
 -flattenCatalogResolvedImports:true -verbose

Example: Command Line Example for OS X

sh flattenSchemaMac.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
 -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
 -flattenCatalogResolvedImports:true -verbose

Example: Command Line Example for Unix/Linux

sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
 -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
 -flattenCatalogResolvedImports:true -verbose

XML to JSON Converter
Oxygen XML Developer includes a useful and simple tool for converting XML files to JSON. It can be found in the
Tools menu.

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the Tools menu.
The XML to JSON dialog box is displayed:

Figure 448: XML to JSON Dialog Box
2. Choose or enter the Input URL of the XML document.
3. Choose the path of the Output file that will contain the conversion JSON result.

Tools 989

4. Select the Open in Editor option to open the JSON result of the conversion in the Oxygen XML Developer JSON
Editor.

5. Click the Convert button.

The original XML document is now converted to a JSON document.

Figure 449: Example: XML to JSON Operation Result

Compiling an XSL Stylesheet for Saxon
As of Saxon 9.7, it is possible to export a compiled form of a stylesheet as an XML file (called a stylesheet export
file). Oxygen XML Developer includes a simple tool called Compile XSL Stylesheet for Saxon that does this for
you. A stylesheet export file is also needed if you want to use the Saxon-JS product to run transformations in a
browser, as in the following example:

<script type="text/javascript" src="SaxonJS/SaxonJS.min.js"></script>
<script>
 window.onload = function() {
 SaxonJS.transform({
 stylesheetLocation: "books.sef",
 sourceLocation: "books.xml"
 });
 }
</script>

The Compile XSL Stylesheet for Saxon tool can be found in the Tools menu and it compiles a specified
stylesheet as an XML file (stylesheet export file with a file extension of .sef).

Selecting this tool opens the Compile XSL Stylesheet for Saxon dialog box that allows you to configure some
options for conversion.

Tools 990

Figure 450: Compile XSL Stylesheet for Saxon Dialog Box

This dialog box includes the following options:
XSL URL

Allows you to select URL of the source XSL stylesheet. You can specify the URL by using the text field, the
history drop-down, or the browsing tools in the Browse drop-down list.

Target
Allows you to select the type of Saxon product that the export file will be used with. You can choose Saxon-
JS, Saxon-EE, Saxon-PE, or Saxon-HE.

Output file

You can specify the path where the output file will be saved by entering it in the text field, using the Insert
Editor Variables button, or using the browsing tool button.

Open in Editor
Select this option to open the resulting stylesheet export file in the main Oxygen XML Developer editing
pane.

Convert
Use this button to generate the stylesheet export file according the options selected in this dialog box.

Format and Indent (Pretty-Print) Multiple Files
Oxygen XML Developer provides support for formatting and indenting (pretty-print) multiple files at once. This
action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the contextual
menu of the Project view or from the Tools menu. This opens the Format and Indent Files dialog box that allows
you to configure options for the action.

Tools 991

Figure 451: Format and Indent Files Dialog Box

The Scope section allows you choose from the following scopes:

• All opened files - The pretty-print is performed in all opened files.
• Directory of the current file - All the files in the folder of the current edited file.
• Project files - All files from the current project.
• Selected project files - The selected files from the current project.
• Specified path - the pretty-print is performed in the files located at a specified path.

The Options section includes the following options:

• File filter - Allow you to filter the files from the selected scope.
• Recurse subdirectories - When selected, the pretty-print is performed recursively for the specified scope. The

one exception is that this option is ignored if the scope is set to All opened files.
• Include hidden files - When selected, the pretty-print is also performed in the hidden files.
• Make backup files with extension - When selected, Oxygen XML Developer makes backup files of the modified

files. The default extension is .bak, but you can change the extension as you prefer.

Generate Documentation
Oxygen XML Developer includes a tool for generating documentation for XSLT, XML Schema, XQuery, and WSDL
documents.

Generating Documentation for an XML Schema
Oxygen XML Developer can generate detailed documentation for the components of an XML Schema in HTML,
PDF, DocBook, or other custom formats. You can select the components and the level of detail. The components
are hyperlinked in both HTML and DocBook documents.

Note: You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select XML Schema Documentation from the Tools >
Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the
Project view.

Tools 992

Figure 452: XML Schema Documentation Dialog Box

The Schema URL field of the dialog box must contain the full path to the XML Schema (XSD) file for which
you want to generate documentation. The schema may be a local or a remote file. You can specify the path to
the schema by entering it in the text field, or by using the Insert Editor Variables button or the options in the

Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• PDF - The documentation is generated in PDF output format.
• DocBook - The documentation is generated in DocBook output format.
• DITA - The documentation is generated in DITA output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output.

Click the Options button to open a Custom format options dialog box where you can specify a custom
stylesheet for creating the output. There is also an option to Copy additional resources to the output folder
and you can select the path to the additional Resources that you want to copy. You can also choose to
keep the intermediate XML files created during the documentation process by deselecting the Delete
intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. You can choose
to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output
file type. For DITA and DocBook documents, this option appears as Open in Editor and the result will be
opened in Oxygen XML Developer (in the current editor).

Tools 993

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with
the xml:lang attribute set to the selected language. If you choose a primary language code (for example, en
for English), this includes all its possible variations (en-us, en-uk, etc.).

Settings Tab

When you generate documentation for an XML schema you can choose what components to include in the
output and the details to be included in the documentation.

Figure 453: Settings Tab of the XML Schema Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Global elements,
Global attributes, Local elements, Local attributes, Simple Types, Complex Types, Groups, Attribute Groups,
Redefines, Referenced schemas, Include notations.

You can choose whether or not to include the following other details:

• Diagram - Displays the diagram for each component. You can choose the image format (JPEG, PNG, GIF,
SVG) to use for the diagram section. The generated diagrams are dependent on the options from the Schema
Design Properties page.

• Diagram annotations - This option controls whether or not the annotations of the components presented in
the diagram sections are included.

• Namespace - Displays the namespace for each component.
• Location - Displays the schema location for each component.
• Type - Displays the component type if it is not an anonymous one.
• Type hierarchy - Displays the types hierarchy.
• Model - Displays the model (sequence, choice, all) presented in BNF form. The separator characters that are

used depend upon the information item used:

Tools 994

• xs:all - Its children will be separated by space characters.
• xs:sequence - Its children will be separated by comma characters.
• xs:choice - Its children will be separated by | characters.

• Children - Displays the list of component's children.
• Instance - Displays an XML instance generated based on each schema element.
• Used by - Displays the list of all the components that reference the current one. The list is sorted by

component type and name.
• Properties - Displays some of the component's properties.
• Facets - Displays the facets for each simple type
• Identity constraints - Displays the identity constraints for each element. For each constraint there are

presented the name, type (unique, key, keyref), reference attribute, selector and field(s).
• Attributes - Displays the attributes for the component. For each attribute there are presented the name, type,

fixed or default value, usage and annotation.
• Asserts - Displays the assert elements defined in a complex type. The test, XPath default namespace, and

annotation are presented for each assert.
• Annotations - Displays the annotations for the component. If you choose Escape XML Content, the XML tags

are present in the annotations.
• Source - Displays the text schema source for each component.
• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If selected, local elements and attributes are included in the
documentation index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema
documentation is generated. It is deselected by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported
settings file you can generate the same documentation from the command line interface.)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XML Schema documentation.

Related Information:
Customizing the PDF Output of Generated XML Schema Documentation on page 438

Generating Documentation for an XSLT Stylesheet
You can use Oxygen XML Developer to generate detailed documentation in HTML format for the elements (top-
level elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT
elements to include in the generated documentation and also the level of details to present for each of them. The
elements are hyperlinked. To generate documentation in a custom output format, you can edit the XSLT stylesheet
used to generate the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the Tools >
Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the
Project view.

Tools 995

Figure 454: XSLT Stylesheet Documentation Dialog Box

The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to generate
documentation for. The stylesheet may be a local or a remote file. You can specify the path to the stylesheet by
entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-
down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output.

Click the Options button to open a Custom format options dialog box where you can specify a custom
stylesheet for creating the output. There is also an option to Copy additional resources to the output folder
and you can select the path to the additional Resources that you want to copy. You can also choose to
keep the intermediate XML files created during the documentation process by deselecting the Delete
intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large XSLT
stylesheets, choosing another split criterion may generate smaller output files, providing faster documentation
browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output
file type.

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

Settings Tab

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include
in the output (templates, functions, global parameters, global variables, attribute sets, character maps, keys,
decimal formats, output formats, XSLT elements from referenced stylesheets) and the details to include in the
documentation.

Tools 996

Figure 455: Settings Tab of the XSLT Stylesheet Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following components: Templates,
Functions, Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats, Output
formats, Referenced stylesheets.

You can choose whether or not to include the following other details:

• Documentation - Shows the documentation for each XSLT element. For HTML format, the user-defined data
elements that are recognized and transformed in documentation blocks of the XSLT elements they precede,
are the ones from the following schemas:

• Oxygen XML Developer built-in XSLT documentation schema.
• A subset of DocBook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis,

title, ulink, programlisting, para, orderedlist, itemizedlist.
• A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul,

ol, pre, sl, sli, step, steps, li, title, xref.
• Full XHTML 1.0 support.
• XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own user-

defined data elements. The supported DocBook and DITA elements are the ones mentioned above.
• DOXSL documentation framework. Supported elements are : codefrag, description, para,

docContent, documentation, parameter, function, docSchema, link, list, listitem, module,
parameter, template, attribute-set;

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre
element. You can change this behavior by using a custom format instead of the built-in HTML format and
providing your own XSLT stylesheets.

• Use comments - Controls whether or not the comments that precede an XSLT element is treated as
documentation for the element they precede. Comments that precede or succeed the xsl:stylesheet
element, are treated as documentation for the whole stylesheet. Note that comments that precede an import
or include directive are not collected as documentation for the imported/included module. Also, comments
from within the body of the XSLT elements are not collected at all.

• Namespace - Shows the namespace for named XSLT elements.
• Location - Shows the stylesheet location for each XSLT element.
• Parameters - Shows parameters of templates and functions.
• References - Shows the named XSLT elements that are referenced from within an element.
• Used by - Shows the list of all the XSLT elements that reference the current named element.
• Supersedes - Shows the list of all the XSLT elements that are superseded the current element.

Tools 997

• Overriding - Shows the list of all the XSLT elements that override the current element.
• Return type - Shows the return type of the function.
• Source - Shows the text stylesheet source for each XSLT element.
• Import precedence - Shows the computed import precedence as declared in the XSL transformation

specifications.
• Generate index - Creates an index with all the XSLT elements included in the documentation.

Export settings - Save the current settings in a settings file for further use (for example, with the exported
settings file you can generate the same documentation from the command-line interface.)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XSLT documentation.

Related Information:
XSLT Stylesheet Component Documentation Support on page 360

Generating HTML Documentation for an XQuery Document
To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is
opened with the XQuery Documentation action that is available from the Tools > Generate Documentation menu
or from the Generate Documentation submenu in the contextual menu of the Project view.

The dialog box allows you to configure a set of parameters for the process of generating the HTML
documentation.

Figure 456: XQuery Documentation Dialog Box

The following options are available:

• Input - The full path to the XQuery file must be specified in one of the two fields in this section:

• URLFile - The URL of the file in which you want to generate the documentation.
• Folder - The directory that contains the files for which you want to generate the documentation. You can

also specify the XQuery file extensions to be searched for in the specified directory.
• Default function namespace - Optional URI for the default namespace for the submitted XQuery.
• Predefined function namespaces - Optional, engine-dependent, predefined namespaces that the submitted

XQuery refers to. They allow the conversion to generate annotation information to support the presentation

Tools 998

component hypertext linking (only if the predefined modules have been loaded into the local xqDoc XML
repository).

• Open in Browser/System Application - Select this option if you want the result to be opened in the system
application associated with that file type.

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

• Output - Allows you to specify where the generated documentation is saved on disk.

Generating Documentation for WSDL Documents
You can use Oxygen XML Developer to generate detailed documentation for the components of a WSDL
document in HTML format. You can select the WSDL components to include in your output and the level
of details to present for each of them. Also, the components are hyperlinked. You can also generate the
documentation in a custom output format by using a custom stylesheet.

Note: The WSDL documentation includes the XML Schema components that belong to the internal or imported
XML schemas.

To generate documentation for a WSDL document, select WSDL Documentation from the Tools > Generate
Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view.

Figure 457: WSDL Documentation Dialog Box

The Input URL field of the dialog box must contain the full path to the WSDL document that you want to generate
documentation for. The WSDL document may be a local or a remote file. You can specify the path to the WSDL
file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse
drop-down menu.

Output Tab

The following options are available in the Output tab:

• Format - Allows you to choose between the following formats:

• HTML - The documentation is generated in HTML output format.
• Custom - The documentation is generated in a custom output format, allowing you to control the output.

Click the Options button to open a Custom format options dialog box where you can specify a custom

Tools 999

stylesheet for creating the output. There is also an option to Copy additional resources to the output folder
and you can select the path to the additional Resources that you want to copy. You can also choose to
keep the intermediate XML files created during the documentation process by deselecting the Delete
intermediate XML file option.

• Output file - You can specify the path of the output file by entering it in the text field, or by using the Insert
Editor Variables button or the options in the Browse drop-down menu.

• Split output into multiple files - Instructs the application to split the output into multiple files. For large
WSDL documents, choosing a different split criterion may generate smaller output files providing a faster
documentation browsing. You can choose to split them by namespace, location, or component name.

• Open in Browser/System Application - Opens the result in the system application associated with the output
file type.

Note: To set the browser or system application that will be used, open the Preferences dialog box (Options >
Preferences), go to Global, and set it in the Default Internet browser field. This will take precedence over the
default system application settings.

• Keep only the annotations with xml:lang set to - The generated output will contain only the annotations with
the xml:lang attribute set to the selected language. If you choose a primary language code (for example, en
for English), this includes all its possible variations (en-us, en-uk, etc.).

Setting Tab

When you generate documentation for a WSDL document, you can choose what components to include in the
output and the details to be included in the documentation.

Figure 458: Settings Tab of the WSDL Documentation Dialog Box

The Settings tab allows you to choose whether or not to include the following:

• Components

• Services - Specifies whether or not the generated documentation includes the WSDL services.
• Bindings - Specifies whether or not the generated documentation includes the WSDL bindings.
• Port Types - Specifies whether or not the generated documentation includes the WSDL port types.
• Messages - Specifies whether or not the generated documentation includes the WSDL messages.
• XML Schema Components - Specifies whether or not the generated documentation includes the XML

Schema components.

Tools 1000

• Only global elements and types - Specifies whether or not the generated documentation includes only
global elements and types.

• Component Details

• Namespace - Presents the namespace information for WSDL or XML Schema components.
• Location - Presents the location information for each WSDL or XML Schema component.
• Used by - Presents the list of components that reference the current one.
• Documentation - Presents the component documentation. If you choose Escape XML Content, the XML

tags are presented in the documentation.
• Source - Presents the XML fragment that defines the current component.
• Instance - Generates a sample XML instance for the current component.

Note: This option applies to the XML Schema components only.
• XML Schema Diagram - Displays the diagram for each XML Schema component. You can choose the

image format (JPEG, PNG, GIF, SVG) to use for the diagram section.

• Diagram annotations - Specifies whether or not the annotations of the components presented in the
diagram sections are included.

• Generate index - Displays an index with the components included in the documentation.

• Include local elements and attributes - If selected, local elements and attributes are included in the
documentation index.

• Include resource hierarchy - Specifies whether or not the resource hierarchy for an XML Schema
documentation is generated. It is deselected by default.

Export settings - Save the current settings in a settings file for further use (for example, with the exported
settings file you can generate the same documentation from the command-line interface.)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the WSDL documentation.

Canonicalizing Files
You can select the canonicalization algorithm to be used for a document from the dialog box that is displayed by
using the Canonicalize action that is available from the Source submenu when invoking the contextual menu in
Text mode or from the Tools menu.

Tools 1001

Figure 459: Canonicalization Settings Dialog Box

The Canonicalize dialog box allows you to set the following options:

• Input URL - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the
location of the input file.

• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part
of the XML syntax). It does not look into attribute values or element content, so the namespace declarations
required to process these are not copied. This is useful if you have a signed XML document that you want to
insert into other XML documents (or you need self-signed structures that support placement within various
XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the
scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security standpoint because it requires no knowledge of the data that are
to be secured to safely sign them. A problem may occur if the signed document is moved into another XML
document that has other declarations because the Inclusive Canonicalization will copy them and the signature
will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.
• Output - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the

output file path where the signed XML document will be saved.
• Open in editor - If selected, the output file will be opened in the editor.

Related Information:
Digital Signatures Overview on page 561

Signing Files
You can select the type of signature to be used for documents from a signature settings dialog box. To open this
dialog box, select the Sign action from the Source submenu when invoking the contextual menu in Text mode or
from the Tools menu.

Tools 1002

Figure 460: Signature Settings Dialog Box

The following options are available:

Note: If Oxygen XML Developer could not find a valid certificate, a link is provided at the top of the dialog box that
opens the XML Signing Certificates preferences page where you can configure a valid certificate.

• Input - Available if the Sign action was selected from the Tools menu. Specifies the location of the input URL.
• Transformation Options - See the Digital Signature Overview section for more information about these options.

• None - If selected, no canonicalization algorithm is used.
• Exclusive - If selected, the exclusive (uncommented) canonicalization method is used.

Note: Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are
a part of the XML syntax). It does not look into attribute values or element content, so the namespace
declarations required to process these are not copied. This is useful if you have a signed XML document
that you want to insert into other XML documents (or you need self-signed structures that support
placement within various XML contexts), as it will ensure the signature is verified correctly each time.

• Exclusive with comments - If selected, the exclusive with comments canonicalization method is used.
• Inclusive - If selected, the inclusive (uncommented) canonicalization method is used.

Note: Inclusive Canonicalization copies all the declarations, even if they are defined outside of the
scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive
Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document
and it is the safer method from the security standpoint because it requires no knowledge of the data that
are to be secured to safely sign them. A problem may occur if the signed document is moved into another
XML document that has other declarations because the Inclusive Canonicalization will copy them and the
signature will be invalid.

• Inclusive with comments - If selected, the inclusive with comments canonicalization method is used.
• XPath - The XPath expression provides the fragments of the XML document to be signed.

Tools 1003

• ID - Provides ID of the XML element to be signed.
• Envelope - If selected, the enveloped signature is used. See the Digital Signature Overview for more

information.
• Detached - If selected, the detached signature is used. See the Digital Signature Overview for more information.
• Append KeyInfo - If this option is selected, the ds:KeyInfo element will be added in the signed document.
• Signature algorithm - The algorithm used for signing the document. The following options are available: RSA

with SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
• Output - Available if the Sign action was selected from the Tools menu. Specifies the path of the output file

where the signed XML document will be saved.
• Open in editor - If selected, the output file will be opened in Oxygen XML Developer.

Related Information:
Digital Signatures Overview on page 561
Verifying Signature on page 566
Example of How to Digitally Sign XML Files or Content on page 566

Verifying Signature
You can verify the signature of a file by selecting the Verify Signature action from the Source submenu when
invoking the contextual menu in Text mode or from the Tools menu. The Verify Signature dialog box then allows
you to specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about the
problem.

Related Information:
Digital Signatures Overview on page 561
Signing Files on page 564
Example of How to Digitally Sign XML Files or Content on page 566

WSDL SOAP Analyzer
WSDL SOAP Analyzer is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL)
are accepted by a Web Services server.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP,
it is easy to check if the defined SOAP messages are accepted by the remote Web Services server by using the
integrated WSDL SOAP Analyzer tool (available from the toolbar or Tools menu).

Oxygen XML Developer provides two ways of testing, one for the currently edited WSDL document and another
for the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for
the currently edited WSDL document do one of the following:

• Click the WSDL SOAP Analyzer toolbar button.
• Use the WSDL SOAP Analyzer action from the Tools menu.
• Go to Open with > WSDL SOAP Analyzer in the contextual menu of the Project view.

Tools 1004

Figure 461: WSDL SOAP Analyzer Dialog Box

This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer
fields are as follows:

• Services - The list of services defined by the WSDL file.
• Ports - The ports for the selected service.
• Operations - The list of available operations for the selected service.
• Action URL - The script that serves the operation.
• SOAP Action - Identifies the action performed by the script.
• Version - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected

port.
• Request Editor - It allows you to compose the web service request. When an action is selected, Oxygen XML

Developer tries to generate as much content as possible for the SOAP request. The envelope of the SOAP
request has the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/
envelope/ for SOAP 1.1 or http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to
change a few values for the request to be valid. The Content Completion Assistant is available for this editor
and is driven by the schema that defines the type of the current message. While selecting various operations,
Oxygen XML Developer remembers the modified request for each one. You can press the Regenerate button
to overwrite your modifications for the current request with the initial generated content.

• Attachments List - You can define a list of file URLs to be attached to the request.

Tools 1005

• Response Area - Initially it displays an auto generated server sample response so you can have an idea about
how the response looks like. After pressing the Send button, it presents the message received from the server
in response to the Web Service request. It may show also error messages. If the response message contains
attachments, Oxygen XML Developer prompts you to save them, then tries to open them with the associated
system application.

• Errors List - There may be situations where the WSDL file is respecting the WSDL XML Schema, but it fails to
be valid (for example, in the case of a message that is defined by means of an element that is not found in the
types section of the WSDL). In such a case, the errors are listed here. This list is presented only when there are
errors.

• Send Button - Executes the request. A status dialog box is displayed when Oxygen XML Developer is
connecting to the server.

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service, the port,
and the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually
attach files to it and send it to the server. Watch the server response in the response area. You can find more
details in the Testing Remote WSDL Files section.

Note: SOAP requests and responses are automatically validated in the WSDL SOAP Analyzer using the XML
Schemas specified in the WSDL file.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web
Service SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files
To open and test a remote WSDL file the steps are the following:

1. Go to Tools > WSDL SOAP Analyzer .
2. On the WSDL File tab enter the URL of the remote WSDL file.

You enter the URL:

• by typing
• by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry

3. Press the OK button.
This will open the WSDL SOAP Analyzer tool. In the Saved SOAP Request tab you can open directly a
previously saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog box (menu Tools > WSDL SOAP Analyzer) opens the UDDI
Registry Browser dialog box.

Tools 1006

Figure 462: UDDI Registry Browser Dialog Box

The fields of the dialog box are as follows:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web

services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search either by company or by provided service.
• Case sensitive - When selected, the search takes into account the keyword case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button, the UDDI Registry Browser dialog box is closed
and you are returned to the WSDL File Opener dialog box.

XML Schema Regular Expressions Builder
The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as they
are applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions Builder
from the Tools menu.

Tools 1007

Figure 463: XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:
Regular expressions editor

Allows you to edit the regular expression to be tested and used. Content completion is available and presents
a list with all the predefined expressions. It is triggered by pressing Ctrl + Space (Command + Space on OS
X).

Error display area
If the edited regular expression is incorrect, an error message will be displayed here. The message contains
the description and the exact location of the error. Also, clicking the quick navigation button () highlights the
error inside the regular expression.

Category
You can choose from several categories of predefined expressions. The selected category influences the
displayed expressions in the Available expressions table.

Available expressions
This table includes the available regular expressions and a short description for each of them. The set
of expressions depends on the category selected in the previous Category combo box. You can add an
expression in the Regular expressions editor by double-clicking the expression row in the table. You
will notice that in the case of Character categories and Block names, the expressions are also listed in
complementary format.

Evaluate expression on
You can choose between two options:

• Evaluate expression on each line - The edited expression will be applied on each line in the Test area.
• Evaluate expression on all text - The edited expression will be applied on the whole text.

Test
A text editor that allows you to enter a text sample for which the regular expression will be applied. All
matches of the edited regular expression will be highlighted.

Tools 1008

After editing and testing your regular expression you can insert it in the current editor. The Insert button will
become active when an editor is opened in the background and there is an expression in the Regular expressions
editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode or schema Design
mode. Accordingly, the Insert button will be not available if the current document is edited in these modes.

Note: Some regular expressions may indefinitely block the Java Regular Expressions engine. If the execution of
the regular expression does not end in about five seconds, the application displays a dialog box that allows you to
interrupt the operation.

Large File Viewer
XML files tend to become larger and larger mostly because they are frequently used as a format for database
export or for porting between multiple database formats. Traditional XML text editors simply cannot handle
opening these huge export files, some having sizes exceeding one gigabyte, because all the file content must be
loaded in memory before the user can actually view it.

The best performance of the viewer is obtained for encodings that use a fixed number of bytes per character
(such as UTF-16 or ASCII). The performance for UTF-8 is very good for documents that use mostly characters
of the European languages. For the same encoding, the rendering performance is higher for files consisting of
long lines (up to few thousands characters) and may degrade for short lines. In fact, the maximum size of a
file that can be rendered in the Large File Viewer decreases when the total number of the text lines of the file
increases. Trying to open a very large file (for example, a file of 4 GB) with a very high number of short lines (100
or 200 characters per line) may produce an out of memory error (OutOfMemoryError) that would require either
increasing the Java heap memory with the -Xmx startup parameter or decreasing the total number of lines in the
file.

The powerful Large File Viewer is available from the Tools menu or as a standalone application. You can also
right-click a file in your project and choose to open it with the viewer. It uses an efficient structure for indexing
the opened document. No information from the file is stored in the main memory, just a list of indexes in the file.
In this way the viewer can open very large files, up to 10 gigabytes. If the opened file is XML, the encoding used
to display the text is detected from the XML prolog of the file. For other file types, the encoding is taken from the
Oxygen XML Developer options. See Encoding for non XML files.

Tools 1009

Figure 464: Large File Viewer

Large File Viewer components:

• The menu bar provides menu driven access to all the features and functions that are available in Large File
Viewer:

File > Open
Opens files in the viewer (also available in the contextual menu).

File > Exit
Closes the viewer.

Edit > Copy
Copies the selected text to clipboard (also available in the contextual menu).

Find > Find
Opens a reduced Find dialog box that provides some basic search options, such as:

• Case sensitive - When selected, operations are case-sensitive.
• Regular Expression - When selected, allows you to use any regular expression in Perl-like syntax.
• Wrap around - Continues the find operation from the start/end of the document after reaching the end/,

depending on whether the search is in forward or backward direction.

Help > Help
Provides access to the User Manual.

• The status bar provides information about the current opened file path, the Unicode representation of the
character at cursor position and the line and column in the opened document where the cursor is located.

Attention: For faster computation the Large File Viewer uses a fixed font (plain, monospace font of size
12) to display characters. The font is not configurable from the Preferences page.

Tip: The best performance of the viewer is accomplished for encodings that use a fixed number of bytes per
character (such as UTF-16 or ASCII). The performance for UTF-8 is very good for documents that use mostly
characters of the European languages. For the same encoding the rendering performance is high for files
consisting of short lines (up to a few thousand characters) and may degrade for long lines.

Tools 1010

Hex Viewer
When the Unicode characters that are visible in a text viewer or editor are not enough and you need to see the
byte values of each character of a document, you can start the Hex Viewer that is available on the Tools menu.
It has two panels: the characters are rendered in the right panel and the bytes of each character are displayed
in the left panel. There is a 1:1 correspondence between the characters and their byte representation: the byte
representation of a character is displayed in the same matrix position of the left panel as the character in the
matrix of the right panel.

Figure 465: Hex Viewer

To open a file in Hex Viewer use the File > Open action. Alternatively, you can drag a file and drop it in the Hex
Viewer panel.

Standalone SVG Viewer
Oxygen XML Developer includes a simple SVG Viewer that allows you to work with SVG images.

To open the viewer, select SVG Viewer from the Tools menu.

Tools 1011

Figure 466: SVG Viewer

You can browse for and open any SVG file that has the .svg or .svgz extension.

If the file is included in the current project, you can open it in the viewer by right-clicking the image file in the
Project view and selecting Open with > SVG Viewer.

Actions Available in the SVG Viewer

The following actions are available in the SVG Viewer:

Zoom in
To zoom in on an image, use any of the following methods:

• Scroll forward with the mouse wheel.
• Select Zoom in from the contextual menu.
• Use the Ctrl + I (Command + I on OS X) keyboard shortcut.

Zoom out
To zoom in on an image, use any of the following methods:

• Scroll backward with the mouse wheel.
• Use the Ctrl + O (Command + O on OS X) keyboard shortcut.
• Select Zoom out from the contextual menu.

Rotate
To rotate an image, use either of the following methods:

• Use the Ctrl + Right-Click + Drag (Command + Right-Click + Drag on OS X) shortcut.
• Select Rotate from the contextual menu. This rotates the image exactly 90 degrees clockwise.

Refresh
To refresh (or reset) an image, use either of the following methods:

• Use the Ctrl + T (Command + T on OS X) keyboard shortcut.
• Select Refresh from the contextual menu.

Move
To move an image, use either of the following methods:

• Use the Arrow Keys on your keyboard.
• Use the Shift + Left-Click + Drag shortcut.

Pan
To pan an image, click and drag the image with your mouse.

Tools 1012

Related Information:
Editing SVG Files on page 533

Tree Editor
The Tree Editor (Tools > Tree Editor) is used for editing the content of a document displayed as an XML tree. The
workspace offers the following functional areas:

• Main menu - Provides access to all the features and functions available in Oxygen XML Developer Tree Editor.
• Toolbar - Provides easy access to common and frequently used functions. Each icon is a button that acts as a

shortcut to a related function.
• Editor panel - Easy editing of structured mark-up documents. Each token has an associated icon for easier

visual identification.
• Message panel - Displays messages returned from user operations.
• Model view - Shows the detailed information about the attribute or element that you are working on.
• All Elements panel - Presents a list of all defined elements that can be inserted within your document.

The tree editor does not offer entity support. Entities are not presented with a special type of node in the tree and
new entity nodes cannot be inserted in the document.

Compare Files
The Compare Files tool can be used to compare files or XML file fragments. The tool provides a mechanism for
comparing two files or fragments, as well as the mechanism for a three-way comparison. The utility is available
from the Tools menu or can be opened as a stand-alone application from the Oxygen XML Developer installation
folder (diffFiles.exe).

Figure 467: Compare Files Tool

Tools 1013

Starting the Tool from a Command Line

The file comparison tool can also be started by using command-line arguments. In the installation folder there
is an executable shell (diffFiles.bat on Windows, diffFiles.sh on Unix/Linux, diffFilesMac.sh on
OS X). To specify the files to compare, you can pass command-line arguments using the following construct:
diffFiles.bat/diffFiles.sh/diffFilesMac.sh [path to left file] [path to right file]
[path to 3-way base file].

If three files are specified, the tool will start in the 3-way comparison mode. If only two files are specified, the tool
will start in the 2-way comparison mode. The first specified file will be added to the left panel in the comparison
tool, the second file to the right panel, and the optional third file will be the base (ancestor) file used for a 3-way
comparison. If you pass only one argument, you are prompted to manually choose another file.

If you want to launch the file comparison tool from an external application with specified files and you want
the file browsing tools at the top of both panels to be hidden, you should use the -ext argument as the first
command. There are some additional arguments that are allowed and to see all the details for the command line
construct, type diffFiles.bat --help in the command line.

For example, to do a 3-way comparison on Windows, the command line might look like this:

diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile

Tip: If there are spaces in the path names, surround the paths with quotes.

Two-Way Comparisons

The Compare Files tool can be used to compare the differences between two files or XML fragments.

Compare Files

To perform a two-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by
using the text field, the history drop-down, or the browsing tools in the Browse drop-down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used to offer
a better view of the differences.

2. To highlight the differences between the two files, click the Perform File Differencing button from the
toolbar.

3. You can use the drop-down menu on the left side of the toolbar to change the algorithm for the operation.
4. You can also use the Diff Options button to access the Files Comparison preferences page where you can

choose to ignore certain types of markup and configure various options.
5. If you are comparing XML documents using the XML Fast or XML Accurate algorithms, you can enter an

XPath 2.0 expression in the Ignore nodes by XPath text field to ignore certain nodes from the comparison.

The resulting comparison will show you differences between the two files. The line numbers on each side
and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences.
Adjacent changes are grouped into blocks of changes. This layout allows you to easily identify and focus on a
group of related changes.

Figure 468: Two-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines
connect the compared fragments in the middle section between the two panes. The highlighting colors can be
customized in the Files Comparison / Appearance preferences page, but the default colors and their shades mean
the following:

Tools 1014

• Pink - Identifies modifications on either side.
• Gray - Identifies an addition of a node in the left side (your outgoing changes).
• Blue - Identifies an addition of a node in the right side (incoming changes).
• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.
• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Compare Fragments

To compare XML file fragments, you need to copy and paste the fragments you want to compare into each side,
without selecting a file. If a file is already selected, you need to close it using the Close (Ctrl + W (Command +
W on OS X)) button, before pasting the fragments. If you save modified fragments, a dialog box opens that allows
you to save the changes as a new document.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).
• Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most

part of the window. At the top of the overview ruler there is a success indicator that turns green where there
are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File
Differencing button.

A variety of actions are available on the toolbar and in the various menus (these same actions are also available
in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy,
or remove changes. When you select a change, the following inline action widgets are available, depending on the
type of change:

 Append left change to right and Append right change to left
Copies the content of the selected change from one side and appends it on the other, according to the
content of the corresponding change. As a result, the side where the arrow points to will contain the changes
from both sides.

 Copy change from left to right and Copy change from right to left
Replaces the content of a change from one side with the content of the corresponding change from the other
side.

 Remove change
Rejects the change on the particular side and preserves the particular content on the other side.

Two-Way Diff Algorithms

Oxygen XML Developer offers the following two-way diff algorithms to compare files or fragments:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Characters - Computes the differences at character level, meaning that it compares two files or fragments
looking for identical characters.

• Words - Computes the differences at word level, meaning that it compares two files or fragments looking for
identical words.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• Syntax Aware - Computes differences for known file types or fragments. This algorithm splits the files or
fragments into sequences of tokens and computes the differences between them. The meaning of a token
depends on the type of compared files or fragments.

Tools 1015

Known file types include those listed in the New dialog box, such as XML file types (XSLT files, XSL-FO files,
XSD files, RNG files, NVDL files, etc.), XQuery file types (.xquery, .xq, .xqy, .xqm extensions), DTD file types
(.dtd, .ent, .mod extensions), TEXT file type (.txt extension), or PHP file type (.php extension).

For example:

• When comparing XML files or fragments, a token can be one of the following:

• The name of an XML tag
• The < character
• The /> sequence of characters
• The name of an attribute inside an XML tag
• The = sign
• The " character
• An attribute value
• The text string between the start tag and the end tag (a text node that is a child of the XML element

corresponding to the XML tag that encloses the text string)
• When comparing plain text, a token can be any continuous sequence of characters or any continuous

sequence of whitespaces, including a new line character.
• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML Accurate.
• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two

XML files or fragments looking for identical XML nodes.

Three-Way Comparisons

Oxygen XML Developer also includes a three-way comparison feature to help you solve conflicts and merge
changes between multiple modifications. It is especially helpful for teams who have multiple authors editing and
committing the same documents. It provides a comparison between a local change, another change, and the
original base revision. Some additional advantages include:

• Visualize and merge content that was modified by you and another member of your team.
• Marks differences correctly even when the document structure is rearranged.
• Allows you to merge XML-relevant modifications.

Figure 469: Three-Way Comparison

Compare Files

To perform a three-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by
using the text field, the history drop-down, or the browsing tools in the Browse drop-down menu.

Step Result: The selected files are opened in the two side-by-side editors. A text editing mode is used to offer
a better view of the differences.

Tools 1016

2. Click the Three-Way Comparison button on the toolbar and select the base file in the Base field. You can
specify the path by using the text field, the history drop-down, or the browsing tools in the Browse drop-
down menu.

3. To highlight the differences, click the Perform File Differencing button on the toolbar.
4. You can use the drop-down menu on the left side of the toolbar to change the algorithm for the operation.
5. You can also use the Diff Options button to access the Files Comparison preferences page where you can

choose to ignore certain types of markup and configure various options.

The resulting comparison will show you differences between the two files, as well as differences between either
of them and the base (ancestor) file. The line numbers on each side and colored marks on the right-side vertical
stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of
changes.

Figure 470: Three-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines
connect the compared fragments in the middle section between the two panes. The highlighting colors can be
customized in the Files Comparison / Appearance preferences page, but the default colors and their shades mean
the following:

• Pink - Identifies blocks of changes that include conflicts.
• Gray - Identifies your outgoing changes that do not include conflicts.
• Blue - Identifies incoming changes that do not include conflicts.
• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.
• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Navigate Differences

To navigate through differences, do one of the following:

• Use the navigation buttons on the toolbar (or in the Compare menu).
• Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most

part of the window. At the top of the overview ruler there is a success indicator that turns green where there
are no differences, or red if differences are found.

• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the

differences are refreshed when you save the modified document or when you click the Perform File
Differencing button.

A variety of actions are available on the toolbar and in the various menus (these same actions are also available
in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy,
or remove changes. When you select a change, the following inline action widgets are available, depending on the
type of change:

 Append left change to right and Append right change to left
Copies the content of the selected change from one side and appends it on the other, according to the
content of the corresponding change. As a result, the side where the arrow points to will contain the changes
from both sides.

Tools 1017

 Copy change from left to right and Copy change from right to left
Replaces the content of a change from one side with the content of the corresponding change from the other
side.

 Remove change
Rejects the change on the particular side and preserves the particular content on the other side.

Three-Way Diff Algorithms

Oxygen XML Developer offers the following three-way diff algorithms to compare files:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML Accurate.
• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two

XML files or fragments looking for identical XML nodes.

Second Level Comparisons

For both two-way and three-way comparisons, Oxygen XML Developer automatically performs a second level
comparison for the Lines, XML Fast, and XML Accurate algorithms. After the first comparison is finished, the
second level comparisons for the Lines algorithm is processed on text nodes using a word level comparison,
meaning that it looks for identical words. For the XML Fast and XML Accurate algorithms, the second level
comparison is processed using a syntax-aware comparison, meaning that it looks for identical tokens. This
second level comparison makes it easier to spot precise differences and you can merge or reject the precise
modifications.

Figure 471: Second Level Diff Comparison

Note: If a modified text fragment contains XML markup (such as processing instructions, XML comments,
CData, or elements), the second level comparison will not automatically be performed. In this case you can
manually select a second level comparison by doing a word level or character level comparison.

To do a word level comparison, select Show word level details from the contextual menu or Compare menu.

Figure 472: Word Level Comparison

To do a character level comparison, select Show Character Level details from the contextual menu or Compare
menu.

Tools 1018

Figure 473: Character Level Comparison

Related Information:
Files Comparison Preferences Page on page 122
Compare Directories on page 579

Toolbar and Contextual Menu Actions of the Compare Files Tool
The toolbar of the Compare Files tool contains operations that can be performed on the source and target files or
XML fragments. Many of the actions are also available in the contextual menu.

Figure 474: Compare Toolbar

The following actions are available:

Algorithm
This drop-down menu allows you to select one of the following diff algorithms (depending on whether it is a
two-way or three-way comparison):

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Characters - Computes the differences at character level, meaning that it compares two files or fragments
looking for identical characters.

• Words - Computes the differences at word level, meaning that it compares two files or fragments looking
for identical words.

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• Syntax Aware - Computes differences for the file types or fragments known by Oxygen XML Developer,
taking the syntax (the specific types of tokens) into consideration.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two
XML files or fragments looking for identical XML nodes.

Diff Options
Opens the Files Comparison preferences page where you can configure various options.

Three-Way Comparison
Toggle action that allows you to perform a three-way comparison between the two files displayed in the two
editing panes and a base (ancestor) file.

Tools 1019

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

 Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the
comparison, the application normalizes the content and trims its leading and trailing whitespaces.

 Synchronized scrolling
Toggles synchronized scrolling on or off so that a selected difference can be seen on both sides of the
application window. This option is on by default.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first
change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor is
positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when the
cursor is positioned on the first change or when there are no changes.

 Copy All Changes from Left to Right
Copies all changes from the file in the left panel to the file in the right panel.

 Copy Change from Left to Right
Copies the selected difference from the file in the left panel to the file in the right panel.

Ignore Nodes by XPath
You can use this text field to enter an XPath expression to ignore certain nodes from the comparison. It will
be processed as XPath version 2.0. You can also enter the name of the node to ignore all nodes with the
specified name (for example, if you want to ignore all ID attributes from the document, you could simply
enter @id). This field is only available when comparing XML documents using the XML Fast or XML Accurate
algorithms.

Note: If an XPath expression is specified in the Ignore nodes by XPath option in the Diff / File Comparison
preferences page, that one is used as a default when the application is started. If you then enter an

Tools 1020

expression in this field on the toolbar, this one will be used instead of the default. If you delete the expression
from this field, neither will be used.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Base
Available for three-way comparisons. It is the base file that will be compared with the files opened in the
left and right editors. You can specify the path to the file by using the text field, its history drop-down, or the
browsing tools in the Browse drop-down menu.

Left-Side (Source) File
You can specify the path to the file to be compared on the left side (source) by using the text field, its history
drop-down, or the browsing tools in the Browse drop-down menu.

Save
Saves the changes made in the source (left-side) file.

Reload
Reloads the source (left-side) file.

Close
Closes the source (left-side) file.

Right-Side (Target) File
You can specify the path to the file to be compared on the right side (target) by using the text field, its history
drop-down, or the browsing tools in the Browse drop-down menu.

Save
Saves the target (right-side) file.

Reload
Reloads the target (right-side) file.

Close
Closes the target (right-side) file.

Compare Files Tool Menus
The menus in the Compare Files tool contain some of the same actions that are on the toolbar, as well as some
common actions that are identical to the same actions in the Oxygen XML Developer menus. The menu actions
include:

File Menu

Source > Open
Browses for a file that will be displayed in the left panel.

Source > Open URL
Browses for a remote file that will be displayed in the left panel.

Source > Open File from Archive
Browses an archive for a file that will be displayed in the left panel.

Source > Reload
Reloads the file in the left panel.

Source > Save
Saves the changes made to the file in the left panel.

Tools 1021

Source > Save As
Allows you to choose a destination to save the file in the left panel.

Source > Close
Closes the file in the left panel.

Target > Open
Browses for a file that will be displayed in the right panel.

Target > Open URL
Browses for a remote file that will be displayed in the right panel.

Target > Open File from Archive
Browses an archive for a file that will be displayed in the right panel.

Target > Reload
Reloads the file in the right panel.

Target > Save
Saves the changes made to the file in the right panel.

Target > Save As
Allows you to choose a destination to save the file in the right panel.

Target > Close
Closes the file in the right panel.

Base > Open
Browses for a file that will be compared with both files in a three-way comparison.

Base > Open URL
Browses for a remote file that will be compared with both files in a three-way comparison.

Base > Open File from Archive
Browses an archive for a file that will be compared with both files in a three-way comparison.

Close (Ctrl + W (Command + W on OS X))
Closes the application.

Edit Menu

Cut
Cut the selection from the currently focused editor panel to the clipboard.

Copy
Copy the selection from the currently focused editor panel to the clipboard.

Paste
Paste content from the clipboard into the currently focused editor panel.

Select all
Selects all content in the currently focused editor panel.

Undo
Undo changes in the currently focused editor panel.

Redo
Redo changes in the currently focused editor panel.

Tools 1022

Find Menu

Find/Replace
Perform find/replace operations in the currently focused editor panel.

Find Next
Go to the next match using the same options as the last find operation. This action runs in both editor panels.

Find Previous
Go to the previous match using the same options as the last find operation. This action runs in both editor
panels.

Compare Menu

Three-Way Comparison
Toggle action that allows you to perform a three-way comparison between the two files displayed in the two
editing panes and a base (ancestor) file.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first
change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor is
positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when the
cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on OS X))
Jumps to the last change.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Copy All Changes from Left to Right
Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right
Copies the selected difference from the file in the left panel to the file in the right panel.

Show Word Level Details
Provides a word-level comparison of the selected change.

Tools 1023

Show Character Level Details
Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Options Menu

Preferences
Opens the preferences dialog box that includes numerous pages of options that can be configured.

Menu Shortcut Keys
Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts available for menu
items.

Reset Global Options
Resets options to their default values. Note that this option appears only when the tool is executed as a
stand-alone application.

Import Global Options
Allows you to import an options set that you have previously exported.

Export Global Options
Allows you to export the current options set to a file.

Help Menu

Help (F1)
Opens a Help dialog box that displays the User Manual at a section that is appropriate for the context of the
current cursor position.

Use Online Help
If this option is selected, when you select Help or press F1 while hovering over any part of the interface,
Oxygen XML Developer attempts to open the help documentation in online mode. If this option is not selected
or an internet connection fails, the help documentation is opened in offline mode.

Report problem
Opens a dialog box that allows the user to write the description of a problem that was encountered
while using the application. You can change the URL where the reported problem is sent by using the
com.oxygenxml.report.problems.url system property. The report is sent in XML format through the
report parameter of the POST HTTP method.

Support Center
Opens the Oxygen XML Developer Support Center web page in a browser.

Compare Directories
The Compare Directories tool can be used to compare and manage changes to files and folders within the
structure of your directories. The utility is available from the Tools menu or can be opened as a stand-alone
application from the Oxygen XML Developer installation folder (diffDirs.exe).

Tools 1024

Figure 475: Compare Directories Tool

Starting the Tool from a Command Line

The directory comparison tool can also be started by using command-line arguments. In the installation folder
there is an executable shell (diffDirs.bat on Windows, diffDirs.sh on Unix/Linux, diffDirsMac.sh
on OS X). To specify the directories to compare, you can pass command-line arguments using the following
construct: diffDirs.bat/diffDirs.sh/diffDirsMac.sh [directory path 1] [directory path
2].

If you pass only one argument, you are prompted to manually choose the second directory or archive.

For example, to start a comparison between two Windows directories, the command line would look like this:

diffDirs.bat "c:\documents new" "c:\documents old"

Tip: If there are spaces in the path names, surround the paths with quotes.

Directory Comparisons

To perform a directory comparison, follow these steps:

1. Select a folder in the left panel and the folder you want to compare it to in the right panel. You can specify the
path by using the text field, the history drop-down, or the Browse for local directory action in the Browse
drop-down menu.

Step Result: The selected directory structures are opened in the two side-by-side panels.
2. To highlight the differences between the two folders, click the Perform Directories Differencing button from

the toolbar.
3. You can also use the Diff Options button to access the Directories Comparison preferences page where you

can configure various options.

To compare the content of two archives, follow these steps:

Tools 1025

1. Use the Browse for archive file action in the Browse drop-down menu to select the archives in the left and
right panels.

2. By default, the supported archives are not treated as directories and the comparison is not performed on the
files inside them. To make Oxygen XML Developer treat supported archives as directories, select the Look in
archives option in the Directories Comparison preferences page.

3. To highlight the differences, click the Perform Directories Differencing button from the toolbar.

The directory comparison results are presented using two tree-like structures showing the files and folders,
including their name, size, and modification date. A column that contains graphic symbols separates the two tree-
like structures. The graphic symbols can be one of the following:

• An X symbol, when a file or a folder exists in only one of the compared directories.
• A ≠symbol, when a file exists in both directories but the content differs. The same sign appears when a

collapsed folder contains differing files.

The color used for the symbol and the directory or file name can be customized in the Directories Comparison /
Appearance preferences page. You can double-click lines marked with the ≠ symbol to open a Compare Files
window, which shows the differences between the two files.

The directories that contain files that differ are expanded automatically so that you can focus directly on the
differences. You can merge the contents of the directories by using the copy actions. If you double-click (or press
Enter) on a line with a pair of files, Oxygen XML Developer starts a file comparison between the two files, using
the Compare Files tool.

Related Information:
Compare Files on page 567

Toolbar and Contextual Menu Actions of the Compare Directories Tool
The toolbar of the Compare Directories tool contains operations that can be performed on the compared
directory structure. Some of the toolbar actions are also available in the contextual menu.

Figure 476: Compare toolbar

Toolbar Actions

Perform Directories Differencing
Looks for differences between the two directories displayed in the left and right side of the application
window.

Perform Files Differencing
Opens the Compare Files tool that allows you to compare the currently selected files.

Copy Change from Right to Left
Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left
file/folder is deleted).

Copy Change from Left to Right
Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right
file/folder is deleted).

Binary Compare
Performs a byte-level comparison on the selected files.

Diff Options
Opens the Directory Comparison preferences page where you can configure various options.

Tools 1026

Show Only Modifications
Displays a more uncluttered file structure by hiding all identical files.

File and folder filters
Differences can be filtered using three combo boxes: Include files, Exclude files, and Exclude folders. They
come with predefined values and are editable to allow custom values. All of them accept multiple comma-
separated values and the * and ? wildcards. For example, to filter out all JPEG and GIF image files, edit the
Exclude files filter box to read *.jpeg, *.png. Each filter includes a drop-down menu with the latest 15
filters applied.

Contextual Menu Actions

Perform Files Differencing
Opens the Compare Files tool that allows you to compare the currently selected files.

Binary Compare
Performs a byte-level comparison on the selected files.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right
Copies the selected difference from the file in the left panel to the file in the right panel.

Open
If the action is invoked on a file, the selected file is opened in Oxygen XML Developer. If the action is invoked
on a directory, the selected directory is opened in the default file browser for your particular operating system.

Open in System Application
Opens the selected file in the system application that is associated with that type of file. The action is
available when launching the Compare Directories tool from the Tools menu in Oxygen XML Developer.

Show in Explorer
Opens the default file browser for your particular operating system with the selected file highlighted.

Compare Directories Tool Menus
The menus in the Compare Directories tool contain some of the same actions that are on the toolbar, as well as
some common actions that are identical to the same actions in the Oxygen XML Developer menus. The menu
actions include:

File Menu

Close (Ctrl + W (Command + W on OS X))
Closes the application.

Compare Menu

Perform Directories Differencing
Looks for differences between the two directories displayed in the left and right side of the application
window.

Perform Files Differencing
Opens the Compare Files tool that allows you to compare the currently selected files.

Copy Change from Right to Left
Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left
file/folder is deleted).

Tools 1027

Copy Change from Left to Right
Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right
file/folder is deleted).

Options Menu

Preferences
Opens the preferences dialog box that includes numerous pages of options that can be configured.

Menu Shortcut Keys
Opens the Menu Shortcut Keys option page where you can configure keyboard shortcuts available for menu
items.

Reset Global Options
Resets options to their default values. Note that this option appears only when the tool is executed as a
stand-alone application.

Import Global Options
Allows you to import an options set that you have previously exported.

Export Global Options
Allows you to export the current options set to a file.

Help Menu

Help (F1)
Opens a Help dialog box that displays the User Manual at a section that is appropriate for the context of the
current cursor position.

Use Online Help
If this option is selected, when you select Help or press F1 while hovering over any part of the interface,
Oxygen XML Developer attempts to open the help documentation in online mode. If this option is not selected
or an internet connection fails, the help documentation is opened in offline mode.

Report problem
Opens a dialog box that allows the user to write the description of a problem that was encountered
while using the application. You can change the URL where the reported problem is sent by using the
com.oxygenxml.report.problems.url system property. The report is sent in XML format through the
report parameter of the POST HTTP method.

Support Center
Opens the Oxygen XML Developer Support Center web page in a browser.

Compare Images
You can use the Compare Directories tool to compare images. If you double-click a line that contains two
different images, the Compare images window is displayed. This dialog box presents the images in the left and
right sides, scaled to fit the available view area. You can use the contextual menu actions to scale the images to
their original size or scale them down to fit in the view area.

The supported image types are: GIF, JPG, JPEG, PNG, and BMP.

Compare Directories Against a Base (3-Way)
The Compare Directories Against a Base (3-way) tool allows you to perform three-way comparisons on
directories to help you identify and merge changes between multiple modifications of the same directory
structure. It is especially helpful for teams that have multiple authors contributing documents to the same
directory system. It offers information about conflicts and changes, and includes actions to easily merge, accept,
overwrite, or ignore changes to the directory system.

Tools 1028

How to Perform 3-Way Directory Comparisons

To perform a 3-way directories comparison, follow these steps:

1. Select Compare Directories Against a Base (3-way) from the Tools menu.

Step Result: This opens a dialog box that allows you to select the 3 file sets that will be used for the
comparison.

Figure 477: Compare Directories Against a Base File Set Chooser
2. Select the file sets to be compared:

• Base directory - This is the original (base) file set before any modifications were made by your or others.
• Directory with your changes - This is the file set with changes that you have made. This file set will be

displayed in the left panel in the comparison tool.
• Directory with changes made by others - This is the file set with changes made by others that you want to

merge with your changes. This file set will be displayed in the right panel in the comparison tool.
3. Click the Compare button to compare the file sets and open the comparison and merge tool.
4. Use the features and actions described in the next section to identify and merge the changes.

Tools 1029

3-Way Directory Comparison and Merge Tool

Figure 478: Comparison and Merge Tool

The 3-way directory comparison and merge tool includes the following information, features, and actions:

Number of Changes and Conflicts
The first thing you see in top-left corner of the tool is grand total of all the changes made by others, changes
made by you, and the number of conflicts.

Filter Buttons
In the top-right corner you can use the toggle buttons to filter the list of modifications:

Show all files
Use this button to show all modified and unmodified files, as well as conflicts.

Show only files modified by you and others
Filters the list to show all files that have been modified, including conflicts.

Show only files modified by others
Filters the list to only show the files that were modified by others.

Show only files modified by you
Filters the list to only show the files that were modified by you.

Show only conflicting files
Filters the list to only show files that contain conflicts.

List of Files Panel
This panel shows the list of files in the compared file sets based upon the filter button that is selected. This
panel includes the following sortable columns:

• Name - The file names.

Tools 1030

• Status - An icon that represents the file status. Red icons indicate some sort of conflict. Gray icons
indicate modifications made by you. Blue icons indicate modifications made by others.

• Description - A description of the file status.
• Merge Action - This column provides a drop-down menu for each file that allows you to choose some

merge actions depending upon its status. A default action is always set to automatically merge the
changes made by others with your changes. If there is a conflict, the default is <Select action> and you
are required to make a selection. Click this column to access the drop-down menu where you can make a
selection. The same actions are available in the contextual menu.

You can double-click any non-binary file (or select Show modifications from the contextual menu) to open it
in the file comparison panel (the file from your file set is shown in the left panel while the file from the file set
with changes made by others is shown in the right panel).

File Comparison Panels
If you double-click any non-binary file in the top panel, the file is opened in this file comparison section. The
file from your file set is shown in the left panel and the file from the other file set is shown in the right panel.

Note: If Oxygen XML Developer does not recognize the file type, a dialog box will be displayed that allows
you to select the type of editor you want it to be associated with for this comparison (if you want Oxygen
XML Developer to remember this association, you can select the Associate file type with editor option at the
bottom of the dialog box).

This panel includes the following information and toolbar actions:

File Path
The first thing you see in this panel is the file path where merge actions will be applied if you make
changes.

Close
Closes the file comparison panel.

Algorithm Drop-Down Menu
This drop-down menu allows you to select one of the following diff algorithms to be used for file
comparisons:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking
for identical lines of text.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares
two XML files or fragments looking for identical XML nodes.

Diff Options
Opens the Files Comparison preferences page where you can configure various options.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing
the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

Synchronized scrolling
Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Tools 1031

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the
first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor
is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when
the cursor is positioned on the first change or when there are no changes.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Left-Side File (Your changes)
Above the panel you can see the file path and the following two buttons:

Save
Saves changes made to the file.

Reload
Reloads the file.

Right-Side File (Changes made by others)
Above the panel you can see the file path and the following two buttons:

Reload
Reloads the file.

Displaying Changes in the File Comparison Panels

The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify
the locations of the differences. Adjacent changes are grouped into blocks of changes.

Figure 479: File Comparison Panels

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines
connect the compared fragments in the middle section between the two panes. The highlighting colors
can be customized in the Files Comparison / Appearance preferences page, but the default colors and their
shades mean the following:

• Pink - Identifies modifications on either side.
• Gray - Identifies an addition of a node in the left side (your outgoing changes).
• Blue - Identifies an addition of a node in the right side (incoming changes).
• Lighter Shade - Identifies blocks of changes that can be merged in their entirety.

Tools 1032

• Darker Shade - Identifies specific changes within the blocks that can be merged more precisely.

Direct Editing Actions in the File Comparison Panels

In addition to selecting merge actions from the drop-down menus in the Merge Action column in the top
panel, you can also edit the files directly in the left pane (your local changes). The two editors are constantly
synchronized and the differences are refreshed when you save the modified document (Save button or Ctrl

+S) or when you click the Perform File Differencing button.

A variety of actions are available in the contextual menu in both editing panes. The tool also includes some
inline actions to help you merge, copy, or remove changes. When you select a change, the following inline
action widgets are available, depending on the type of change:

 Append right change to left
Copies the content of the selected change from the right side and appends it on the left side.

 Copy change from right to left
Replaces the content of a change in the left side with the content of the change in the right side.

 Remove change
Removes the change from the left side.

Any time you save manual changes (Save button or Ctrl+S), the selection in the Merge Action column in the
top panel automatically changes to Use merged and a copy of the original file is kept so that you can revert
to the original file if necessary. To discard your manual changes and revert to your original changes, select a
different action in the Merge Action drop-down menu.

Applying Changes
When you click the Apply button, all the merge actions you have selected and the changes you have made will
be processed.

If there are unresolved conflicts (conflicts where no merge action is selected in the Merge Action drop-down
menu), a dialog box will be displayed that allows you to choose how to solve the conflicts. You can choose
between the following:

• Keep your changes - If you select this option and then click Apply, your local changes will be preserved for
the unresolved conflicts.

• Overwrite your changes - If you select this option and then click Apply, your local changes will be
overwritten with the changes made by others, for the unresolved conflicts.

• Cancel - You can click the Cancel button to go back to the merge tool to resolve the conflicts individually.

Cancelling Changes
If you click the Cancel button at the bottom of the merge tool, all the changes you made in the tool will be
lost.

Related Information:
Compare Directories on page 579
Compare Files on page 567

Syncro SVN Client
The Syncro SVN Client is a client application for the Apache Subversion™ version control system, compatible with
Subversion 1.6, 1.7, and 1.8 servers. It manages files and directories that change over time and are stored in a
central repository. The version control repository is much like an ordinary file server, except that it remembers
every change ever made to your files and directories. This allows you to access older versions of your files and
examine the history of how and when your data changed.

To start Syncro SVN Client, go to Tools > SVN Client.

Main Window
This section explains the main window of Syncro SVN Client.

Tools 1033

Views

The main window consists of the following views:

• Repositories view - Allows you to define and manage Apache Subversion™ repository locations.
• Working Copy view - Allows you to manage with ease the content of the working copy.
• History view - Displays information (author name, revision number, commit message) about the changes made

to a resource during a specified period of time.
• Editor view - Allows you to edit various types of text files, with full syntax-highlight.
• Annotations view - Displays a list with information regarding the structure of a document (author and revision

for each line of text).
• Compare view - Displays the differences between two revisions of a text file from the working copy.
• Image Preview panel - Allows you to preview standard image files supported by Syncro SVN Client: JPG, GIF

and PNG.
• Compare Images view - Displays two images side by side.
• Properties view - Displays the SVN properties of a resource under version control.
• Console view - Displays information about the currently running operation, similar with the output of the

Subversion command line client.
• Dynamic Help view - Shows information about the currently selected view.

The main window's status bar presents in the left side the operation in progress or the final result of the last
performed action. In the right side there is a progress bar for the running operation and a stop button to cancel
the operation.

SVN Main Menu

The main menu of the Syncro SVN Client is composed of the following menus:
File Menu

New submenu:

New File
This operation creates a new file as a child of the selected folder from the Repositories view tree or the
Working Copy view tree, depending on the view that was last used. Note that for the Working Copy view,
the file is added to version control only if the selected folder is under version control.

New Folder(Ctrl (Command on OS X) + Shift + F)
This operation creates a new folder as a child of the selected folder from the Repositories view tree or
the Working Copy view tree, depending on the view that was last used. Note that for the Working Copy
view, the file is added to version control only if the selected folder is under version control.

New External Folder (Ctrl (Command on OS X) + Shift + W)
This operation allows you to add a new external definition on the selected folder. An external definition
is a mapping of a local directory to a URL of a versioned directory, and ideally a particular revision,
stored in the svn:externals property of the selected folder.

Tip: You can specify a particular revision of the external item by using a peg revision at the end of the
URL (for example, URL@rev1234). You can also use peg revisions to access external items that were
deleted, moved, or replaced.

The URL used in the external definition format can be relative. You can specify the repository URL that
the external folder points to by using one of the following relative formats:

• ../ - Relative to the URL of the directory that the svn:externals property is set.
• ^/ - Relative to the root of the repository in which the svn:externals property is versioned.
• // - Relative to the scheme of the URL of the directory that the svn:externals property is set.
• / - Relative to the root URL of the server in which the svn:externals property is versioned.

Important: To change the target URL of an external definition, or to delete an external item, do the
following:

1. Modify or delete the item definition found in the svn:externals property that is set on the parent
folder.

Tools 1034

2. For the change to take effect, use the Update operation on the parent folder of the external item.

Note: Syncro SVN Client does not support definitions of local relative external items.

Open (Ctrl (Command on OS X) + O)
This action opens the selected file in an editor where you can modify it. The action is active only when
a single item is selected. The action opens a file with the internal editor or the external application
associated with that file type. This action works on any file selection from the Repositories view, Working
Copy view, History view, or Directory Change Set view, depending on the view that was last used to invoke
it. In the case of a folder, the action opens the selected folder with the system application for folders (for
example, Windows Explorer on Windows or Finder on OS X, etc). Note that opening folders is available only
for folders selected in the Working Copy view.

Open with(Ctrl (Command on OS X) + Shift + O)
Displays the Open with dialog box for specifying the editor in which the selected file is opened. If multiple
files are selected only external applications can be used to open the files. This action works on any
file selection from Repositories view, Working Copy view, History view, or Directory Change Set view,
depending on the view that was last used to invoke it.

Show in Explorer/Show in Finder
Opens the parent directory of the selected working copy file and selects the file.

Save (Ctrl (Command on OS X) + S)
Saves the local file currently opened in the editor or the Compare view.

Save as
Saves any file selected in the Repositories, History, or Directory Change Set view.

Copy URL Location (Ctrl (Command on OS X) + Alt + U)
Copies the URL location of the resource currently selected in the Repositories view to clipboard.

Copy to
Copies the currently selected resource, either in Repositories or Working copy view, to a specified location.

Note: This action can also be used from History and Directory Change Set views to recover older versions
of a repository item.

Move to(Ctrl (Command on OS X) + M)
Moves the currently selected resource, either in Repositories or Working copy view, to a specified location.

Rename(F2)
Renames the resource currently selected, either in Repositories or Working copy view.

Delete (Delete)
Deletes the resource currently selected either, in Repositories or Working copy view.

Locking:

• Scan for locks (Ctrl (Command on OS X) + L) - Contacts the repository and recursively obtains the list
of locks for the selected resources. A dialog box containing the locked files and the lock description
will be displayed. This is only active for resources under version control. For more details see Scanning
for locks.

• Lock (Ctrl (Command on OS X) + K) - Allows you to lock certain files that need exclusive access.
You can write a comment describing the reason for the lock and you can also force (steal) the lock.
This action is active only on files under version control. For more details on the use of this action see
Locking a file.

• Unlock (Ctrl (Command on OS X) + Alt + K) - Releases the exclusive access to a file from the
repository. You can also choose to unlock it by force (break the lock).

Show SVN Properties (Ctrl (Command on OS X) + P)
Opens the Properties view and displays the SVN properties for a selected resource from Repositories view
or Working Copy view, depending on the view that was last used to invoke it.

Tools 1035

Show SVN Information (Ctrl (Command on OS X) + I)
Provides additional information for a selected resource. For more details, go to Obtain information for a
resource.

Exit (Ctrl (Command on OS X) + Q)
Closes the application.

Edit Menu

Undo (Ctrl (Command on OS X) + Z)
Undo edit changes in the local file that is currently opened in the editor or the Compare view.

Redo (Ctrl (Command on OS X) + Y)
Redo edit changes in the local file that is currently opened in the editor or the Compare view.

Cut (Ctrl (Command on OS X) + X)
Cut selection from the local file that is currently opened in the editor view or the Compare view to
clipboard.

Copy (Ctrl (Command on OS X) + C)
Copy selection from the local file that is currently opened in the editor or the Compare view to clipboard.

Paste (Ctrl (Command on OS X) + V)
Paste selection from clipboard into the local file that is currently opened in editor or the Compare view.

Find/Replace (Ctrl (Command on OS X) + F)
Perform find and replace operations in the local file that is currently opened in the editor or the Compare
view.

Find Next (F3)
Go to the next match using the same find options of the last find operation. This action runs in the editor
panel and in any non-editable text area (for example, the Console view).

Find Previous (Shift + F3)
Go to the previous match using the same find options of the last find operation. This action runs in the
editor panel and in any non-editable text area (for example, the Console view).

Repository Menu

New Repository Location (Ctrl + Alt + N (Command + Alt + N on OS X))
Displays the Add SVN Repository dialog box. This dialog box allows you to define a new repository
location.

Figure 480: Add SVN Repository Dialog Box

If the Validate repository connection option is selected, the URL connection is validated before being
added to the Repositories view.

Edit Repository Location (Ctrl + Alt + E (Command + Alt + E on OS X))
Context-dependent action that allows you to edit the selected repository location using the Edit SVN
Repository dialog box. It is active only when a repository location root is selected.

Tools 1036

Change the Revision to Browse (Ctrl + Alt + B (Command + Alt + B on OS X))
Context-dependent action that allows you to change the selected repository revision using the Change the
Revision to Browse dialog box. It is active only when a repository location root is selected.

Remove Repository Location (Ctrl + Alt + R (Command + Alt + R on OS X))
Allows you to remove the selected repository location from the view. It shows you a confirmation dialog
box before removal. It is active only when a repository location root is selected.

Refresh (F5)
Refreshes the resource selected in the Repositories view.

Check out (Ctrl + Alt + O (Command + Alt + O on OS X))
Allows you to create a working copy from a repository directory, on your local file system. To read more
about this operation, see the section Check out a working copy.

Export
Opens the Export dialog box that allows you to configure options for exporting a folder from the repository
to the local file system.

Import:

Import folder (Ctrl + Shift + L (Command + Shift + L on OS X))
Allows you to import the contents of a specified folder from the file system into the selected folder in a
repository. To read more about this operation, see the section Importing resources into a repository.

Note: The difference between the Import folder and Share project actions is that the latter also
converts the selected directory into a working copy.

Import Files (Ctrl + Shift + I (Command + Shift + I on OS X))
Imports the files selected from the files system into the selected folder in the repository.

Working Copy Menu

(on OS X)Working Copies Manager
Opens a dialog box with a list of working copies that the Apache Subversion™ client is aware of. In this
dialog box you can add existing working copies or remove those that are no longer needed.

Switch to

Selects one of the following view modes: All Files, Modified, Incoming, Outgoing, or
Conflicts.

Refresh (F5)
Refreshes the state of the selected resources or of the entire working copy (if there is no selection).

Synchronize (Ctrl (Command on OS X) + Shift + S)
Connects to the repository and determines the working copy and repository changes made to the selected
resources. The application switches to Modified view mode if the Always switch to 'Modified' mode option
is selected.

Update (Ctrl (Command on OS X) + U)
Updates all the selected resources that have incoming changes to the HEAD revision. If one of the
selected resources is a directory then the update for that resource will be recursive.

Update to revision/depth
Allows you to update the selected resources from the working copy to an earlier revision from the
repository. You can also select the update depth for the current folder. You can find out more about the
depth term in the sparse checkouts section.

Commit
Collects the outgoing changes from the selected resources in the working copy and allows you to
choose exactly what resources to commit. A directory will always be committed recursively. Unversioned
resources will be deselected by default. In the Commit dialog box you can also enter a comment before
sending your changes to the repository.

Tools 1037

Update all(Ctrl (Command on OS X) + Shift + U)
Updates all resources from the working copy that have incoming changes. It performs a recursive update
on the synchronized resources.

Commit all
Commits all the resources with outgoing changes. It is disabled when Incoming mode is selected or the
synchronization result does not contain resources with outgoing changes. It performs a recursive commit
on the synchronized resources.

Revert (Ctrl (Command on OS X) + Shift + V)
Undoes all local changes for the selected resources. It does not contact the repository and the files are
obtained from Apache Subversion™ pristine copy. It is available only for modified resources. See Revert
your changes for more information.

Edit conflict (Ctrl (Command on OS X) + E)
Opens the Compare editor, allowing you to modify the content of the currently conflicting resources. For
more information about editing conflicts, see Edit conflicts.

Mark Resolved (Ctrl (Command on OS X) + Shift + R)
Instructs the Subversion system that you resolved a conflicting resource. For more information, see Merge
conflicts.

Mark as Merged (Ctrl (Command on OS X) + Shift + M)
Instructs the Subversion system that you resolved the pseudo-conflict by merging the changes and you
want to commit the resource. Read the Merge conflicts section for more information about how you can
solve the pseudo-conflicts.

Override and Update
Drops any outgoing change and replaces the local resource with the HEAD revision. This action is
available on resources with outgoing changes, including conflicting ones. See the Revert your changes
section.

Override and Commit
Drops any incoming changes and sends your local version of the resource to the repository. This action is
available on conflicting resources. For more information see Drop incoming modifications.

Mark as copied
You can use this action to mark an item from the working copy as a copy of an other item under version
control, when the copy operation was performed outside of an SVN client. The Mark as copied action is
available when you select two items (both the new item and source item), and it depends on the state of
the source item.

Mark as moved
You can use this action to mark an item from the working copy as being moved from another location of
the working copy, when the move operation was performed outside of an SVN client. The Mark as moved
action is available when you select two items from different locations (both the new item and the source
item that is usually reported as missing), and it depends on the state of the source item.

Mark as renamed
You can use this action to mark an item from the working copy as being renamed outside of an SVN client.
The Mark as renamed action is available when you select two items from the same directory (both the
new item and the source item that is usually reported as missing), and it depends on the state of the
source item.

Add to "svn:ignore" (Ctrl (Command on OS X) + Alt + I)
Allows you to add files that should not participate in the version control operations inside your working
copy . This action can only be performed on resources not under version control. It actually modifies the
value of the svn:ignore property in the parent directory of the resource. Read more about this in the
Ignore Resources Not Under Version Control section.

Tools 1038

Add to version control (Ctrl (Command on OS X) + Alt + V)
Allows you to add resources that are not under version control. For further details, see Add Resources to
Version Control section.

Remove from version control
Schedules selected items for deletion from repository upon the next commit. The items are not removed
from the file system after committing.

Clean up (Ctrl (Command on OS X) + Shift + C)
Performs a maintenance cleanup operation on the selected resources from the working copy. This
operation removes the Subversion maintenance locks that were left behind. This is useful when you
already know where the problem originated and want to fix it as quickly as possible. It is only active for
resources under version control.

Expand All (Ctrl (Command on OS X) + Alt + X)
Displays all descendants of the selected folder. The same behavior is obtained by double-clicking a
collapsed folder.

Collapse all (Ctrl (Command on OS X) + Alt + Z)
Collapses all descendants of the selected folder. The same behavior is obtained by double-clicking a
expanded folder.

Compare Menu

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the
first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor
is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when
the cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on OS X))
Jumps to the last change.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Show Word Level Details
Provides a word-level comparison of the selected change.

Tools 1039

Show Character Level Details
Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing
the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

History Menu

Show History(Ctrl (Command on OS X) + H)
Displays the history for a SVN resource at a given revision. The resource can be one selected from the
Repositories view, Working Copy view, or from the Affected Paths table from the History view, depending
on which view was last focused when this action was invoked.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))
Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the
Annotations view, along with the history of the file in the History view.

Repositories
This operation is available for any resource selected from view, Working Copy view, History view or
Directory Change Sets view, depending on which view was last focused when this action was invoked.

Revision Graph (Ctrl (Command on OS X) + G)
This action allows you to see the graphical representation of a resource's history. For more details about
a resource's revision graph see the section Revision Graph. This operation is available for any resource
selected in the Repositories view or Working Copy view.

Tools Menu

Share project
Allows you to share a new project using an SVN repository. The local project is automatically converted
into an SVN working copy.

Branch / Tag
Allows you to copy the selected resource from the Repositories view or Working Copy view to a branch or
tag into the repository. To read more about this operation, see the section Creating a Branch / Tag.

Merge (Ctrl (Command on OS X) + J)
Allows you to merge the changes made on one branch back into the trunk, or vice versa, using the selected
resource from the working copy. To read more about this operation, see the section Merging.

Switch (Ctrl (Command on OS X) + Alt + W)
Allows you to change the repository location of a working copy, or only of a versioned item of the working
copy, within the same repository. It is available when the selected item of the working copy is a versioned
resource, except for external items. To read more about this action, see the Switching the Repository
Location section.

Relocate
Allows you to change the base URL of the root folder of the working copy to a new URL when the base
URL of the repository changed. For example, if the repository itself was moved to a different server. This
operation is only available for the root item of the working copy. To read more about this operation, see the
Relocate a Working Copy section.

Tools 1040

Create patch (Ctrl (Command on OS X) + Alt + P)
Allows you to create a file containing all the differences between two resources, based on the svn diff
command. To read more about creating patches, see the section about patches.

Working copy format
This submenu contains the following two operations:

Upgrade
Upgrades the format of the currently loaded working copy to the newest one known by Syncro SVN
Client. This allows you to benefit of all the new features of the client.

Downgrade
Downgrades the format of the currently loaded working copy to SVN 1.7 format. This is useful if you
want to use older SVN clients with the current working copy, or, by mistake, you have upgraded the
format of an older working copy to SVN 1.8.

Note: SVN 1.7 working copies cannot be downgraded to older formats.

See the section Working Copy Format to read more about this subject.

Options Menu

Preferences
Opens the Preferences dialog box.

Menu Shortcut Keys
Opens the Menu Shortcut Keys preferences page, where users can configure in one place the keyboard
shortcuts available for menu items available in Syncro SVN Client.

Global Run-Time Configuration
Allows you to configure SVN general options, that should be used by all the SVN clients you may use:

• Edit 'config' file - In this file you can configure various SVN client-side behaviors.
• Edit 'servers' file - In this file you can configure various server-specific protocol parameters, including

HTTP proxy information and HTTP timeout settings.

Export Options
Allows you to export the current options to an XML file.

Import Options
Allows you to import options you have previously exported.

Reset Options
Resets all your options to the default ones.

Reset Authentication
Resets the Subversion authentication information.

Window Menu

Show View
Allows you to select the view you want to bring to front.

Show Toolbar
Allows you to select the toolbar you want to be visible.

Enable flexible layout
Toggles between a fixed and a flexible layout. When the flexible layout is enabled, you can move and dock
the internal views to adapt the application to various viewing conditions and personal requirements.

Reset Layout
Resets all the views to their default position.

Tools 1041

Help Menu

Help (F1)
Opens the Help dialog box.

Use online help (selected by default)
If this option is selected, when you select Help or press F1 while hovering over any part of the interface,
Oxygen XML Developer attempts to open the help documentation in online mode. If this option is not
selected or an internet connection fails, the help documentation is opened in offline mode.

Show Dynamic Help view
Displays the Dynamic Help view.

Report Problem
Opens a dialog box that allows you to write the description of a problem that was encountered while using
the application.

Support Center
Opens the Support Center web page in a browser.

About
Opens the About dialog box.

SVN Main Toolbar

The toolbar of the Syncro SVN Client SVN Repositories window contains the following actions:

Check out
Checks out a working copy from a repository. The repository URL and the working copy format must be
specified.

Synchronize
Synchronizes the current working copy with the repository.

Update All
Updates all resources of the working copy that have an older revision that repository.

Commit All
Commits all resources of working copy that have a newer version compared to that of the repository.

Refresh
Refreshes the whole content of the current working copy from disk starting from the root folder. At the end
of the operation, the modified files and folders that were not committed to repository yet, are displayed in the
Working Copy view.

Compare
The selected resource is compared with:

• The BASE revision, when the selected resource is:

• Locally modified and the All Files view mode is currently selected (no matter if there are incoming
changes).

• Locally modified and there are no incoming changes when any other view mode is selected.
• The remote version of the same resource, when remote information is available after a Synchronize

operation (only when one of Modified, Incoming, Outgoing and Conflicts view modes is selected).
• The working copy revision, when the selected resource is from the History view.

Tools 1042

Show History
Displays the history of the selected resource (from the Working Copy or Repository views) in the History view.

Show Annotation
Displays the annotations of the selected resource. The selected resource can be in the Working Copy or the
History views.

Revision Graph
Displays the revision graph of the selected resource. The selected resource can be in the Working Copy or the
Repositories views.

Enable/Disable flexible layout
Toggles between a fixed and a flexible layout. When the flexible layout is enabled, you can move and dock the
internal views to adapt the application to various viewing conditions and personal requirements.

Status Bar

The status bar of the Syncro SVN Client window displays important details of the current status of the
application. This information is available only in the Working Copy view.

Figure 481: Status bar

The status bar is composed of the following areas:

• The path of the currently processed file from the current working copy (during an operation such as Check out
or Synchronize) or the result of the last operation.

• The current status of the following working copy options:

• Show ignored files ().
• Show deleted files ().
• Process svn:externals definitions ().

The options for ignored and deleted files are switched on and off from the Settings menu of the Working Copy
panel:

• The format of the currently loaded working copy.
• The current numbers of incoming changes (), outgoing changes () and conflicting changes ().
• A progress bar for the currently running SVN operation and a button () that allows you to stop it.

Getting Started
This section explains the basic operations that can be done in Syncro SVN Client.

SVN Repository Location

This section explains how to add and edit the repository locations in Syncro SVN Client.

Add / Edit / Remove Repository Locations

Usually, team members do all of their work separately, in their own working copy, and then must share their work
by committing their changes. This is done using an Apache Subversion™ repository. Oxygen XML Developer
supports versions 1.4, 1.5, 1.6, 1.7, and 1.8 of the SVN repository format.

Before you can begin working with a Subversion repository, you must define a repository location in the
Repositories view.

Tools 1043

To create a repository location, use the New Repository Location action that is available in the Repository
menu, the Repositories view toolbar, and in the contextual menu. This action opens the New Repository
Location dialog box, which prompts you for the URL of the repository you want to connect to. You can also use
peg revisions at the end of the URLs (for example, URL@rev1234) to browse only that specific revision. No
authentication information is requested at the time the location is defined. It is left to the Subversion client
to request the user and password information when it is needed. The main benefit of allowing Subversion to
manage your password is that it prompts you for a new password only when your password changes.

Once you enter the repository URL, Oxygen XML Developer tries to contact the server to get the content of the
repository for displaying it in the Repositories view. If the server does not respond in the timeout interval set in
the preferences, an error is displayed. If you do not want to wait until the timeout expires, you can use the Stop
button from the toolbar of the view.

To edit a repository location, use the Edit Repository Location action that is available in the Repository menu
and in the contextual menu. This action opens the Edit Repository Location dialog box, which prompts you for the
URL of the repository you want to connect to. You can also use peg revisions at the end of the URLs (for example,
URL@rev1234) to browse only that specific revision.

To remove a repository location, use the Remove Repository Location action that is available in the Repository
menu and in the contextual menu. A confirmation dialog box is displayed to make sure that you do not
accidentally remove the wrong locations.

The order of the repositories can be changed in the Repositories view at any time with the Up arrow and
Down arrow buttons on the toolbar of the view. For example, pressing the up arrow once moves the selected

repository in the list up one position.

To set the reference revision number of an SVN repository use the Change the Revision to Browse action that
is available in the Repository menu and in the contextual menu. The revision number of the repository is used
for displaying the contents of the repository when it is viewed in the Repositories view. Only the files and folders
that were present in the repository at the moment when this revision number was generated in the repository are
displayed as contents of the repository tree. Also, this revision number is used for all the operations executed
directly from the Repositories view.

Authentication

Five protocols are supported: HTTP, HTTPS, SVN, SVN + SSH and FILE. If the repository that you are trying to
access is password protected, the Enter authentication data dialog box requests a user name and a password.
If the Store authentication data checkbox is selected, the credentials are stored in Apache Subversion™ default
directory:

• Windows - %HOME%\Application Data\Subversion\auth. Example: C:\Documents and Settings
\John\Application Data\Subversion\auth

• Linux and OS X - $HOME/.subversion/auth. Example: /home/John/.subversion/auth

There is one file for each server that you access. If you want to make Subversion forget your credentials, you
can use the Reset authentication command from the Options menu. This causes Subversion to forget all your
credentials. When you reset the authentication data, restart Oxygen XML Developer for the change to take effect.

Tip: The FILE protocol is recommended if the SVN repository and Oxygen XML Developer are located on the
same computer as it ensures faster access to the SVN repository compared with other protocols.

For HTTPS connections where client authentication is required by your SSL server, you must choose the
certificate file and enter the corresponding certificate password that is used to protect your certificate.

When using a secure HTTP (HTTPS) protocol for accessing a repository, a Certificate Information dialog box is
displayed and asks you whether you want to accept the certificate permanently, temporarily, or simply deny it.

If the repository has SVN+SSH protocol, the SSH authentication can also be made with a private key and a pass
phrase.

Tools 1044

Figure 482: SSH Authentication Dialog Box

After the SSH authentication dialog box, another dialog box appears for entering the SVN user name that
accesses the SVN repository. The SVN user name is recorded as the committer in SVN operations.

When connecting for the first time to a Subversion repository through SVN+SSH protocol, you will be asked to
confirm if you trust the SSH host. The same dialog box is also displayed when the server changed the SSH key or
when the key was deleted from the local Subversion cache folder.

Figure 483: SSH server name and key fingerprint

Share a Project

Even if you start developing a new project, or you want to migrate an existing one to Subversion, the Syncro
SVN Client allows you to easily share it with the rest of your team. The shared project directory is automatically
converted to a working copy and added under Syncro SVN Client management. The Share project action is
available in the Tools menu and the contextual menu of the Repositories view.

Tools 1045

Figure 484: Share Project Dialog Box

The following options can be configured in the Share project dialog box:
Project

The location of the project folder on the local disk by using the text box or the Browse button. This folder
should not be empty or already under version control.

Important: By default, the SVN system only imports the content of the specified folder, and not the root folder
itself. Therefore, it is recommended to use the Browse button to select the project folder so that the client will
automatically append the name of it to the specified URL.

URL
The new location of the project (inside the repository) that will be used to access it.

Note: Peg revisions have no effect for this operation since it is used to send information to the repository.

Attention: If the new location already exists, make sure that it is an empty directory to avoid mixing
your project content with other files (if items exist with the same name, an error will occur and the
operation will not proceed). Otherwise, if the address does not exist, it is created automatically.

Format
The SVN format of the working copy. You can choose between SVN 1.8 or SVN 1.7.

Share files matching global ignore patterns
When selected, the file names that match the patterns defined in either of the following locations are also
imported into the repository:

• The global-ignores property in the SVN configuration file.
• The File name ignore patterns option in the SVN > Working Copy preferences page.

Enable automatic properties/Disable automatic properties
Enables or disables automatic property assignment (per runtime configuration rules), overriding the enable-
auto-props runtime configuration directive, defined in the SVN configuration file.

Note: This option is available only when there are defined properties to be applied automatically for newly
added items under version control. You can define these properties in the SVN config file (in the auto-
props section). Based on the value of the enable-auto-props runtime configuration directive, the
presented option is either Enable automatic properties, or Disable automatic properties.

Defining a Working Copy

An Apache Subversion™ working copy is an ordinary directory tree on your local system, containing a collection
of files. You can edit these files however you want, your working copy being your private work area. To make your

Tools 1046

own changes available to others or incorporate changes made by others, you must explicitly tell Subversion to do
so. You can even have multiple working copies of the same project.

Figure 485: Working Copy View

A Subversion working copy also contains some extra files, created and maintained by Subversion, to help it keep
track of your files. In particular, each directory in your working copy contains a subdirectory named .svn, also
known as the working copy administrative directory. This administrative directory contains an unaltered copy of
the last updated files from the repository. This copy is usually referred to as the pristine copy or the BASE revision
of the working copy. These files help Subversion recognize which files contain unpublished changes, and which
files are out-of-date with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects. Usually each project is
a subdirectory in the repository's file system tree. In this arrangement, a user's working copy usually corresponds
to a particular sub-tree of the repository.

Check Out a Working Copy

Check out means to make a copy of a project from a repository to your local file system. This copy is called a
working copy. An Apache Subversion™ working copy is a specially formatted directory structure that contains
additional .svn directories that store Subversion information, as well as a pristine copy of each item that is
checked out.

To check out a working copy, locate and select the desired directory in the Repositories view and select the
Check out action from the contextual menu, the toolbar, or the Repository menu.

Tools 1047

Figure 486: Check Out Dialog Box

The following options can be configured in the Check out dialog box:

URL
The location of the repository directory to be checked out.

Note: To check out an item that was deleted, moved, or replaced, you need to specify the original URL (before
the item was removed) and use a peg revision at the end (for example, URL@rev1234).

Revision
You can choose between the HEAD or Other revision. If you need to check out a specific revision, specify it in
the Other text box or use the History button and choose a revision from the History dialog box.

Check out to
Specify the location where you want to check out the new working copy by typing the local path in the text
box or by using the Browse button. If the specified local path does not point to an existing directory, it will
automatically be created.

Important: By default, the SVN system only checks out the content of the directory specified by the URL,
and not the directory itself. Therefore, it is recommended to use the Browse button to select the check out
location so that the client will automatically append the name of the remote directory to the path of the
selected directory.

Warning: The destination directory should be empty. If files exist, they are skipped (left unchanged)
by the check out operation and displayed as modified after the operation has finished. Also, the
destination directory must not already be under version control.

Format
The SVN format of the working copy. You can choose between SVN 1.8 or SVN 1.7.

Depth
The depth is useful if you want to check out only a part of the selected repository directory and bring the
rest of the files and subdirectories in a future update. You can find out more about the checkout depth in the
sparse checkouts section. You can choose between the following depths:

• Recursive (infinity) - Checks out all the files and folders contained in the selected folder.
• Immediate children (immediates) - Checks out only the child files and folders without recursing

subfolders.
• File children only (files) - Checks out only the child files.
• This folder only (empty) - Checks out only the selected folder (no child file or folder is included).

Ignore "svn:externals" definitions
When selected, external items are ignored in the check out operation. This option is only available if you
choose the Recursive (infinity) depth.

After a check out, the new working copy is added to the list in the Working Copy view and loaded automatically.

Tools 1048

History Dialog Box

The History dialog box presents a list of revisions for a resource. It is opened from the dialog boxes that require
setting an SVN revision number, such as the Check Out dialog box or the Branch / Tag dialog box. It presents
information about revision, commit date, author, and commit comment.

Figure 487: History Dialog Box

The initial number of entries in the list is 50. Additional revisions can be added to the list using the Get next
50 and Get all buttons. The list of revisions can be refreshed at any time with the Refresh button. You can
group revisions in predefined time frames (today, yesterday, this week, this month), by pressing the Group by
date button from the toolbar.

The Affected Paths area displays all paths affected by the commit of the revision selected in history. You can see
the changes between the selected revision and the file's previous state using the Compare with previous version
action, available in the contextual menu.

Use an Existing Working Copy

Using an existing working copy is the process of taking a working copy that exists on your file system and
connecting it to Apache Subversion™ repository. If you have a brand new project that you want to import into your
repository, then see the section Import resources into the repository. The following procedure assumes that you
have an existing valid working copy on your file system.

1. Click the Working Copies Manager toolbar button (on Mac OS X) in the Working Copy view.

This action opens the Working copies list dialog box.
2. Press the Add button.
3. Select the working folder copy from the file system. The name is useful to differentiate between working

copies located in folders with the same name. The default name is the name of the root folder of the working
copy.

Tools 1049

Note: For SVN 1.7 and newer working copies, all the internal information is kept only in the root directory.
Thus, Syncro SVN Client needs to load the whole working copy.

4. Press the OK button.

The selected working copy is loaded and presented in the Working Copy view.

Notice: You can add working copies older than SVN 1.7. However, to load any of them, Syncro SVN Client will
require to upgrade the working copy to SVN 1.8 format.

Manage Working Copy Resources

This section explains how to work with the resources that are displayed in the Working Copy view.

Edit Files

You can edit files from the Working Copy view by double clicking them or by right clicking them and choosing
Open from the contextual menu.

Note that only one file can be edited at a time. If you try to open another file, it is opened in the same editor
window. The editor has syntax highlighting for known file types, meaning that a different color is used for each
type of recognized token in the file. If the selected file is an image, then it is previewed in the editor, with no
access to modifying it.

After modifying and saving a file from a working copy, a modified marker - an asterisk (*) - will be added to the
file's icon in the Working Copy view. The asterisk marks the files that have local modifications that were not
committed to the repository.

Add Resources to Version Control

To share new files and folders (created in your working copy), add them to version control using the Add to
version control option from the Working Copy view.

You can easily spot resources not under version control by the (unversioned) icon displayed in the Local file
status column. Resources scheduled for addition (added) are displayed with this icon in the Working Copy view
and are added in the repository after you commit them.

Note: Do not make a confusion between and icons. The former icon stands for resources that are actually
copies of resources already committed in the repository, meaning they are scheduled for addition with history.

When you use the Add to version control option on a directory, its entire structure is scanned and all the
resources that can be added under version control are presented.

Although it is not mandatory to add resources under version control explicitly, it is recommended. If you forgot
to add a resource, when you commit your changes, the resource is presented in the commit dialog box, but not
selected. When you commit and unversioned resource, it is automatically added under version control before
starting the commit operation.

Tools 1050

Figure 488: Add to Version Control Dialog Box

Note: Ignored () items can also be added under version control.

The Depth column is displayed only when directories are also presented in the dialog box. For any directory, you
can use one of the available values to instruct Subversion to limit the scope of the operation to a particular tree
depth.

Note: The initial value of the Depth field can have the following values, depending on the listing mode of the items
in the working copy view:

• infinity - When the working copy items are presented as a tree.
• files - When the working copy items are presented compressed.
• empty - When the working copy items are presented flat.

When you add unversioned or ignored directories, the initial value of the Depth field also depends on the state of
the Show unversioned directories content and Show ignored directories content options. If these options are
selected, the value is based on the listing mode of the items in the working copy view. When they are not selected,
the value is empty .

The following options are available in this dialog box:

• Enable automatic properties or Disable automatic properties - enables or disables automatic property
assignment (per runtime configuration rules), overriding the enable-auto-props runtime configuration
directive, defined in the config file of the Subversion configuration directory.

Note: This option is available only when there are defined properties to be applied automatically for resources
newly added under version control. You can define these properties in the config file of the Subversion
configuration directory, in the auto-props section. Based on the value of the enable-auto-props runtime
configuration directive, the presented option is either Enable automatic properties, or Disable automatic
properties.

• No ignore - when you select this option, file-name patterns defined to ignore unversioned resources do not
apply. Resources that are located inside an unversioned directory selected for addition, and match these
patterns, are also scheduled for addition in the repository.

Note: This option is available only when directories are also presented in the dialog box.

You can define file-name patterns to ignore unversioned resources in one of the following locations:

• In the config file of the Subversion configuration directory (the global-ignores option from the
miscellany section).

• In the Oxygen XML Developer options (open the Preferences dialog box (Options > Preferences) and go to
SVN > Working copy > Application global ignores).

Tools 1051

Each of the above two options is activated only when you select an item for which the option can be applied.

Ignore Resources Not Under Version Control

Some resources inside your working copy do not need to be subject to version control. These resources can
be files created by the compiler, *.obj, *.class, *.lst, or output folders used to store temporary files.
Whenever you commit changes, Apache Subversion™ shows your modified files in the commit dialog box, but
the unversioned files are also listed. Since the unversioned files are committed unless otherwise specified, it is
difficult to see exactly what you are committing.

The best way to avoid these problems is to add the derived files to the Subversion ignore list. That way they
are never displayed in the commit dialog box and only genuine unversioned files that must be committed are
displayed.

You can choose to ignore a resource by using the Add to svn:ignore action in the contextual menu of the Working
Copy view.

In the Add to svn:ignore dialog box, you can specify the resource to be ignored by name or by a custom pattern.
The custom pattern can contain the following wildcard characters:

• * - Matches any string of characters of any size, including the empty string.
• ? - Matches any single character.

For example, you can choose to ignore all text documents by using the pattern: *.txt.

The action Add to svn:ignore adds a predefined Subversion property called svn:ignore to the parent directory
of the specified resource. In this property, there are specified all the child resources of that directory that must be
ignored. The result is visible in the Working Copy view. The ignored resources are represented with gray icons.

Delete Resources

The Delete action is available in the contextual menu of the Working Copy view. When you delete an item from
the working copy, it is marked as deleted (scheduled for deletion from repository upon the next commit) and
removed from the file system. Depending on the state of each item, you are prompted to confirm the operation.

If a resource is deleted from the file system without Subversion's knowledge, the resource is marked as missing (
) in your working copy. You can decide what you want to do with a missing item:

• In the case of a commit, any missing item is first automatically deleted and then committed.

Note: Not any missing item can be committed as deleted, and removed from the repository. For example, you
cannot commit an item that no longer exists on the disk and that was scheduled for addition () previously,
since this item does not exist in the repository, but you can use the Delete action instead.

• If you want to recover missing items, either update the items themselves or one of their parent directories.
This fetches their latest version from the repository.

You can also delete conflicting items (file content conflicts, property conflicts, tree-conflicts) and Syncro SVN
Client automatically marks them as resolved.

Note: It is recommended that you resolve conflicts manually to avoid loosing any important remote
modifications.

Finally, you can change your mind and revert the deleted items to their initial, pristine, state.

Copy Resources

You can copy resources from various locations of the working copy. You select them in the Working Copy view
and then use Copy to from the contextual menu. This is not a simple file system copy, but an Apache Subversion™

command. It will copy the resource and the copy will also have the original history. This is one of the important
features of Subversion, as you can keep track of where the copied resources originated.

Based on the selected items, the Copy to action is available only if it can be performed. Even if the operation
would not normally be possible in SVN (due to some invalid local file states against copy), Oxygen XML Developer
performs the copy operation as a simple file system operation. This means no SVN versioning meta-data is
affected.

Note:

Tools 1052

• If you copy an item to a directory that is not under version control (unversioned or ignored), the history of the
item is not preserved. For example, when copying directories, all items inside them will also be copied without
history.

• If you copy a directory that contains external items, these are not copied. This is specific for SVN 1.7 working
copies only. To fetch the external items, use the Update operation on the copied directory.

In the Copy to dialog box, you can navigate through the working copy directories to choose a target directory, to
copy inside it. If you try to copy a single resource you are also able to change that resource's name. For versioned
items, you can select Ignore resource history to copy them without their history (similar to a simple file system
copy).

Note: The Copy to dialog box only presents all the local directories that are a valid destination against the copy
operation, based on their local file status. Also, the working copy settings are taken into account.

In the Commit dialog box, only the directory in question will appear without its children.

Move Resources

As in the case of the copy command, you can move several resources at once. Select the resources in the
Working Copy view and choose the Move to action from the contextual menu. The move command actually
behaves as if a copy followed by a delete command were issued. You will find the moved resources at the desired
destination and also at their original location, but marked as deleted.

Note: External items cannot be moved using the Move to action, because they cannot be deleted. Instead, you
should edit the svn:externals property defining the external item and use the Update operation on the item's
parent folder for the change to take effect.

Attention: For SVN 1.8 working copies: when committing items that were moved and/or renamed, make
sure you select both the source and the destination. Otherwise, the commit operation will fail.

Rename Resources

The Rename action is available in the contextual menu of the Working Copy view and can be performed on a
single resource. This action acts as a move command with the destination directory being the same as the
original location of the resource. A copy of the original item is created with the new name, also keeping its history.
The original item is marked as deleted.

Note: External items cannot be renamed using the Rename action because they cannot be deleted. Instead, you
should edit the svn:externals property defining the external item, then use the Update operation on the item's
parent folder for the change to take effect.

Attention: For SVN 1.8 working copies: when committing items that were moved and/or renamed, make
sure you select both the source and the destination. Otherwise, the commit operation will fail.

Lock / Unlock Resources

The idea of version control is based on the copy-modify-merge model of file sharing. This model states that each
user contacts the repository and creates a local working copy (check out). Users can then work independently
and modify their working copies according to their needs. When their goal has been accomplished, it is time for
the users to share their work with the others, to send them to the repository (commit). When a user has modified
a file that has been also modified on the repository, the two files will have to be merged. The version control
system assists the user with the merging as much as it can, but in the end the user is the one that must make
sure it is done correctly.

The copy-modify-merge model only works when files are contextually mergeable: this is usually the case of
line-based text files (such as source code). However this is not always possible with binary formats, such as
images or sounds. In these situations, the users must each have exclusive access to the file, ending up with a
lock-modify-unlock model. Without this, one or more users could end up wasting time on changes that cannot be
merged.

An SVN lock is a piece of metadata that grants exclusive access to a user. This user is called the lock owner. A
lock is uniquely identified by a lock token (a string of characters). If someone else attempts to commit the file (or
delete a parent of the file), the repository demands two pieces of information:

• User authentication - the user performing the commit must be the lock owner

Tools 1053

• Software authorization - the user's working copy must have the same lock token as the one from the
repository, proving that it is the same working copy where the lock originated from.

Scanning for Locks

When starting to work on a file that is not contextually mergeable (usually a binary file), it is better to verify if
someone else is not already working on that file. You can do this in the Working Copy view by selecting one or
more resources, then right-clicking them and choosing the Scan for Locks action from the contextual menu.

Figure 489: Locked Items Dialog Box

The Locked items dialog box contains a table with all the resources that were found locked on the repository. For
each resource there are specified: resource path, state of the lock, owner of the lock, lock comment, creation and
expiration date for the lock (if any).

The state of the lock can be one of the following:

• - Appears when one of the following conditions apply:

• Another user has locked the file in the repository.
• The file was locked by the same user from another working copy.
• The file was locked from the Repositories view.

• - Displayed after you have locked a file from the current working copy.
• - A file already locked from your working copy is no longer locked in the repository (it was unlocked by

another user).
• - A file already locked from your working copy is being locked by another user. Now the owner of the file

lock is the user who stole the lock from you.

You can unlock a resource by selecting it and pressing the Unlock button.

Related Information:
Working Copy Locks on page 1101
Repository Locks on page 1094

Locking a File

By locking a file, you have exclusive write access to it in the repository.

You can lock a file from your working copy or directly from the Repositories view.

Note: You can only lock files (not directories). This is a restriction imposed by Apache Subversion™.

The Lock dialog box allows you to write a comment when you set a lock or when you steal an existing one. Note
that you should steal a lock only after you made sure that the previous owner no longer needs it. Otherwise,
you may cause an unsolvable conflict, which could be the reason the lock was put there in the first place.
The Subversion server can have a policy concerning lock stealing, as it may not allow you to do this if certain
conditions are not met.

The lock stays in place until you unlock the file or until someone breaks it. There is also the possibility that the
lock expires after a period of time specified in the Subversion server policy.

Tools 1054

Unlocking a File

A file can be unlocked from the contextual menu of the Working Copy view. A dialog box will prompt you to
confirm the unlocking and it will also allow you to break the lock (unlock it by force).

Synchronize with Repository

In the work cycle you will need to incorporate other people's changes (update) and to make your own work
available to others (commit). This is what the Incoming and Outgoing modes of the Working Copy view was
designed for, to help you send and receive modifications from the repository.

The Incoming and Outgoing modes of this view focus on incoming and outgoing changes. The incoming changes
are the changes that other users have committed in the repository since you last updated your working copy. The
outgoing changes are the modifications you made to your working copy as a result of editing, removing or adding
resources.

The view presents the status of the working copy resources against the BASE revision after a Refresh operation.
You can view the state of the resources versus a repository HEAD revision by using the Synchronize action from
the Working Copy view.

View Differences

One of the most common requirements in project development is to see what changes have been made to
the files from your Working Copy or to the files from the repository. You can examine these changes after a
synchronize operation with the repository, by using the Open in compare editor action from the contextual menu.

The text files are compared using a built-in Compare view that uses a line differencing algorithm or a specified
external diff application (if such an application is set in the SVN Diff preferences page). When a file with outgoing
status is involved, the compare is performed between the file from the working copy and the BASE revision of
the file. When a file with incoming or conflict status is involved, the differences are computed using a three-
way algorithm that means that the local file and the repository file are each compared with the BASE revision
of the file. The results are displayed in the same view. The differences obtained from the local file comparison
are considered outgoing changes and the ones obtained from the repository file comparison are considered
incoming changes. If any of the incoming changes overlap outgoing changes then they are in conflict.

A special case of difference is a diff pseudo-conflict. This is the case when the left and the right sections are
identical but the BASE revision does not contain the changes in that section. By default, this type of changes are
ignored. If you want to change this, you can go to the SVN preferences page and select the Allow unversioned
obstructions option.

The right editor of the internal compare view presents either the BASE revision or a revision from the repository
of the file so its content cannot be modified. By default, when opening a synchronized file in the Compare view, a
compare is automatically performed. After modifying and saving the content of the local file presented in the left
editor, another compare is performed. You will also see the new refreshed status in the Working Copy view.

Tools 1055

Figure 490: Compare View

At the top of each of the two editors, there are presented the name of the opened file, the corresponding SVN
revision number (for remote resources) and the author who committed the associated revision.

There are three types of differences:

• Incoming changes - Changes committed by other users and not present yet in your working copy file. They are
marked with a blue highlight and on the middle divider the arrows point from right to left.

• Outgoing changes - Changes you have done in the content of the working copy file. They are marked with a
gray highlight and the arrows on the divider are pointing from left to right.

• Conflicting changes - This is the case when the same section of text that you already modified in the local
file has been modified and committed by some other person. They are marked with a red highlight and red
diamonds on the divider.

There are numerous actions and options available in the Compare View toolbar or in the Compare menu from
the main menu. You can decide that some changes need adjusting or that new ones must be made. After you
perform the adjustments, you may want to perform a new compare between the files. For this case there is an
action called Perform files differencing. After each files differencing operation the first found change will be
selected. You can navigate from one change to another by using the actions Go to first, Go to previous, Go to next
and Go to last modification. If you decide that some incoming change needs to be present in your working file
you can use the action Copy change from right to left. This is useful also when you want to override the outgoing
modifications contained in a conflicting section. The Copy all non-conflicting changes from right to left action
copies all incoming changes that are not contained inside a conflicting section in your local file.

Suppose that only a few words or letters are changed. Considering that the differences are performed taking
whole lines of text into account, the change will contain all the lines involved. To find exactly what words or letters
have changed, the Word Details and Character Details dialog boxes are available. They present a more detailed
comparison result when you double-click the middle divider of a difference.

Tools 1056

When you want to examine only the changes in the real text content of the files, while disregarding the changes
in the number of white spaces between words or lines, there is an option available in the SVN Preferences that
allows you to enable or disable the white space ignoring feature of the compare algorithm.

Conflicts

A file conflict occurs when two or more developers have changed the same few lines of a file or the properties
of the same file. As Subversion knows nothing of your project, it leaves resolving the conflicts to the developers.
Whenever a conflict is reported, you should open the file in question, and try to analyze and resolve the conflicting
situation.

Real Conflicts vs Mergeable Conflicts

There are two types of conflicts:

• real conflict (icon in Name column) - Syncro SVN Client considers the following resource states to be real
conflicts:

• conflicted state - A file reported by SVN as being in this state is obtained after it was updated/merged
while having incoming and outgoing content or property changes at the same time, changes that could
not be merged. A content conflict (icon in Local file status column) is reported when the modified file
has binary content or it is a text file and both local and remote changes were found on the same line. A
properties conflict (icon in Local properties status column) is reported when a property's value was
modified both locally and remotely.

• tree conflicted state (icon in Local file status column) - Obtained after an update or merge operation,
while having changes at the directory structure level (for example, file is locally modified and remotely
deleted or locally scheduled for deletion and remotely modified).

• obstructed state (icon in Local file status column) - Obtained after a resource was versioned as one kind
of object (file, directory, symbolic link), but has been replaced outside Syncro SVN Client by a different kind
of object.

•
pseudo-conflict (icon in Name column) - A file is considered to be in pseudo-conflict when it contains both
incoming and outgoing changes. When incoming and outgoing changes do not intersect, an update operation
may automatically merge the incoming file content into the existing locally one. In this case, the pseudo-
conflict marker is removed. This marker is used only as a warning that should prevent you to run into a real
conflict.

Note:

• A conflicting resource cannot be committed to repository. You have to resolve it first, by using Mark Resolved
action (after manually editing/merging file contents) or by using Mark as Merged action (for pseudo-
conflicts).

•
 and icons are presented only when one of the following view modes is selected: Modified, Incoming,

Outgoing, Conflicts.
•

The icon is used also for folders to signal that they contain a file in real conflict or pseudo-conflict state.

Content Conflicts vs Property Conflicts

A Content conflict appears in the content of a file. A merge occurs for every inbound change to a file that is also
modified in the working copy. In some cases, if the local change and the incoming change intersect each other,
Apache Subversion™ cannot merge these changes without intervention. So if the conflict is real when updating
the file in question the conflicting area is marked like this:

 <<<<<<< filename
 your changes
 =======
 code merged from repository
 >>>>>>> revision

Also, for every conflicted file Subversion places three additional temporary files in your directory:

Tools 1057

• filename.ext.mine - This is your file as it existed in your working copy before you updated your working
copy, that is without conflict markers. This file has your latest changes in it and nothing else.

• filename.ext.rOLDREV - This is the file that was the BASE revision before you updated your working copy,
that is the file revision that you updated before you made your latest edits.

• filename.ext.rNEWREV - This is the file that Subversion client just received from the server when you
updated your working copy. This file corresponds to the HEAD revision of the repository.

OLDREV and NEWREV are revision numbers. If you have conflicts with binary files, Subversion does not attempt
to merge the files by itself. The local file remains unchanged (exactly as you last changed it) and you will get
filename.ext.r* files also.

A Property conflict is obtained when two people modify the same property of the same file or folder. When
updating such a resource a file named filename.ext.prej is created in your working copy containing the
nature of the conflict. Your local file property that is in conflict will not be changed. After resolving the conflict,
you should use the Mark resolved action to commit the file. Note that the Mark resolved action does not really
resolve the conflict. It just removes the conflicted flag of the file and deletes the temporary files.

Edit Real Content Conflicts

The conflicts of a file in the conflicted state (a file with the red double arrow icon) can be edited visually with the
Compare view (the built-in file comparison tool) or with an external diff application. Resolving the conflict means
deciding for each conflict if the local version of the change will remain or the remote one instead of the special
conflict markers inserted in the file by the SVN server.

The Compare view (or the external diff application set in Preferences) is opened with the Edit Conflict action,
which is available on the contextual menus of the Working Copy view for files in the conflicted state (an update
operation was executed but the differences could not be merged without conflicts). The external diff application
is called with 3 parameters because it is a 3-way diff operation between the local version of the file from the
working copy and the HEAD version from the SVN repository with the BASE version from the working copy as
common ancestor.

If theShow warning dialog when edit conflicts option is selected, you will be warned at the beginning of the
operation that the operation will overwrite the conflict version of the file received from the SVN server (the version
that contains the conflict markers <<<<<<<, =======, >>>>>>>) with the original local version of the file that
preceded the update operation. If you press the OK button the visual conflict editing will proceed and a backup
file of the conflict version received from the SVN server is created in the same working copy folder as the file with
the edited conflicts. The name of the backup file is obtained by appending the extension .sync.bak to the file
as stored on the SVN server. If you press the Cancel button the visual editing will be aborted.

The usual actions on the differences between two versions of a file are available on the toolbar of this view:

 Save
Saves the modifications of the local version of the file displayed in the left side of the view.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the
comparison, the application normalizes the content and trims its leading and trailing whitespaces.

Synchronized scrolling
Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Tools 1058

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first
change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor is
positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when the
cursor is positioned on the first change or when there are no changes.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

The operation begins by overwriting the conflict version of the file received from the SVN server (the version that
contains the conflict markers <<<<<<<, =======, >>>>>>>) with the original local version of the file before running
the update action that created the conflict. After that the differences between this original local version and the
repository version are displayed in the Compare view.

If you want to edit the conflict version of the file directly in a text editor instead of the visual editing offered by
the Compare view you should work on the local working copy file after the update operation without running the
action Edit Conflict. If you decide that you want to edit the conflict version directly after running the action Edit
Conflict you have to work on the .sync.bak file.

If you did not finish editing the conflicts in a file at the first run of the action Edit Conflict you can run the action
again and you will be prompted to choose between resuming the editing where the previous run left it and starting
again from the conflict file received from the SVN server.

After the conflicts are edited and saved in the local version of the file you should run one of the following:

• The Mark Resolved action on the file so that the result of the conflict editing process can be committed to the
SVN repository.

• The Revert action so that the repository version overwrites all the local modifications.

Both actions remove the backup file and other temporary files created with the conflict version of the local file.

Revert Your Changes

If you want to undo changes made in your working copy, since the last update, select the items you are interested
in, right-click to display the contextual menu and select Revert. A dialog box will open that shows you the files
and folders that you have changed and can be reverted. Select those you want to revert and click the OK button.
Revert will undo only your local changes. It does not undo any changes that have already been committed. If you
choose to revert a conflicting item to its pristine copy, then the eventual conflict is solved by losing your outgoing
modifications. If you try to revert a resource not under version control, the resource will be deleted from the file
system.

Tools 1059

Note: By default, a directory will be recursively reverted (including any other modified item it contains). However,
if the directory has only property changes, you need to explicitly choose if the operation will include any modified
items found inside it.

If you want some of your outgoing changes to be overridden you must first open the file in Compare view and
choose the sections to be replaced with ones from the repository file. This can be achieved either by editing
directly the file or by using the action Copy change from right to left from the Compare view toolbar. After editing
the conflicting file you have to run the action Mark as merged before committing it.

If you want to drop all local changes and bring all incoming changes into your working copy resource, you can
use the Override and update action. It discards the changes in the local file and updates it from the repository. A
dialog box will display the files that will be affected.

Figure 491: Override and Update Dialog Box

In the first table of the dialog box you will be able to see the resources that will be overridden. In the second table
you will find the list of resources that will be updated. Only resources that have an incoming status are updated.

Tip: If you want to roll-back out of your working copy changes that have already been committed to the
repository, see Merge Revisions.

Merge Conflicted Resources

Before you can safely commit your changes to the repository you must first resolve all conflicts. In the case
of pseudo-conflicts they can be resolved in most cases with an update operation that will merge the incoming
modifications into your working copy resource. In the case of real conflicts, conflicts that persist after an update
operation, it is necessary to resolve the conflict using the built-in compare view and editor or, in the case of
properties conflict, the Properties view. Before you can commit you must mark as resolved the affected files.

Both pseudo and real conflicts can be resolved without an update. You should open the file in the compare editor
and decide which incoming changes need to be copied locally and which outgoing changes must be overridden
or modified. After saving your local file you have to use the Mark as merged action from the contextual menu
before committing.

Tools 1060

Drop Incoming Modifications

In the situation when your file is in conflict but you decide that your working copy file and its content is the correct
one, you can decide to drop some or all of the incoming changes and commit afterwards. The action Mark as
merged proves to be useful in this case too. After opening the conflicting files with Compare view, Editor or
editing their properties in the Properties view and deciding that your file can be committed in the repository
replacing the existing one, you should use the Mark as merged action. When you want to override completely the
remote file with the local file you should run the Override and commit action, which drops any remote changes
and commits your file.

In general it is much safer to analyze all incoming and outgoing changes using the Compare view and only after
to update and commit.

Tree Conflicts

A tree conflict is a conflict at the directory tree structure level and occurs when the user runs an update action on
a resource that has the following conditions:

• It is locally modified and the same resource was deleted from the repository (or deleted as a result of being
renamed or moved).

• It was locally deleted (or deleted as a result of being renamed or moved) and the same resource is incoming
as modified from the repository.

The same conflict situation can occur after a merge or a switch action. The action ends with an error and the
folder containing the file that is now in the tree conflict state is also marked with a conflict icon.

Such a conflict can be resolved in one of the following ways that are available when the user double clicks on the
conflicting resource or when running the Edit conflict action:

Figure 492: Resolve a tree conflict

• Keep local change (delete resource) - Keeps the incoming change that comes from the repository.
• Keep incoming modified resource - If there is a renamed version of the file committed by other user that will

be added to the working copy too.

Update the Working Copy

While you are working on a project, other members of your team may be committing changes to the project
repository. To get these changes, you have to update your working copy. Updating may be done on single files, a
set of selected files, or recursively on entire directory hierarchies. The update operation can be performed from
Working Copy view. It updates the selected resources to the last synchronized revision (if remote information is
available) or to the HEAD revision of the repository.

Tools 1061

There are three different kinds of incoming changes:

• Non-conflicting - A non-conflicting change occurs when a file has been changed remotely but has not been
modified locally.

• Conflicting, but auto-mergeable - An auto-mergeable conflicting change occurs when a text file has been
changed both remotely and locally (for example, has non-committed local changes) but the changes are on
different lines of text. Not applicable to binary resources (for example, multimedia files, PDFs, executable
program files)

• Conflicting - A conflicting change occurs when one or more of the same lines of a text file have been changed
both remotely and locally.

If the resource contains only incoming changes or the outgoing changes do not intersect with incoming ones
then the update will end normally and the Subversion system will merge incoming changes into the local file. In
the case of a conflicting situation the update will have as result a file with conflict status.

The Oxygen XML Developer allows you to update your working copy files to a specific revision, not only the most
recent one. This can be done by using the Update to revision/depth action from the Working Copy view (All Files
view mode) or the Update to revision action from the History view contextual menu.

If you select multiple files and folders and then you perform an Update operation, all of those files and folders are
updated one by one. The Subversion client makes sure that all files and folders belonging to the same repository
are updated to the exact same revision, even if between those updates another commit occurred.

When the update fails with a message saying that there is already a local file with the same name Subversion
tried to check out a newly versioned file, and found that an unversioned file with the same name already exists
in your working folder. Subversion will never overwrite an unversioned file unless you specifically do this with an
Override and update action. If you get this error message, the solution is simply to rename the local unversioned
file. After completing the update, you can check to see if the renamed file is still needed.

Send Your Changes to the Repository

Sending the changes you made to your working copy is known as committing the changes. If your working copy is
up-to-date and there are no conflicts, you are ready to commit your changes.

The Commit action sends the changes from your local working copy to the repository. The Commit dialog box
presents all the items that you can commit.

Tools 1062

Figure 493: Commit dialog box

Enter a message to associate with the commit, or choose a previous message from the Previous messages list
(the last 10 commit messages will be remembered even after restarting the SVN client application).

An item that can be committed has one of the following states: added, modified (content or properties), replaced,
and deleted. All items that have one of these states are selected in the dialog box by default. If you do not want to
commit one of the items, deselect it.

Attention: For SVN 1.8 working copies: when committing items that were moved and/or renamed, make
sure you select both the source and the destination. Otherwise, the commit operation will fail.

Besides the items that have one of the mentioned states, Syncro SVN Client also includes the files being
unversioned or missing and these items are handled automatically:

• Unversioned items are added under version control.
• Missing items are deleted.

Note: If the Show unversioned directories content option is not selected, the Commit dialog box does not display
the items inside an unversioneddirectory.

Unversioned or missing items are not selected by default in the Commit dialog box, unless you have selected
them explicitly when issuing the commit command.

Note: In some cases, items that have one of the above states are not presented in the Commit dialog box.

For example:

• Items that have been added or replaced previously, but now are presented as missing after being removed
from the file system, outside of an SVN client. Such items do not exist in the repository and you should use the
Delete action to remove them from your working copy.

Tools 1063

• Items that have incoming changes from the repository, after a synchronization. You need to have your working
copy up-to-date before committing your changes.

• Files that, after a synchronization, appear as locked by other users or from other locations than the current
working copy.

Note: Due to dependencies between items, when you select or clear an unversioned () or added () item in
the Commit dialog box, other items with one of these states can be selected or cleared automatically.

The modifications that will be committed for each file can be reviewed in the compare editor window by double
clicking a file in the Commit dialog box, or by right clicking and selecting the Show Modifications action from the
contextual menu. This option is available to review only file content changes, not property changes.

The Local file status column indicates the actual state of the items and the Local properties status column
indicates whether or not the properties of an item are modified.

The Lock information column is displayed if at least one of the files in the Commit dialog box has lock
information associated with it, valid against the commit operation.

The following options are available in this dialog box:

• Enable automatic properties or Disable automatic properties - enables or disables automatic property
assignment (per runtime configuration rules), overriding the enable-auto-props runtime configuration
directive, defined in the config file of the Subversion configuration directory.

Note: This option is available only when there are defined properties to be applied automatically for resources
newly added under version control. You can define these properties in the config file of the Subversion
configuration directory, in the auto-props section. Based on the value of the enable-auto-props runtime
configuration directive, the presented option is either Enable automatic properties, or Disable automatic
properties.

• Keep locks - selecting the Keep locks option preserves any locks you set on various files.

Note: This option is available only when files that you locked are presented in the dialog box.

Each of the above options is activated only when you select an item for which the option can be applied.

Your working copy must be up-to-date with respect to the resources you commit. This is ensured by using the
Update action prior to committing, resolving conflicts and re-testing as needed. If your working copy resources
you are trying to commit are out of date you will get an appropriate error message.

Committing to Multiple Locations

Although Subversion does not support committing to multiple locations at once, Syncro SVN Client offers this
functionality regarding external items.

If items to be committed belong to different external definitions than those found in the working copy, they
are grouped under the corresponding item that indicates their repository origin. Each parent item is rendered
bold and its corresponding repository location is presented when hovering it. Parent items are decorated with a
small arrow () if they are external definitions. The working copy root directory is never decorated and is not
presented if there are no external items listed (all items belong to the main working copy). Each child item is
presented relative to the parent item.

Note: When an external directory has modifications of its own, it is presented both as a parent item and as an
item that you can select and commit. This is always the case for external files.

The sets of items belonging to external definitions from the same repository are committed together, resulting a
single revision. So, the number of revisions can be smaller than the number of externals. External definitions are
considered from the same repository if they have the same protocol, server address, port, and repository address
within the server.

Note: External files are always from the same repository as the parent directory that defines them, so they are
always committed together with the changes from their parent directory.

Integration with Bug Tracking Tools

Users of bug tracking systems can associate the changes they make in the repository resources with a specific
ID in their bug tracking system. The only requirement is that the user includes the bug ID in the commit message

Tools 1064

that they enter in the Commit dialog box. The format and the location of the ID in the commit message are
configured with SVN properties.

To make the integration possible Syncro SVN Client needs some data about the bug tracking tool used in the
project. You can configure this using the following SVN properties that must be set on the folder that contains
resources associated with the bug tracking system (usually they are set recursively on the root folder of the
working copy):

• bugtraq:message - A string property. If it is set the Commit dialog box will display a text field for entering the
bug ID. It must contain the string %BUGID%, which is replaced with the bug number on commit.

• bugtraq:label - A string property that sets the label for the text field configured with the bugtraq:message
property.

• bugtraq:url - A string property that is the URL pointing to the bug tracking tool. The URL string should contain
the substring %BUGID% which Syncro SVN Client replaces with the issue number. That way the resulting URL
will point directly to the correct issue.

• bugtraq:warnifnoissue - A boolean property with the values true/yes or false/no. If set to true, the Syncro SVN
Client will warn you if the bug ID text field is left empty. The warning will not block the commit, only give you a
chance to enter an issue number.

• bugtraq:number - A boolean property with the value true or false. If this property is set to false, then any
character can be entered in the bug ID text field. If the property is set to true or is missing then only numbers
are allowed as the bug ID.

• bugtraq:append - A boolean property. If set to false, then the bug ID is inserted at the beginning of the commit
message. If yes or not set, then it's appended to the commit message.

• bugtraq:logregex - This property contains one or two regular expressions, separated by a newline. If only
one expression is set, then the bug ID's must be matched in the groups of the regular expression string (for
example, [Ii]ssue #?(\d+)). If two expressions are set, then the first expression is used to find a string
which relates to a bug ID but may contain more than just the bug ID (for example, Issue #123 or resolves
issue 123). The second expression is then used to extract the bug ID from the string extracted with the first
expression. An example: if you want to catch every pattern issue #XXX and issue #890, #789 inside a
log message you could use the following strings:

• [Ii]ssue #?(\d+)(,? ?#?(\d+))+
• (\d+)

The data configured with these SVN properties is stored on the repository when a revision is committed. A
bug tracking system or a statistics tools can retrieve the revisions that affected a bug from the SVN server and
present the commits related to that bug to the user of the bug tracking system.

If the bugtraq:url property was filled in with the URL of the bug tracking system and this URL includes the %BUGID
% substring as specified above in the description of the bugtraq:url property then the History view presents the
bug ID as a hyperlink in the commit message. Clicking such a hyperlink in the commit message of a revision
opens a Web browser at the page corresponding to the bug affected by that commit.

Obtain Information for a Resource

This section explains how to obtain information for a SVN resource:

Request Status Information for a Resource

While you are working with the SVN Client you often need to know which files you have changed, added, removed,
or renamed, or even which files got changed and committed by others. This is where the Synchronize action
from the Working Copy view comes in handy. The Working Copy view shows you every file that has changed your
working copy, as well as any unversioned files you may have.

If you want more detailed information about a given resource, you can use the Show SVN Information action.
This action is available from the File menu or the contextual menu of the Working Copy, Repositories, History,
or Directory Change Set views, or from the Revision Graph dialog box. The SVN Information dialog box will be
displayed, showing information about the selected resource. The information displayed depends on the location
of the item (local or remote) and may include the following:

• Local path and repository location
• Revision number

Tools 1065

• Last change author, revision and date
• Information about locks
• Local file status
• Local properties status
• Local directory depth
• Repository location and revision number for copied files or directories
• Path information about locally moved items
• Path information about conflict generated files
• Remote file status
• Remote properties status
• File size and other information

The value of a property of the resource displayed in the dialog box can be copied by right-clicking the property
and selecting the Copy action.

Request History for a Resource

In Apache Subversion™, both files and directories are versioned and have a history. If you want to examine the
history for a selected resource and find out what happened at a certain revision you can use the History view that
can be accessed from Repositories view, Working Copy view, Revision Graph, or Directory Change Set view. From
the Working copy view you can display the history of local versioned resources. If the view is not displayed, it can
be opened by selecting it from the Window > Show View menu.

Related Information:
History View on page 1107

Management of SVN Properties

In the Properties view you can read and set the Apache Subversion™ properties of a file or folder. There is a set of
predefined properties with special meaning to Subversion. For more information about properties in Subversion
see the SVN Subversion specification. Subversion properties are revision dependent. After you change, add or
delete a property for a resource, you have to commit your changes to the repository.

If you want to change the properties of a given resource you need to select that resource from the Working Copy
view and run the Show properties action from the contextual menu. The Properties view will show the local
properties for the resource in the working copy. Once the Properties view is visible, it will always present the
properties of the currently selected resource. There are actions available in the Properties view toolbar that allow
you to add, change, and delete the properties.

If you choose the Add a new property action, a new dialog box will appear that contains the following:

• Name - Combo box that allows you to enter the name of the property. The drop-down menu of the combo box
presents the predefined Subversion properties (such as svn:ignore, svn:externals, svn:needs-lock, etc.)

• Current value - Text area that allows you to enter the value of the new property.

If the selected item is a directory, you can also set the property recursively on its children by selecting the Set
property recursively checkbox.

If you want to change the value for a previously set property, you can use the Edit property action, which will
display a dialog box with the following information:

• Name - Property name (cannot be changed).
• Current value - The current value (can be changed).
• Base value - The value of the property, if any, from the resource in the pristine copy (cannot be changed).

If you want to completely remove a property previously set you can choose the Remove property action. It will
display a confirmation dialog box in which you can also choose if the property will be removed recursively.

There is a Refresh action in the Properties view that can be used when the properties have been changed
from outside the view. This can happen, for example, when the view was already presenting the properties of a
resource and they have been changed after an Update operation.

Tools 1066

Branches and Tags

One of the fundamental features of version control systems is the ability to create a new line of development
from the main one. This new line of development will always share a common history with the main line if you
look far enough back in time. This line is known as a branch. Branches are mostly used to try out features or fixes.
When the feature or fix is finished, the branch can be merged back into the main branch (trunk).

Another feature of version control systems is the ability to take a snapshot of a particular revision, so you can
at any time recreate a certain build or environment. This is known as tagging. Tagging is especially useful when
making release versions.

In Apache Subversion™, there is no difference between a tag and a branch. On the repository, both are ordinary
directories that are created by copying. The trick is that they are cheap copies instead of physical copies. Cheap
copies are similar to hard links in Unix, which means that they merely link to a specific tree and revision without
making a physical copy. As a result, branches and tags occupy little space on the repository and are created very
quickly.

Provided that nobody ever commits to the directory in question, it remains a tag. If people start committing to it, it
becomes a branch.

Create a Branch / Tag

To create a branch or tag by copying a directory, use the Branch/Tag action that is available in the Tools menu
when an item is selected in the Working Copy view or Repositories view, or from the contextual menu of the
Repositories view.

Figure 494: Branch/Tag Dialog Box

You can configure the following options in this dialog box:

You can specify the source revision of the copy in the Copy from section. You can choose between the following
options:

• HEAD revision in the repository - The new branch or tag will be copied in the repository from the HEAD
revision. The branch will be created very quickly, as the repository will make a cheap copy.

Tools 1067

• Specific revision in the repository - The new branch will be copied into the repository, but you can specify the
exact desired revision. For example, this is useful if you forgot to make a branch or tag when you released your
application. If you click the History button you can select the revision number from the History dialog box. This
type of branch will also be created very quickly.

• Working copy - (Available only if the item is selected from the Working copy view). The new branch will be a
copy of your local working copy. If you have updated some files to an older revision in your working copy, or
if you have made local changes, that is exactly what goes into the copy. This involves transferring some data
from your working copy back to the repository, or more specifically, the locally modified files.

You can specify the location of the new branch or tag in the Destination section:

• Into repository's directory - The URL of the parent directory of the new branch or tag.

Note: Peg revisions have no effect for this operation since it is used to send information to the repository.
• Under the name - You can specify another branch or tag name other than the name of the resource selected in

the Repositories or Working copy view.

The new branch or tag will be created as a child of the specified URL of the repository directory and will have the
new name.

Merging

At some stage during the development process, you will want to merge the changes made on a branch back
into the trunk, or vice-versa. The merge is accomplished by comparing two points (branches or revisions) in the
repository and applying the obtained differences to your working copy. This process is closely related to the diff
concept.

Note: A branch is a line of development that exists independently of another line, yet still shares a common
history if you look far enough back in time. A branch always begins life as a copy of something (such as a trunk,
another branch, or tag), and moves on from there, generating its own history.

The Merge action is available in the Tools menu. The working copy item selected when you issued the
command will be the one receiving the generated changes. If there is no item selected, the merge operation will
be performed on the entire working copy.

Tools 1068

Figure 495: Merge Wizard

The four types of merging are as follows:

• Merge revisions - Port changes from one branch to another. Note that the trunk can also be considered a
branch, in this context.

• Synchronize branch - Fetch all the changes made on a parent branch (or the trunk) to a child branch.
• Reintegrate a branch - Merge a branch back to its parent branch (can also be the trunk).
• Merge two different trees - Integrate the changes done on a branch to a different branch.

It is recommended that you enable the following pre-merge check:

• Perform pre-merge best practices checks of the working copy target - When selected, the SVN Client checks if
the working copy target item is ready for the merge operation and displays the pre-merge checks wizard page.

Remember: It is a good idea to perform a merge into an unmodified working copy. If you have made changes
to your working copy, commit them first. If the merge does not go as you expect, you may want to revert the
changes and revert cannot recover your uncommitted modifications.

Important: The above recommendation becomes mandatory when reintegrating a branch.

Pre-Merge Checks

Before performing a merge, it is recommended to make sure that the working copy target item is ready for the
merge operation. The SVN Client includes a best practices step that checks various conditions of the working
copy target item to ensure that the merge operation will succeed. By selecting the Perform pre-merge best
practices checks of the working copy target option in the first page of the Merge wizard, the Pre-merge checks
wizard page is displayed to give you a summary of the verified conditions.

Tools 1069

Figure 496: Pre-Merge Checks Wizard Page

The following conditions are checked in this operation:

No local modifications
The working copy item (or any of its children) receiving the merge should not contain uncommitted changes,
to make it easier to revert merge-generated changes if you encounter unexpected results.

Tip: If this condition fails, you should commit or revert the local modifications before merging.

No switched children
None of the children of the working copy item receiving the merge should be switched, to avoid incomplete
merges and subtree mergeinfo.

Tip: If this condition fails, you should switch back all the children before merging.

Complete working copy tree
The working copy item receiving the merge should be a complete directory tree structure with an infinite
depth, to avoid incomplete merges and subtree mergeinfo.

Tip: If this condition fails, you should change the sticky depth of the working copy item receiving the merge
to infinity value.

No mixed revisions
To avoid unexpected merge conflicts, the working copy item that is receiving the merge should not contain
items that were updated to other revisions.

Tip: If this condition fails, you should update the working copy before merging.

Each condition is marked with an icon that represents the state of the condition. The possible states are as
follows:

• (Successful) - The condition is fulfilled successfully.
• (Warning) - The condition is not fulfilled, but it is not mandatory.
• (Error) - The condition is not fulfilled and is mandatory (therefore, the operation cannot proceed until you

solve the error).

Tools 1070

Tip: For each condition state, a message is displayed that gives you additional information about the results and,
for warning or errors, a hint that explains how you can solve them.

Important: After solving any of the warnings or errors, it is recommended that you perform the pre-merge checks
again to make sure your new changes are valid.

Merge Revisions

This case is when you have made one or more changes to a branch and you want to duplicate them in another
branch. For example, we know that a problem has been fixed by committing revisions 17, 20, and 25 on branch
B1. These changes are also needed in branch B2. Thus, to merge them, we need a working copy of the B2 branch.

To merge revisions from a different branch, follow these steps:

1. Go to menu Tools > Merge.
The Merge wizard is opened.

2. Select the Merge revisions option.
3. It is recommended that you select the Perform pre-merge best practices checks of the working copy target

option to make sure that the working copy target item is ready for the merge operation.
a) Press the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected, the Pre-
Merge Checks wizard page is displayed.

Note: If errors are found you need to solve them before proceeding.
4. Press the Next button.

The Merge revisions wizard page is displayed.
5. In the Merge from (URL) text box, enter the URL of the branch or tag that contain the changes that you want to

duplicate in your working copy. In our example, it is the URL of the B1 branch.
You may also click the Browse button to browse the repository and find the desired branch. If you have
previously merged from this branch, then you can simply use the drop down menu, which displays a history of
previously used URLs.

Note: If the URL belongs to a different repository than the working copy, the Ignore ancestry / Disable merge
tracking option (in the Merge Options wizard page) will be selected automatically (and you cannot change
this). This is because the Subversion client cannot track changes between different repositories.

Tip: You can also specify a peg revision at the end of the URL (for example, URL@rev1234). The peg revision
does not affect the merge range you select. By default, the HEAD revision is assumed.

6. In the Revisions to merge section, choose between the all revisions and specific revision(s) options.

• all revisions - The operation will include all eligible revisions that were not yet merged.
• specific revision(s) - You can specify one or more individual revisions and/or revision ranges. Also, you

can mix forward ranges (for example, 1-5), backward ranges (for example, 20-15), and subtract specific
revisions from a range (for example, 1-5, -3).

Note: If using the Subversion command-line client, a revision range of the form 1-5 means all changes
starting from revision 2 up to revision 5 (the changes necessary to reach revision 5, committed after revision
1). Unlike the Subversion command-line client, in Syncro SVN Client the revision ranges are inclusive, meaning
that it will process all revisions, starting with revision 1, up to and including revision 5.

Attention: The HEAD revision is the only non-numerical revision allowed, and it can only be used when
specifying revision ranges as one of the ends of the range (for example, 10-HEAD). Be careful when
using it, as it might not refer to the desired revision, if it has recently been committed by another user.

Tip: If you want to perform a reverse merge and roll-back your working copy changes that have already been
committed to the repository, use the negative revisions notation (for example, -7) or backward revision ranges
(for example, 20-10).

a) If you press the History button, the History dialog box is displayed, which allows you to select one or more
revisions to be merged.

7. Optionally, if you want to configure the options for your merge, press the Next button.
The Merge Options wizard page is displayed that allows you to configure options for the operation.

Tools 1071

Warning: If the Ignore ancestry / Disable merge tracking option is selected and you chose all
revisions in the Revisions to merge section, revisions that were previously merged will also be
included, which may result in conflicts.

8. Press the Merge button.
The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged
in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it
meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts after
making major changes.

Note: The merge result is only in your local working copy and needs to be committed to the repository for it to be
available to others.

Synchronize a Branch

While working on your own branch, other people on your team might continue to make important changes in the
parent branch (which can be the trunk itself or any other branch). It is recommended to periodically duplicate
those changes in your branch to make sure your changes are compatible with them. This is done by performing a
synchronize merge, which will bring your branch up-to-date with any changes made to its ancestral parent branch
since your branch was last created or synchronized. Subversion is aware of the history of your branch and can
detect when it split away from the parent branch.

Frequently keeping your branch in sync with the parent branch helps you to prevent unexpected conflicts when
the time comes for you to duplicate your changes back into the parent branch. The synchronization uses merge
tracking to skip all those revisions that have already been merged, thus a sync merge can be repeated periodically
to fetch all the latest changes of the parent branch to keep up-to-date with it.

Important: It is recommended to synchronize the whole working copy that was created from the child branch (the
root of the working copy), rather than just a part of it.

After running the synchronize merge, your working copy from the child branch now contains new local
modifications, and these edits are duplications of all of the changes that have happened on the trunk since you
first created your branch. At this point, your private branch is now synchronized with the trunk.

To synchronize your branch with its parent branch, follow these steps:

1. Go to Tools > Merge.
The Merge wizard is opened.

2. Select the Synchronize branch option.
3. It is recommended that you select the Perform pre-merge best practices checks of the working copy target

option to make sure that the working copy target item is ready for the merge operation.
a) Press the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected, the Pre-
Merge Checks wizard page is displayed.

Note: If errors are found you need to solve them before proceeding.
4. Press the Next button.

The Synchronize branch wizard page is displayed.
5. In the Parent branch (URL) text box, enter the URL of the branch from which you created your branch. This

means that the URL must belong to the same repository as your working copy that was created from the child
branch.
You may also click the Browse button to browse the repository and find the desired branch. If you have
previously merged from this branch, then you can simply use the drop down menu, which displays a history of
previously used URLs.

Tip: You can also specify a peg revision at the end of the URL (for example, URL@rev1234). The peg revision
specifies both the peg revision of the URL and the latest revision that will be considered for merging. By
default, the HEAD revision is assumed.

6. Optionally, if you want to configure the options for your merge, press the Next button.

Tools 1072

The Merge Options wizard page is displayed that allows you to configure options for the operation.

Note: The Ignore ancestry / Disable merge tracking option is not available for this merge type, since a
synchronization merge should always be recorded in the destination branch.

7. Press the Merge button.
The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged
in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it
meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts after
making major changes.

Note: The merge result is only in your local working copy and needs to be committed to the repository for it to be
available to others.

Reintegrate a Branch

There are some conditions that apply to reintegrate a branch:

• The server must support merge tracking.
• The source branch (to be reintegrated) must be coherently synchronized with its parent branch. This means

that all revisions between the branching point and the last revision merged from the parent branch to the child
branch must be merged to the latter one (there must be no missing revisions in-between).

• The working copy must not contain the following:

• Local modifications.
• A mixture of revisions (all items must point to the same revision).
• Sparse directories (all directories must be of infinity depth).
• Switched items.

• The revision of the working copy must be greater than or equal to the last revision of the parent branch with
which the child branch was synchronized.

Tip: You can use the pre-merge checks option to make sure these conditions are fulfilled.

This method is useful when you have a feature branch on which the development has concluded and it should
be merged back into its parent branch. Since you have kept the feature branch synchronized with its parent, the
latest versions of them will be absolutely identical except for your feature branch changes. These changes can be
reintegrated into the parent branch by using a working copy of it and the Reintegrate a branch option.

This method uses the merge-tracking features of Apache Subversion™ to automatically calculate the correct
revision ranges and to perform additional checks that will ensure that the branch to be reintegrated has been fully
updated with its parent changes. This ensures that you do not accidentally undo work that others have committed
to the parent branch since the last time you synchronized the child branch with it. After the merge, all branch
development will be completely merged back into the parent branch, and the child branch will be redundant and
can be deleted from the repository.

Tip: Before reintegrating the child branch it is recommended to synchronize it with its parent branch one more
time, to help avoid any possible conflicts.

To reintegrate a child branch into its parent branch, follow these steps:

1. Go to menu Tools > Merge.
The Merge wizard is opened.

2. Select the Reintegrate a branch option.

Note: This option is not available if the selected working copy item (or if it is a directory, any of the items
inside of it) has any type of modification. This is because it is mandatory for the target item to have no
modifications.

3. It is recommended that you select the Perform pre-merge best practices checks of the working copy target
option to make sure that the working copy target item is ready for the merge operation.
a) Press the Next button.

Tools 1073

If the Perform pre-merge best practices checks of the working copy target option is selected, the Pre-
Merge Checks wizard page is displayed.

Note: If errors are found you need to solve them before proceeding.
4. Press the Next button.

The Reintegrate a branch wizard page is displayed.
5. In the Child branch (URL) text box, enter the URL of the child branch to be reintegrated. This means that the

URL must belong to the same repository as your working copy that was created from the parent branch.
You may also click the Browse button to browse the repository and find the desired branch. If you have
previously merged from this branch, then you can simply use the drop down menu, which displays a history of
previously used URLs.

Tip: You can also specify a peg revision at the end of the URL (for example, URL@rev1234). The peg revision
specifies both the peg revision of the URL and the latest revision that will be considered for merging. By
default, the HEAD revision is assumed.

The Merge Options wizard page is displayed that allows you to configure options for the operation.

Note: Since a reintegrate merge is so specialized, most of the merge options are not available, except for
those in the File Comparison category.

6. Press the Merge button.
The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged
in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it
meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts after
making major changes.

Note: The merge result is only in your local working copy and needs to be committed to the repository for it to be
available to others.

Merge Two Different Trees

This merge type is useful when you need to duplicate changes from one child branch (for example, CB1) to
another child branch (CB2) from the same parent branch. The SVN client will calculate the changes necessary
to get from the HEAD revision of the parent branch (or the trunk) to the HEAD revision of one of its child branches
(CB1), and apply those changes to your working copy of the other branch (CB2). The result is that the latter child
branch (CB2) will also include the changes made on the original child branch (CB1), although that branch was not
reintegrated into the parent branch.

This merge type could also be used to reintegrate a child branch back into its parent when the repository does not
support merge tracking.

Note: If the server does not support merge-tracking, then this is the only way to merge a branch back to its
parent.

1. Go to menu Tools > Merge.
The Merge wizard is opened.

2. Select the option Merge two different trees.
3. It is recommended that you select the Perform pre-merge best practices checks of the working copy target

option to make sure that the working copy target item is ready for the merge operation.
a) Press the Next button.

If the Perform pre-merge best practices checks of the working copy target option is selected, the Pre-
Merge Checks wizard page is displayed.

Note: If errors are found you need to solve them before proceeding.
4. Press the Next button.

The Merge two different trees wizard page is displayed.
5. In the From (starting URL and revision) section enter the URL of the first branch.

Tools 1074

You may also click the Browse button to browse the repository and find the desired branch. If you have
previously merged from this branch, then you can simply use the drop down menu, which displays a history of
previously used URLs.

Tip: If you are using this method to merge a feature branch back to its parent branch, you need to start the
merge wizard from within a working copy of the parent. In this field enter the full URL of the parent branch.
This may sound wrong, but remember that the parent is the starting point to which you want to add the branch
changes.

Note: If the URL belongs to a different repository than the working copy, the Ignore ancestry / Disable merge
tracking option (in the Merge Options wizard page) will be selected automatically (and you cannot change
this). This is because the Subversion client cannot track changes between different repositories.

Tip: You can also specify a peg revision at the end of the URL (for example, URL@rev1234). By default, the
HEAD revision is assumed.

6. Enter the last revision number at which the two trees were synchronized by choosing between HEAD revision
and other revision.

• HEAD revision - Use this option if you are sure that no one else has committed changes since the last
synchronization.

• other revision - Use this option to input a specific revision number and avoid losing recent commits. You
can use the History button to see a list of all revisions.

7. In the To (ending URL and revision) section enter the URL of the second branch.
You may also click the Browse button to browse the repository and find the desired branch. If you have
previously merged from this branch, then you can simply use the drop down menu, which displays a history of
previously used URLs.

Tip: If you are using this method to merge a feature branch back to its parent branch, enter the URL of the
feature branch. This way, only the changes unique to this branch will be merged, since the branch should have
been periodically synchronized with its parent.

Attention: The URL must point to the same repository as the one in the From (starting URL and
revision) field. Otherwise, the operation will not be allowed, since Subversion cannot compute changes
between items from different repositories.

Tip: You can also specify a peg revision at the end of the URL (for example, URL@rev1234). By default, the
HEAD revision is assumed.

8. Select a revision to compute all changes committed up to that point by choosing between HEAD revision and
other revision.

• HEAD revision - This is the default selected revision.
• other revision - Use this option if you want to enter a previous revision. You can use the History button to

see a list of all revisions.
9. Optionally, if you want to configure the options for your merge, press the Next button.

The Merge Options wizard page is displayed that allows you to configure options for the operation.

Warning: If the Ignore ancestry / Disable merge tracking option is selected and you chose all
revisions in the Revisions to merge section, revisions that were previously merged will also be
included, which may result in conflicts.

10.Press the Merge button.
The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged
in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it
meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts after
making major changes.

Note: The merge result is only in your local working copy and needs to be committed to the repository for it to be
available to others.

Tools 1075

Merge Options

Here is the list of options that can be used when merging:

Figure 497: Merge Wizard - Advanced Options

• Depth (This option is applicable only for directories) - sets the depth of the merge operation. You can specify
how far down into your working copy the merge should go by selecting one of the following values:

• Current depth - Obeys the depths registered for the directories in the working copy that are to be switched.
• Recursive (infinity) - Merges all the files and folders contained in the selected folder. This is the

recommended depth for most users, to avoid incomplete merges and subtree mergeinfo.
• Immediate children (immediates) - Merges only the child files and folders without recursing subfolders.
• File children only (files) - Merges only the child files.
• This folder only (empty) - Merges only the selected folder (no child files or folders are included).

Note: The depth term is described in the Sparse checkouts section. The default depth is the current depth of
the working copy item receiving the merge.

• Ignore ancestry / Disable merge tracking - Changes the way two items are merged if they do not share a
common ancestry. Most merges involve comparing items that are ancestrally related to one another. However,
occasionally you may want to merge unrelated items. If this option is not selected, the first item will be
replaced with the second item. In these situations, you would want the merge to do a path-based comparison
only, ignoring any relations between the items. For example, if two different files have the same name and are
in the same relative location, deselecting the option replaces one of the files with the other one, and selecting
it merges their contents.

Note: If the URL of the merge source belongs to a different repository than the URL of the target working copy
item (the one receiving the changes), this option is selected automatically (and you cannot change this). This
is because the Subversion client cannot track changes between different repositories.

• Force deletion of modified or non-versioned items, if necessary - If not selected, when the merge operation
involves deleting locally modified or non-versioned items, it will fail. This is done to prevent data loss. This
option is only available if there are uncommitted changes in the working copy.

• Only record the merge (block revisions from getting merged) - Available when the Ignore ancestry / Disable
merge tracking option is not selected. It enables a special mode of the merge operation that just records it in
the local merge tracking information, without actually performing it (does not modify any file contents or the
structure of your working copy). You might want to select this option for two possible reasons:

Tools 1076

• You made (or will make) the merge manually, and therefore need to mark the revisions as being merged to
make the merge tracking system aware of them. This will exclude them from future merges.

• You want to prevent one or more particular changes from being fetched in subsequent merges.
• Ignore line endings - Allows you to specify how the line ending changes should be handled. By default, all such

changes are treated as real content changes, but you can ignore them if you select this option.
• Ignore whitespaces - Allows you to specify how the whitespace changes should be handled. By default, all

such changes are treated as real content changes, but you can ignore them if you select this option.

• Ignore whitespace changes - Ignores changes in the amount of whitespaces or to their type (for example,
when changing the indentation or changing tabs to spaces).

Note: Whitespaces that were added where there were none before, or that were removed, are still
considered to be changes.

• Ignore all whitespaces - Ignores all types of whitespace changes.
• Test merge - Performs a dry run of the merge operation, allowing you to preview it without actually performing

the merge. In the Console view you will see a list of the working copy items that will be affected and how they
will be affected. This is helpful in detecting whether or not a merge will be successful, and where conflicts
may occur.

Resolving Merge Conflicts

After the merge operation is finished, it is possible to have some items in conflict. This means that some
incoming modifications for an item could not be merged with the current working copy version. If there are such
conflicts, the Merge conflicts dialog box will appear, presenting the items that are in conflict. This dialog box
offers you choices for resolving the conflicts.

Figure 498: Merge Conflicts Dialog Box

The options to resolve a conflict are as follows:

• Resolve later - Used for leaving the conflict as it is, to manually resolve it later.
• Keep incoming - This option keeps all the incoming modifications and discards all current ones from your

working copy.
• Keep outgoing - This option keeps all current modifications from your working copy and discards all incoming

ones.
• Mark resolved - You should choose this option after you have manually solved the conflict, to instruct the

Subversion that it was resolved. To do this, use the Edit conflict button, which displays a dialog box that
presents the contents of the conflicting items (the content of the working copy version versus the incoming
version).

Tools 1077

Additional Notes About the Merge Operation

Sub-tree Merges

It is recommended to perform a merge on the whole working copy (select its root directory when triggering the
operation) to avoid sub-tree mergeinfo. Sub-tree mergeinfo is the mergeinfo recorded to describe a sub-tree merge.
That is, a merge done directly to a child of a branch root that might be needed in certain situations. There is
nothing special about sub-tree merges or sub-tree mergeinfo except that the complete record of merges to a
branch may not be contained solely in the mergeinfo on the branch root and you may have to look to any sub-tree
mergeinfo to get a full accounting. Fortunately, Subversion does this for you and rarely will you need to look for it.

Merging from Foreign Repositories

Subversion supports merging from foreign repositories. While all merge source URLs must point to the same
repository, the merge target (from the working copy) may come from a different repository than the source.
However, copies made in the merge source will be transformed into plain additions in the merge target. Also,
merge-tracking is not supported for merges from foreign repositories.

Note: When performing merges from repositories other than the one corresponding to the target item (from
the working copy), the Ignore ancestry / Disable merge tracking option in the Merge Options wizard page will be
selected automatically (and you cannot change this).

General Merge Recommendations

As a recommendation, you should only merge into clean working copies that do not contain any of the following:

• Modifications.
• Sparse directories (all directories must be of depth infinity).
• Switched items.

Important: This recommendation becomes mandatory when performing a reintegrate merge operation. Also,
trying to merge to mixed-revision working copies will fail in all types of merge operations.

Remember: The merge result is only in your local working copy and needs to be committed to the repository for it
to be available to others.

Switch the Repository Location

The Switch action is useful when the repository location of a working copy, or an already committed item in the
working copy, must be changed within the same repository. The action is available on the Tools menu when a
versioned resource is selected in the current working copy that is displayed in the Working Copy view.

Note: External items cannot be switched using this action. Instead, change the value of the svn:externals
property set on the parent directory of the external item and update the parent directory.

Tools 1078

Figure 499: Switch Dialog Box

The following options can be configured in the Switch dialog box:

Switch to URL
The new location in the same repository you are switching to.

Tip: You can switch to items that were deleted, moved, or replaced, by specifying the original URL (before the
item was removed) and use a peg revision at the end (for example, URL@rev1234).

Note: For items that are already switched that you want to switch back, the proposed URL is the original
location of the item.

Revision
The specific version of the location that you are switching to.

Depth - (This option is applicable only for directories)

Current depth
Obeys the depths registered for the directories in the working copy that are to be switched.

Recursive (infinity)
Switches the location of the selected folder and all of its files and folders.

Immediate children (immediates)
Switches the location of the selected folder and its child files and folders without recursing subfolders.

File children only (files)
Switches the location of the selected folder and its child files.

This folder only (empty)
Switches the location of the selected folder (no child files or folders are included).

Ignore "svn:externals" definitions
When selected, external items are ignored in the switch operation. This option is only available if you choose
the Current depth or Recursive (infinity) depth.

Change the working copy item to the specified depth
Changes the sticky depth on the directory in the working copy.

Ignore ancestry
When not selected, the SVN system does not allow you to switch to a location that does not share a common
ancestry with the current location. If selected, the SVN does not check for a common ancestry.

Tools 1079

Relocate a Working Copy

Sometimes the base URL of the repository is changed after a working copy is checked out from that URL. For
example, if the repository itself is moved to a different server. In such cases, you do not have to check out a
working copy from the new repository location. It is easier to change the base URL of the root folder of the
working copy to the new URL of the repository.

Note: Peg revisions have no effect for this operation.

This Relocate action is available in the Tools menu when selecting the root item of the working copy.

Note: External items that are defined using absolute URLs and that point to the same repository as the working
copy are not affected by the Relocate action (the URL is not updated). To relocate these items, change the value
of the svn:externals property for each external item (set on their parent directories). For example, if an
external item is defined as externalDir http://host/path/to/repo/to/dir and the repository was
moved to another server (host2) and its protocol changed to https, then the value of the property needs to be
updated to externalDir https://host2/path/to/repo/to/dir.

Tip: If you edit external items using the method described in the previous note, on the next update the system will
try to fetch the external items again. To avoid this, you can invoke the Relocate action on each of these external
items.

Patches

This section explains how to work with patches in Syncro SVN Client.

What is a Patch

Suppose you are working with a set of XML files that you want to tag the project and distribute releases to other
team members. While working on the project and correcting problems, you may need to distribute the corrections
to other team members. In this case, you can distribute a patch (a collection of differences) that would correct
the problems when applied over the last distribution. By default, the Syncro SVN Client generates patches in the
Unified Diff format, but it can also use the Git format.

Creating a patch in Apache Subversion™ implies the access to either two revisions of a versioned item, or two
different versioned items from the repository:

• Two revisions of a version item - the item can be local or remote and you can select two versions of it. This
also applies when you need to generate a patch that only contains the changes in the working copy that were
not yet committed.

• Two different versioned items from the repository - the items are remote and you need to specify a revision for
both.

Warning: The resulting patch file may contain content that was written using a mix of encodings, based
upon the encodings of the files that were compared. If you open the generated patch file in a text editor, it
may result in unrecognizable content.

Generating a Patch - Local Items

Based on a versioned item (already committed or scheduled for addition) in the working copy, you can generate
patches that contain the local changes, the differences between a specific revision of that item and the item
itself, or differences between the pristine item and another item from the repository. There are four options for
generating a patch based upon local items.

To open the Create patch wizard, use the Create patch action from the Tools menu or from the contextual
menu in the Modified, Incoming, Outgoing, or Conflicts modes.

Tools 1080

http://en.wikipedia.org/wiki/Diff#Unified_format
http://en.wikipedia.org/wiki/Diff#Unified_format

Figure 500: Create Patch Wizard - Local Items

Create Patch from Local Modifications
This is the most commonly used type of patch and contains only the local changes for the selected item.

This option is useful if you want to share changes with other team members and you are not yet ready to commit
them. This option is only available for local items that contain modifications. It is not available for items in which
the local file status is unversioned or ignored, and in some cases missing or obstructed.

The steps are as follows:

1. Go to menu Tools > Create patch.
This opens the Create patch wizard.

2. Select the Create patch from local modifications option in the dialog box.
3. Optionally, if you want to configure the options for your patch, press the Next button.

This options page does not remember your selections when creating future patches. It will revert to the default
values.
The Options wizard page is displayed.

4. Press the Create patch button.
If the patch is applied on a folder of the working copy and that folder contains unversioned files, this step of
the wizard offers the option of selecting the ones that will be included in the patch.

Tools 1081

Figure 501: Create Patch Dialog Box - Add Unversioned Resources

The patch is created and stored in the path specified in the Output section of the Options page or in the default
location.

Create Patch Against a Specific Revision
This type of patch contains changes between an old revision and the current content from the selected item
within the working copy.

This option is useful if you want to obtain differences between an older revision and the current state of the
working copy (for instance, to test how current changes apply to an older version).

The steps are as follows:

1. Go to menu Tools > Create patch.
This opens the Create patch wizard.

2. Select the Create patch against a specific revision option in the dialog box.
3. Press the Next button.

The second step of the wizard is opened:

Tools 1082

Figure 502: Create Patch Wizard - Step 2
4. Select the revision to create patch against.

You can select between the HEAD revision and a specific revision number. For the other revision option, you
can press the History button to display a list of the item revisions.

Note: If the revision to create patch against is older than the revision for which the working copy item was
updated, the patch will include changes that were made after the selected revision.

5. Optionally, if you want to configure the options for your patch, press the Next button.
This options page does not remember your selections when creating future patches. It will revert to the default
values.
The Options wizard page is displayed.

6. Press the Create patch button.
The patch is created and stored in the path specified in the Output section of the Options page or in the default
location.

Create Patch Between Two Revisions of an Item
This type of patch contains historical changes between two revisions of a selected item.

This option is useful if you want to share changes between two revisions with other team members.

Tip: If you need to generate a patch between two revisions of a previously deleted, moved, or replaced item, you
should use the Create patch between two repository items option instead.

The steps are as follows:

1. Go to menu Tools > Create patch.
This opens the Create patch wizard.

2. Select the Create patch between two revisions of an item option in the dialog box.
3. Press the Next button.

The second step of the wizard is opened:

Tools 1083

Figure 503: Create Patch Wizard - Step 2
4. Select the starting and ending revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision option, you
can press the History button to display a list of the item revisions.

Note: The patch will only include changes between the two specified revisions, starting with the changes that
were made after the older revision.

Tip: If you want to reverse changes done between two revisions by using a patch file, you can specify the
newer revision in the From section and the older version in the To section.

5. Optionally, if you want to configure the options for your patch, press the Next button.
This options page does not remember your selections when creating future patches. It will revert to the default
values.
The Options wizard page is displayed.

6. Press the Create patch button.
The patch is created and stored in the path specified in the Output section of the Options page or in the default
location.

Create Patch Between Two Repository Items
This type of patch contains changes between one version of an item and a specific version of another item.

This option is useful for generating a patch that contains changes between existing, or even previously deleted,
moved, or replaced items from different branches. This is the default option when you do not have a working
copy loaded, when no repository items are selected, or when exactly two repository items of the same kind are
selected.

Tip: To access an item that was deleted, moved, or replaced, you need to specify the original URL (before the
item was removed) and use a peg revision at the end (for example, URL@rev1234).

The steps are as follows:

1. Go to menu Tools > Create patch.
This opens the Create patch wizard.

2. Select the Create patch between two repository items option in the dialog box.
3. Press the Next button.

The second step of the wizard is opened:

Tools 1084

Figure 504: Create Patch Wizard - Step 2
4. Select the starting and ending URLs and revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision option, you
can press the History button to display a list of the item revisions.

Important: Both URLs must point to items from the same repository.

Note: If you use a peg revision in the URL field, anything specified in the other revision field is ignored.
5. Optionally, if you want to configure the options for your patch, press the Next button.

This options page does not remember your selections when creating future patches. It will revert to the default
values.
The Options wizard page is displayed.

6. Press the Create patch button.
The patch is created and stored in the path specified in the Output section of the Options page or in the default
location.

Generating a Patch - Remote Items

Based on a repository item, you can generate patches that contain the differences between two specific revisions
of that item, or between a revision of that same item and another revision of another item from the repository.
There are two options for generating a patch based upon remote items.

To open the Create patch wizard, use the Create patch action from the Tools menu.

Tools 1085

Figure 505: Create Patch Wizard - Remote Items

Create Patch Between Two Revisions of an Item
This type of patch contains historical changes between two revisions of a selected item.

This option is useful if you want to share changes between two revisions with other team members.

Tip: If you need to generate a patch between two revisions of a previously deleted, moved, or replaced item, you
should use the Create patch between two repository items option instead.

The steps are as follows:

1. Go to menu Tools > Create patch.
This opens the Create patch wizard.

2. Select the Create patch between two revisions of an item option in the dialog box.
3. Press the Next button.

The second step of the wizard is opened:

Figure 506: Create Patch Wizard - Step 2
4. Select the starting and ending revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision option, you
can press the History button to display a list of the item revisions.

Note: The patch will only include changes between the two specified revisions, starting with the changes that
were made after the older revision.

Tip: If you want to reverse changes done between two revisions by using a patch file, you can specify the
newer revision in the From section and the older version in the To section.

5. Optionally, if you want to configure the options for your patch, press the Next button.
This options page does not remember your selections when creating future patches. It will revert to the default
values.

Tools 1086

The Options wizard page is displayed.
6. Press the Create patch button.

The patch is created and stored in the path specified in the Output section of the Options page or in the default
location.

Create Patch Between Two Repository Items
This type of patch contains changes between one version of an item and a specific version of another item.

This option is useful for generating a patch that contains changes between existing, or even previously deleted,
moved, or replaced items from different branches. This is the default option when you do not have a working
copy loaded, when no repository items are selected, or when exactly two repository items of the same kind are
selected.

Tip: To access an item that was deleted, moved, or replaced, you need to specify the original URL (before the
item was removed) and use a peg revision at the end (for example, URL@rev1234).

The steps are as follows:

1. Go to menu Tools > Create patch.
This opens the Create patch wizard.

2. Select the Create patch between two repository items option in the dialog box.
3. Press the Next button.

The second step of the wizard is opened:

Figure 507: Create Patch Wizard - Step 2
4. Select the starting and ending URLs and revisions in the From and To sections.

You can select between the HEAD revision and a specific revision number. For the other revision option, you
can press the History button to display a list of the item revisions.

Important: Both URLs must point to items from the same repository.

Note: If you use a peg revision in the URL field, anything specified in the other revision field is ignored.
5. Optionally, if you want to configure the options for your patch, press the Next button.

This options page does not remember your selections when creating future patches. It will revert to the default
values.
The Options wizard page is displayed.

Tools 1087

6. Press the Create patch button.
The patch is created and stored in the path specified in the Output section of the Options page or in the default
location.

Patch Options

Figure 508: Create Patch Wizard - Options

Patch Section

Depth - (This option is applicable only for directories)

Current depth
The depth of recursing the folder for creating the patch is the same as the depth of that same folder in the
working copy (available only when generating patches that contain changes from the working copy).

Recursive (infinity)
The patch is created on all the files and folders contained in the selected folder.

Immediate children (immediates)
The patch is created only on the child files and folders without recursing subfolders.

File children only (files)
The patch is created only on the child files.

This folder only (empty)
The patch is created only on the selected folder (no child file or folder is included in the patch).

Ignore content of added files
When selected, the patch file does not include the content of the added items. This option corresponds to the
--no-diff-added option of the svn diff command.

Tools 1088

Ignore content of delete files
When selected, the patch file does not include the content of the deleted items. This option corresponds to
the --no-diff-deleted option of the svn diff command.

Treat copied files as newly added
When selected, copied items are treated as new, rather than comparing the items with their sources. This
option corresponds to the --show-copies-as-adds option of the svn diff command.

Include files having a binary MIME type
When selected, the application is forced to compare items that are considered binary file types. This option
corresponds to the --force option of the svn diff command.

Ignore properties
When selected, differences in the properties of items are ignored. This option corresponds to the --ignore-
properties option of the svn diff command.

Properties only
When selected, only differences in the properties of the items are included in the patch file (file content is
ignored). This option corresponds to the --properties-only option of the svn diff command.

Note: The Ignore properties and Properties only options are mutually exclusive.

Notice ancestry
If selected, the SVN common ancestry is taken into consideration when calculating the differences. This
option corresponds to the --notice-ancestry option of the svn diff command.

Files Comparison Section

Ignore line endings
If selected, the differences in line endings are ignored when the patch is generated. This option corresponds
to the --ignore-eol-style option of the svn diff command.

Ignore whitespaces
If selected, it allows you to specify how the whitespace changes should be handled. When selected, you can
then choose between two options:

• Ignore whitespace changes (--ignore-space-change) - Ignores changes in the amount of
whitespaces or to their type (for example, when changing the indentation or changing tabs to spaces).

Note: Whitespaces that were added where there were none before, or that were removed, are still
considered to be changes.

• Ignore all whitespaces (--ignore-all-space) - Ignores all types of whitespace changes.

Output Section

Save as
The patch will be created and saved in the specified file.

Use Git extended diff format
When selected, the patch is generated using the Git format. This option corresponds to the --git option of
the svn diff command.

Working with Repositories

This section explains how to locate and browse SVN repositories in Syncro SVN Client.

Importing Resources Into a Repository

Importing resources into a repository is the process of copying local files and directories into a repository so that
they can be managed by an Apache Subversion™ server. If you have already been using Subversion and you have
an existing working copy you want to use, then you will likely want to follow the procedure for using an existing
working copy.

Tools 1089

The Import folder and Import Files actions are available from the Import submenu of the Repository menu or
of the contextual menu in the Repositories view. These actions open a dialog box that allow you to select the
directories or files that will be imported into the selected repository location.

The Import folder action opens the Import folder dialog box.

Figure 509: Import Folder Dialog Box

You can configure the following options:
Folder

Specify the local folder by using the text box or the Browse button. This folder should not be empty or already
under version control.

Important: By default, the SVN system only imports the content of the specified folder, and not the folder
itself. Therefore, it is recommended to use the Browse button to select the local folder so that the client will
automatically append the name of it to the specified URL.

URL
Specify the repository location that will be used to access the folder to be imported.

Note: Peg revisions have no effect for this operation since it is used to send information to the repository.

Attention: If the new location already exists, make sure that it is an empty directory to avoid mixing
your project content with other files (if items exist with the same name, an error will occur and the
operation will not proceed). Otherwise, if the address does not exist, it is created automatically.

Depth

Recursive (infinity)
Imports all the files and folders contained in the selected folder.

Immediate children (immediates)
Imports only the child files and folders without recursing subfolders.

File children only (files)
Imports only the child files.

This folder only (empty)
Imports only the selected folder (no child file or folder is included).

Share files matching global ignore patterns
When selected, the file names that match the patterns defined in either of the following locations are also
imported into the repository:

• The global-ignores property in the SVN configuration file.
• The File name ignore patterns option in the SVN > Working Copy preferences page.

Enable automatic properties/Disable automatic properties
Enables or disables automatic property assignment (per runtime configuration rules), overriding the enable-
auto-props runtime configuration directive, defined in the SVN configuration file.

Tools 1090

Note: This option is available only when there are defined properties to be applied automatically for newly
added items under version control. You can define these properties in the SVN config file (in the auto-
props section). Based on the value of the enable-auto-props runtime configuration directive, the
presented option is either Enable automatic properties, or Disable automatic properties.

Exporting Resources From a Repository

This is the process of taking a resource from the repository and saving it locally in a clean form, with no version
control information. This is very useful when you need a clean build for an installation kit.

The Export dialog box is similar to the Check out dialog box:

Figure 510: Export from Repository Dialog Box

You can configure the following options:

URL
Specify the source directory from the repository by using the text box or the Browse button.

Tip: To export an item that was deleted, moved, or replaced, you need to specify the original URL (before the
item was removed) and use a peg revision at the end (for example, URL@rev1234).

Note: The content of the selected directory from the repository and not the directory itself will be exported to
the file system.

Revision
You can choose between the HEAD or Other revision. If you need to export a specific revision, specify it in the
Other text box or use the History button and choose a revision from the History dialog box.

Export to
Specify the location where you want to export the repository directory by typing the local path in the text
box or by using the Browse button. If the specified local path does not point to an existing directory, it will
automatically be created.

Important: By default, the SVN system only exports the content of the directory specified by the URL, and
not the directory itself. Therefore, it is recommended to use the Browse button to select the export location
so that the client will automatically append the name of the remote directory to the path of the selected
directory.

Warning: The destination directory should be empty. If files exist, they will be overwritten by exported
files with matching names.

Depth

Recursive (infinity)
Exports all the files and folders contained in the selected folder.

Tools 1091

Immediate children (immediates)
Exports only the child files and folders without recursing subfolders.

File children only (files)
Exports only the child files.

This folder only (empty)
Exports only the selected folder (no child file or folder is included).

Ignore "svn:externals" definitions
When selected, external items are ignored in the export operation. This option is only available if you choose
the Recursive (infinity) depth.

EOL style
Defines the end-of-line (EOL) marker that should be used when exporting files that have the value or the
svn:eol-style property set to native. You can choose between the following styles:

• Default - It uses the system-specific end-of-line marker.
• CRLF - The Windows-specific end-of-line marker (carriage return - line feed).
• LF - The Unix / OS X-specific end-of-line marker (line feed).
• CR - The Mac OS 9 (or older)-specific end-of-line marker (carriage return).

Ignore keywords
When selected, the export operation does not expand the SVN keywords found inside the files.

Copy / Move / Delete Resources From a Repository

Once you have a location defined in the Repositories view, you can run commands (such as copy, move, and
delete) directly on the repository. The commands correspond to the following actions in the contextual menu:

The Copy to and Move to action allows you to copy and move individual or multiple resources to a specific
directory from the HEAD revision of the repository.

Figure 511: Copy/Move Items in Repository

Tools 1092

The dialog box used to copy or move items allows you to browse the HEAD revision of the repository and select
the destination of the items, presenting its repository URL below the tree view.

The Source section presents relevant options regarding the item(s) that you move or copy:

• URL - This field is displayed only if you copy/move a single item.
• Revision - Presents the revision from which you copy one or more items, allowing you to also choose another

revision.

Note: Since only items from the HEAD revision can be moved, the Revision options are not presented for the
Move to action.

Note: When you copy a single item while browsing a revision other than HEAD, the Revision options present
this revision but does not allow you to change it. The same applies if copying multiple items.

• New name - This option is presented when you copy or move a single item, allowing you to also rename it.

Another useful action is Delete, allowing you to erase resources directly from the repository.

All three actions are commit operations and you will be prompted with the Commit message dialog box.

Sparse Checkout

Sometimes you only need to check out certain parts of a directory tree. In this case, you can check out the top
directory (using theCheck out action from the Repositories view) and then recursively update only the needed
directories (using the Update action from the Working Copy view). Each directory then has a depth set to it, with
four possible values:

• Recursive (infinity) - Updates all descendant directories and files recursively.
• Immediate children (immediates) - Updates the directory, including direct child directories and files, but does

not populate the child directories.
• File children only (files) - Updates the directory, including only child files without the child directories.
• This folder only (empty) - Updates only the selected directory, without updating any children.

For some operations, you can use as depth the current depth registered on the directories from the working copy
(the value Current depth). This is the depth value defined in a previous check out or update operation.

The sparse checked out directories are presented in the Working Copy view with a marker corresponding to each
depth value, in the top left corner, as follows:

• Recursive (infinity) - This is the default value and it is has no mark. The directory has no limiting depth.
• Immediate children (immediates) - The directory is limited to direct child directories (without contents) and

files.
• File children only (files) - The directory is limited to direct child files only.
• This folder only (empty) - The directory has empty depth set.

A depth set on a directory means that some operations process only items within the specified depth range. For
example, Synchronize on a working copy directory reports the repository modified items within the depth set on
the directory and those existing in the working copy outside of this depth.

The depth information is also presented in the SVN Information dialog box and in the tool tip displayed when
hovering a directory in the Working Copy view.

Syncro SVN Client Views
The main working area occupies the center of the application window, which contains the most important views:

• Repositories View
• Working Copy View
• History View
• Console View

The other views that support the main working area are also presented in this section.

Tools 1093

Repositories View

The Repositories view allows you to define and manage Apache Subversion™ repository locations and browse
repositories. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If no connections to your repository are available, you can add a new repository location. Repository files and
folders are presented in a tree view with the repository locations at the first level, where each location represents
a connection to a specific repository. More information about each resource is displayed in a tabular form:

• Date - Date when the resource was last modified.
• Revision - The revision number at the time the resource was last modified.
• Author - Name of the person who made the last modification on the resource.
• Size - Resource size on disk.
• Lock information - Information about the lock status of a file. When a repository file is locked by a user

the icon is displayed in this column. If no icon is displayed the file is not locked. The tooltip of this column
displays the details about the lock:

• Owner - The name of the user who created the lock.
• Date - The date when the user locked the file.
• Expires on - Date when the lock expires. Lock expiry policy is set in the repository options, on the server

side.
• Comment - The message attached when the file was locked.

• Type - Contains the resource type or file extension.

Figure 512: Repositories View

Toolbar

The Repositories view's toolbar contains the following buttons:

Tools 1094

• New Repository Location - Allows you to enter a new repository location by means of the Add SVN
Repository dialog box.

• Move Up - Move the selected repository up one position in the list of repositories in the Repositories view.
• Move Down - Move the selected repository down one position in the list of repositories in the Repositories

view.
• Collapse all - Collapses all repository trees.
• Stop - Stops the current repository browsing operation executed when a repository node is expanded. This

is useful when the operation takes too long or the server is not responding.
• Settings - Allows you to configure the resource table appearance.

Repositories View Contextual Menu Actions

The Repositories view contextual menu contains various actions, depending on the selected item. If a repository
location is selected, the following management actions are available:

New Repository Location (Ctrl + Alt + N (Command + Alt + N on OS X))
Displays the Add SVN Repository dialog box. This dialog box allows you to define a new repository location.

Figure 513: Add SVN Repository Dialog Box

If the Validate repository connection option is selected, the URL connection is validated before being added
to the Repositories view.

Edit Repository Location (Ctrl + Alt + E (Command + Alt + E on OS X))
Context-dependent action that allows you to edit the selected repository location using the Edit SVN
Repository dialog box. It is active only when a repository location root is selected.

Change the Revision to Browse (Ctrl + Alt + B (Command + Alt + B on OS X))
Context-dependent action that allows you to change the selected repository revision using the Change the
Revision to Browse dialog box. It is active only when a repository location root is selected.

Remove Repository Location (Ctrl + Alt + R (Command + Alt + R on OS X))
Allows you to remove the selected repository location from the view. It shows you a confirmation dialog box
before removal. It is active only when a repository location root is selected.

The following actions are common to all repository resources:
Open

Opens the selected file in the Editor view in read-only mode.
Open with

Displays the Open with dialog box to specify the editor in which the selected file is opened. If multiple files are
selected, only external applications can be used to open the files.

Save as
Saves the selected files locally, as they are in the browsed revision.

Refresh (F5)
Refreshes the resource selected in the Repositories view.

Check out (Ctrl + Alt + O (Command + Alt + O on OS X))
Allows you to create a working copy from a repository directory, on your local file system. To read more about
this operation, see the section Check out a working copy.

Tools 1095

Branch/Tag
Allows you to create a branch or a tag from the selected folder in the repository. To read more about how to
create a branch/tag, see the Creation and management of Branches/Tags section.

Share project
Allows you to share a new project using an SVN repository. The local project is automatically converted into
an SVN working copy.

Import:

Import folder (Ctrl + Shift + L (Command + Shift + L on OS X))
Allows you to import the contents of a specified folder from the file system into the selected folder in a
repository. To read more about this operation, see the section Importing resources into a repository.

Note: The difference between the Import folder and Share project actions is that the latter also converts
the selected directory into a working copy.

Import Files (Ctrl + Shift + I (Command + Shift + I on OS X))
Imports the files selected from the files system into the selected folder in the repository.

Export
Opens the Export dialog box that allows you to configure options for exporting a folder from the repository to
the local file system.

Show History (Ctrl + H (Command + T on OS X))
Displays the history of the selected resource. At the start of the operation, you can set filtering options.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))
Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the
Annotations view, along with the history of the file in the History view.

Revision Graph (Ctrl + G (Command + G on OS X))
This action allows you to see the graphical representation of a resource history. For more details about
a resource revision graph see Revision Graph. This operation is available for any resource selected in the
Repositories view or Working Copy view.

Copy URL Location (Ctrl + Alt + U (Command + Alt + U on OS X))
Copies to clipboard the URL location of the selected resource.

Copy to
Copies to a specified location the currently selected resource(s). This action is also available when you
browse other revisions than the latest one (HEAD), to allow restoring previous versions of an item.

Move to (Ctrl + M (Command + M on OS X))
Moves to a specified location the currently selected resource(s).

Rename ((F2))
Renames the selected resource.

Delete ((Delete))
Deletes selected items from the repository via an immediate commit.

New Folder (Ctrl + Shift + F (Command + Shift + F on OS X))
Allows you to create a folder in the selected repository path (available only for folders).

Locking
The following options are available only for files:

Lock (Ctrl + K (Command + K on OS X))
Allows you to lock certain files for which you need exclusive access. For more details on the use of this
action, see Locking a file.

Tools 1096

Unlock (Ctrl + Shift + K (Command + Shift + K on OS X))
Releases the exclusive access to a file from the repository. You can also choose to unlock it by force
(break the lock).

Show SVN Properties (Ctrl + Shift + P (Command + Shift + P on OS X))
Brings up the Properties view displaying the SVN properties for the selected resource. This view does not
allow adding, editing, or removing SVN properties of a repository resource. These operations are allowed only
for working copy resources.

Show SVN Information (Ctrl + I (Command + I on OS X))
Provides additional information for the selected resource. For more details, go to Obtain information for a
resource.

Assistant Actions

When there is no repository configured, the Repositories view mode lists the following two actions:

Figure 514: Repositories View Actions

Drag and Drop Operations

The structure of the files tree can be changed with drag and drop operations inside the Repositories view. These
operations behave in the same way with the Copy to/Move to operations.

Working Copy View

The Working Copy view allows you to manage the content of an SVN working copy. If the view is not displayed, it
can be opened by selecting it from the Window > Show View menu.

The toolbar contains the following:

• The list of defined working copies.
• A set of view modes that allow you to filter the content of the working copy based on the resource status

(such as incoming or outgoing changes).
• Settings menu.

If you click any of the view modes (All Files, Modified, Incoming, Outgoing, Conflicts), the information displayed
changes as follows:

• All Files - Resources (files and folders) are presented in a hierarchical structure with the root of the tree
representing the location of the working copy on the file system. Each resource has an icon representation
that describes the type of resource and also depicts the state of that resource with a small overlay icon.

Tools 1097

Figure 515: Working Copy View - All Files View Mode
• Modified - The resource tree presents resources modified locally (including those with conflicting content)

and remotely. Decorator icons are used to differentiate between various resource states:

• Incoming modification from repository:

•
 - File content or properties modified remotely.

•
 - New file added remotely.

•
 - File deleted remotely.

• Outgoing modification to repository:

•
 - File content or properties modified locally.

•
 - New file added locally.

•
 - File deleted locally.

•
 - Pseudo-conflict state - A resource being locally and remotely modified at the same time, or a parent

directory of such a resource.
• - Real conflict state - A resource that had both incoming and outgoing changes and not all the

differences could be merged automatically through the update operation (manually editing the local file is
necessary for resolving the conflict).

Tools 1098

Figure 516: Working Copy View - Modified View Mode

• Incoming - The resource tree presents only incoming changes.
• Outgoing - The resource tree presents only outgoing changes.
• Conflicts - The resource tree presents only conflicting changes (real conflicts and pseudo-conflicts).

The following columns provide information about the resources:

• Name - Resource name. Resource icons can have the following decorator icons:

• Additional status information:

• Propagated modification marker - A folder marked with this icon indicates that the folder itself
presents some changes (such as modified properties) or a child resource has been modified.

• External - This indicates a mapping of a local directory to the URL of a versioned resource. It is
declared with a svn:externals property in the parent folder and it indicates a working copy not
directly related with the parent working copy that defines it.

• Switched - This indicates a resource that has been switched from the initial repository location to a
new location within the same repository. The resource goes to this state as a result of the Switch action
executed from the contextual menu of the Working Copy view.

•
Grayed - A resource with a grayed-out icon, but no overlaid icon, is an ignored resource. It is obtained

with the Add to svn:ignore action.
• Current SVN depth of a folder:

• Immediate children (immediates) (a variant of sparse checkout) - The directory contains only direct
file and folder children. Child folders ignore their content.

• File children only (files) (a variant of sparse checkout) - The directory contains only direct file
children, disregarding any child folders.

Tools 1099

• This folder only (empty) (a variant of sparse checkout) - The directory discards any child resource.

Note:

• Any folder not marked with one of the depth icons, has recursive depth (infinity) set by default (presents
all levels of child resources).

• Although folders not under version control can have no depth set, Oxygen XML Developer presents
unversioned and ignored folders with empty depth when Show unversioned directories content or Show
ignored directories content options are not selected.

• Local file status - Shows the changes of working copy resources that were not committed to the repository
yet. The following icons are used to mark resource status:

• - Resource is not under version control (unversioned).
• - Resource is being ignored because it is not under version control and its name matches a file name

pattern defined in one of the following places:

• global-ignores section in the SVN client-side config file.

Attention: If you do not explicitly set the global-ignores runtime configuration option (either
to your preferred set of patterns or to an empty string), Subversion uses the default value.

• Application global ignores option of Oxygen XML Developer.
• The value of a svn:ignore property set on the parent folder of the resource being ignored.

• - Marks a newly created resource, scheduled for addition to the version control system.
• - Marks a resource scheduled for addition, created by copying a resource already under version control

and inheriting all its SVN history.
• - The content of the resource has been modified.
• - Resource has been replaced in your working copy (the file was scheduled for deletion, and then a new

file with the same name was scheduled for addition in its place).
• - Resource is deleted (scheduled for deletion from Repository upon the next commit).
• - The resource is incomplete (as a result of an interrupted check out or update operation).
• - The resource is missing because it was moved or deleted without using an SVN-aware application.
• - The contents of the resource is in real conflict state.
• - Resource is in a name conflict state.
• - Resource is in tree conflict state after an update operation because:

• Resource was locally modified and incoming deleted from repository.
• Resource was locally scheduled for deletion and incoming modified.

• - Resource is obstructed (versioned as one kind of object: file, directory, or symbolic link, but has been
replaced outside Syncro SVN Client by a different kind of object).

• Local properties status - Marks the resources that have SVN properties, with the following possible states:

• - The resource has SVN properties set.
• - The resource properties have been modified.
• - Properties for this resource are in real conflict with property updates received from the repository.

• Revision - The current revision number of the resource.
• Date - Date when the resource was last time modified on the disk.
• BASE Revision - The revision number of the pristine version of the resource.
• BASE Date - Date when the pristine version of the resource was last time committed in the repository.
• Author - Name of the person who made the last modification on the pristine version of the resource.
• Remote file status - Shows changes of resources recently modified in the repository. The following icons

are used to mark incoming resource status:

• - Resource is newly added in repository.
• - The content of the resource has been modified in repository.
• - Resource was replaced in repository.

Tools 1100

• - Resource was deleted from repository.
• Remote properties status - Resources marked with the icon have incoming modified properties from the

repository.
• Remote revision - Revision number of the resource latest committed modification.
• Remote date - Date of the resource latest modification committed on the repository.
• Remote author - Name of the author who committed the latest modification on the repository.
• Lock information - Shows the lock state of a resource. The lock mechanism is a convention intended to

help you signal other users that you are working with a particular set of files. It minimizes the time and effort
wasted in solving possible conflicts generated by clashing commits. A lock gives you exclusive rights over a
file, only if other users follow this convention and they do not try to bypass the lock state of a file.

A folder can be locked only by the SVN client application, completely transparent to the user, if an operation in
progress was interrupted unexpectedly. As a result, folders affected by the operation are marked with the
symbol. To clear the locked state of a folder, use the Clean up action.

Note: Users can lock only files.

The following lock states are displayed:

• no lock - the file is not locked. This is the default state of a file in the SVN repository.
• remotely locked () - shown when:

• Another user has locked the file in the repository.
• The file was locked by the same user from another working copy.
• The file was locked from the Repositories view.

If you try to commit a new revision of the file to the repository, the server does not allow you to bypass the
file lock.

Note: To commit a new revision, you need to wait for the file to be unlocked. Ultimately, you might try to
break or steal the lock, but this is not what other users expect. Use these actions carefully, especially when
you are not the file lock owner.

• locked () - displayed after you have locked a file from the current working copy. Now you have exclusive
rights over the corresponding file, being the only one who can commit changes to the file in the repository.

Note: Working copies keep track of their locked files, so the locks are presented between different
sessions of the application. Synchronize your working copy with the repository to make sure that the locks
are still valid (not stolen or broken).

• stolen () - a file already locked from your working copy is being locked by another user. Now the owner
of the file lock is the user who stole the lock from you.

• broken () - a file already locked from your working copy is no longer locked in the repository (it was
unlocked by another user).

Note: To remove the stolen or broken states from your working copy files, you have to Update them.

If one of your working copy files is locked, hover the mouse pointer over the lock icon to see more information:

• Lock type - current file lock state
• Owner - the name of the user who created the lock
• Date - the date when the user locked the file
• Expires on - date when the lock expires. Lock expiry policy is set in the repository options, on the server

side
• Comment - the message attached when the file was locked

• Size - Resource size on disk
• Type - Contains the resource type or file extension

Note: The working copy table allows you to show or hide any of its columns and also to sort its contents by
any of the displayed columns. The table header provides a contextual menu that allows you to customize the
displayed information.

Tools 1101

The toolbar contains the following options for switching to a different working copy:

• List of Defined Working Copies - A drop-down menu that contains all the working copies Oxygen XML
Developer is aware of. When you select a different working copy from the list, the newly selected working copy
content is scanned and displayed in the Working Copy view.

• (on Mac OS X) Working Copies Manager - Opens a dialog box that displays the working copies Oxygen
XML Developer is aware of. In this dialog box, you can add existing working copies or remove those you no
longer need. If you try to add a folder that is not a valid Subversion working copy, Oxygen XML Developer
warns you that the selected directory is not under version control.

Note: Removing a working copy from this dialog box does NOT remove it from your file system; you will have
to do that manually.

Working Copy Settings

The Settings button from the toolbar of the Working Copy view provides the following options:

• Show unversioned directories content - Displays the content of unversioned directories.

Note: If this option is not selected, it will be ignored for items that, after a synchronize, are reported as
incoming from the repository. This applies for all working copy modes, except All Files.

• Show ignored items - Displays the ignored resource when All Files mode is selected.
• Show ignored directories content - Displays the content of ignored directories when All Files mode is

selected.

Note: Although ignored items are not presented in the Modified, Incoming, and Conflicts modes, they will be
if, after a synchronize, they are reported as incoming from the repository.

• Show deleted items - Displays the deleted resource when All Files mode is selected. All other modes always
display deleted resources, disregarding this option.

• Tree / Compressed / Flat - Affect the way information is displayed inside the Modified, Incoming,
Outgoing, and Conflicts view modes.

• Configure columns - Allows you to customize the structure of the Working Copy view data. This action opens
the following dialog box:

Figure 517: Configure Columns of Working Copy View

The order of the columns can be changed with the two arrow buttons. The column size can be edited in the
Width of selected column field. The Restore Defaults button reverts all columns to the default order, width,
and enabled/disabled state from the installation of the application.

Working Copy Format

When an SVN working copy is loaded, Syncro SVN Client first checks the format of the working copy:

Tools 1102

• If the format is older than SVN 1.7, you are prompted to upgrade it to SVN 1.8 to load it.
• If the format is 1.7, Syncro SVN Client takes into account the state of the When loading an old format working

copyoption.

To change how working copy formats are handled, open the Preferences dialog box (Options > Preferences), go to
SVN > Working copy, and configure the options in the Administrative area section.

Note:

• The format of the working copy can be downgraded or upgraded at any time with the Upgrade and Downgrade
actions available in the Tools menu. These actions allow switching between SVN 1.7 and SVN 1.8 working
copy formats.

• SVN 1.7 working copies cannot be downgraded to older formats.

Refresh a Working Copy

A refresh is a frequent operation triggered automatically when you switch between two working copies using
the toolbar selector of the Working Copy view and when you switch between Oxygen XML Developer and other
applications.

The Working Copy view features a fast refresh mechanism: the content is cached locally when loading the
working copy for the first time. Later on, when the same working copy is displayed again, the application uses
this cache to detect the changes between the cached content and the current content found on disk. The refresh
operation is run on these changes only, thus improving the response time. improvement is noticeable especially
when working with large working copies.

Working Copy View Contextual Menu Actions

The contextual menu in the Working Copy view contains the following actions:
Edit conflict (Ctrl (Command on OS X) + E)

Opens the Compare editor, allowing you to modify the content of the currently conflicting resources. For more
information about editing conflicts, see Edit conflicts.

Open in Compare Editor (Ctrl (Command on OS X) + Alt + C)
Displays changes made in the currently selected file.

Open (Ctrl (Command on OS X) + O)
Opens the selected resource from the working copy. Files are opened with an internal editor or an external
application associated with that file type, while folders are opened with the default file system browsing
application (Windows Explorer on Windows, Finder on OS X, etc).

Open with...
Submenu that allows you to open the selected resource either with Oxygen XML Developer or with another
application.

Show in Explorer/Show in Finder
Opens the parent directory of the selected working copy file and selects the file.

Expand All (Ctrl (Command on OS X) + Alt + X)
Displays all descendants of the selected folder. The same behavior is obtained by double-clicking a collapsed
folder.

Refresh (F5)
Re-scans the selected resources recursively and refreshes their status in the working copy view.

Synchronize (Ctrl (Command on OS X) + Shift + S)
Connects to the repository and determines the working copy and repository changes made to the selected
resources. The application switches to Modified view mode if the Always switch to 'Modified' mode option is
selected.

Update (Ctrl (Command on OS X)+ U)
Updates the selected resources to the HEAD revision (latest modifications) from the repository. If the
selection contains a directory, it will be updated depending on its depth.

Tools 1103

Update to revision/depth
Allows you to update the selected resources from the working copy to an earlier revision from the repository.
You can also select the update depth for the current folder. You can find out more about the depth term in the
sparse checkouts section.

Commit
Collects the outgoing changes from the selected resources in the working copy and allows you to choose
exactly what resources to commit. A directory will always be committed recursively. Unversioned resources
will be deselected by default. In the Commit dialog box you can also enter a comment before sending your
changes to the repository.

Revert (Ctrl (Command on OS X) + Shift + V)
Undoes all local changes for the selected resources. It does not contact the repository and the files are
obtained from Apache Subversion™ pristine copy. It is available only for modified resources. See Revert your
changes for more information.

Override and Update
Drops any outgoing change and replaces the local resource with the HEAD revision. This action is available on
resources with outgoing changes, including conflicting ones. See the Revert your changes section.

Override and Commit
Drops any incoming changes and sends your local version of the resource to the repository. This action is
available on conflicting resources. For more information see Drop incoming modifications.

Mark Resolved (Ctrl (Command on OS X) + Shift + R)
Instructs the Subversion system that you resolved a conflicting resource. For more information, see Merge
conflicts.

Mark as Merged (Ctrl (Command on OS X) + Shift + M)
Instructs the Subversion system that you resolved the pseudo-conflict by merging the changes and you want
to commit the resource. Read the Merge conflicts section for more information about how you can solve the
pseudo-conflicts.

Create patch (Ctrl (Command on OS X) + Alt + P)
Allows you to create a file containing all the differences between two resources, based on the svn diff
command. To read more about creating patches, see the section about patches.

Compare with:

• Latest from HEAD (Ctrl (Command on OS X) + Alt + H) - Performs a 3-way diff operation between the
selected file and the HEAD revision from the repository and displays the result in the Compare view. The
common ancestor of the 3-way diff operation is the BASE version of the file from the local working copy.

• BASE revision (Ctrl (Command on OS X) + Alt + C) - Compares the working copy file with the BASE
revision file (the so-called pristine copy).

• Revision (Ctrl (Command on OS X) + Alt + R) - Displays the History view that contains the log history of
that resource.

• Branch/Tag - Opens the Compare with Branch/Tag dialog box that allows you to specify another file from
the repository (To URL field) to compare with the working copy file. You can specify the revision of the
repository file by choosing between HEAD revision or specific Other revision.

Tip: To compare with a file that was deleted, moved, or replaced, you need to specify the original URL
(before the file was removed) and use a peg revision at the end (for example, URL@rev1234).

• Each other - Compares two selected files with each other.

These compare actions are available only if the selected resource is a file.
Replace with:

• Latest from HEAD - Replaces the selected resources with their versions from the HEAD revision of the
repository.

• BASE revision - Replace the selected resources with their versions from the pristine copy (the BASE
revision).

Tools 1104

Note: In some cases it is impossible to replace the currently selected resources with their versions from the
BASE/HEAD revision:

• For the Replace with BASE revision action, the resources being unversioned or added have no BASE
revision, and thus cannot be replaced. However, they will be deleted if the action is invoked on a parent
folder. The action will never work for missing folders or for obstructing files (folders being obstructed by a
file), since you cannot recover a tree of folders

• For the Replace with latest from HEAD action, you must be aware that there are cases when resources
will be completely deleted or reverted to the BASE revision and then updated to a HEAD revision to avoid
conflicts. These cases are:

• The resource is unversioned, added, obstructed, or modified.
• The resource is affected by a svn:ignore or svn:externals property that is locally added on the

parent folder and not yet committed to the repository.

Show History (Ctrl (Command on OS X) + H)
Displays the History view where the log history for the selected resource will be presented. For more details
about resource history, see the sections about the resource history view and requesting the history for a
resource.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))
Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the
Annotations view, along with the history of the file in the History view.

Revision Graph (Ctrl (Command on OS X) + G)
This action allows you to see the graphical representation history of a resource. For more details about the
revision graph of resources, see Revision Graph.

Copy URL Location (Ctrl (Command on OS X) + Alt + U)
Copies the encoded URL of the selected resource from the Working Copy to the clipboard.

Mark as copied
You can use this action to mark an item from the working copy as a copy of an other item under version
control, when the copy operation was performed outside of an SVN client. The Mark as copied action is
available when you select two items (both the new item and source item), and it depends on the state of the
source item.

Mark as moved
You can use this action to mark an item from the working copy as being moved from another location of the
working copy, when the move operation was performed outside of an SVN client. The Mark as moved action
is available when you select two items from different locations (both the new item and the source item that is
usually reported as missing), and it depends on the state of the source item.

Mark as renamed
You can use this action to mark an item from the working copy as being renamed outside of an SVN client.
The Mark as renamed action is available when you select two items from the same directory (both the new
item and the source item that is usually reported as missing), and it depends on the state of the source item.

Copy to
Copies the currently selected resource to a specified location.

Move to Ctrl + M (Command + M on OS X)
Moves the currently selected resource to a specified location.

Rename (F2)
As with the move command, a copy of the original resource will be made with the new name and the original
will be marked as deleted. Note that you can only rename one resource at a time.

Delete (Delete)
Schedules selected items for deletion upon the next commit and removes them from the disk. Depending on
the state of each item, you are prompted to confirm the operation.

Tools 1105

New:

• New File - Creates a new file inside the selected folder. The newly created file will be added under
version control only if the parent folder is already versioned.

• New Folder (Ctrl (Command on OS X)+ Shift + F) - Creates a child folder inside the selected folder. The
newly created folder will be added under version control only if its parent is already versioned.

• New External Folder (Ctrl (Command on OS X) + Shift + W) - This operation allows you to add a new
external definition on the selected folder. An external definition is a mapping of a local directory to a URL
of a versioned directory, and ideally a particular revision, stored in the svn:externals property of the
selected folder.

Tip: You can specify a particular revision of the external item by using a peg revision at the end of the URL
(for example, URL@rev1234). You can also use peg revisions to access external items that were deleted,
moved, or replaced.

The URL used in the external definition format can be relative. You can specify the repository URL that the
external folder points to by using one of the following relative formats:

• ../ - Relative to the URL of the directory that the svn:externals property is set.
• ^/ - Relative to the root of the repository in which the svn:externals property is versioned.
• // - Relative to the scheme of the URL of the directory that the svn:externals property is set.
• / - Relative to the root URL of the server in which the svn:externals property is versioned.

Important: To change the target URL of an external definition, or to delete an external item, do the
following:

1. Modify or delete the item definition found in the svn:externals property that is set on the parent
folder.

2. For the change to take effect, use the Update operation on the parent folder of the external item.

Note: Syncro SVN Client does not support definitions of local relative external items.

Add to "svn:ignore" (Ctrl (Command on OS X) + Alt + I)
Allows you to add files that should not participate in the version control operations inside your working copy .
This action can only be performed on resources not under version control. It actually modifies the value of the
svn:ignore property in the parent directory of the resource. Read more about this in the Ignore Resources
Not Under Version Control section.

Add to version control (Ctrl (Command on OS X) + Alt + V)
Allows you to add resources that are not under version control. For further details, see Add Resources to
Version Control section.

Remove from version control
Schedules selected items for deletion from repository upon the next commit. The items are not removed from
the file system after committing.

Clean up (Ctrl (Command on OS X) + Shift + C)
Performs a maintenance cleanup operation on the selected resources from the working copy. This operation
removes the Subversion maintenance locks that were left behind. This is useful when you already know where
the problem originated and want to fix it as quickly as possible. It is only active for resources under version
control.

Locking:

• Scan for locks (Ctrl (Command on OS X) + L) - Contacts the repository and recursively obtains the list of
locks for the selected resources. A dialog box containing the locked files and the lock description will be
displayed. This is only active for resources under version control. For more details see Scanning for locks.

• Lock (Ctrl (Command on OS X) + K) - Allows you to lock certain files that need exclusive access. You
can write a comment describing the reason for the lock and you can also force (steal) the lock. This action
is active only on files under version control. For more details on the use of this action see Locking a file.

Tools 1106

• Unlock (Ctrl (Command on OS X) + Alt + K) - Releases the exclusive access to a file from the repository.
You can also choose to unlock it by force (break the lock).

Show SVN Properties (Ctrl + P (Command + P on OS X))
Brings up the Properties view and displays the SVN properties for the selected resource.

Show SVN Information (Ctrl + I (Command + I on OS X))
Provides additional information for the selected resource from the working copy. For more details, go to
Obtain information for a resource.

Drag and Drop Operations

The structure of the files tree can be changed with drag and drop operations inside the Working Copy view. These
operations behave in the same way with the Copy to/Move to operations.

Also, files and folders can be added to the file tree of the view as unversioned resources by drag and drop
operations from other applications (for example, from Windows Explorer or Mac OS X Finder). In this case, the
items from the file system are only copied, without removing them from their original location.

Attention: When you drag items from the working copy to a different application, the performed operation
is controlled by that application. This means that the moved items are left as missing in the working copy
(items are moved in the file system only, but no SVN versioning meta-data is changed).

Assistant Actions

To ensure a continuous and productive work flow, when a view mode has no files to present, it offers a set of
guiding actions with some possible paths to follow.

Initially, when there is no working copy configured the All Files view mode lists the following two actions:

Figure 518: All Files Panel

For Modified, Incoming, Outgoing, Conflicts view modes, the following actions may be available, depending on
the current working copy state in various contexts:

•
Synchronize with Repository - Available only when there is nothing to present in the Modified and

Incoming view modes.
•

Switch to Incoming - Selects the Incoming view mode.
•

Switch to Outgoing - Selects the Outgoing view mode.
•

Switch to Conflicts - Selects the Conflicts view mode.
•

Show all changes/incoming/outgoing/conflicts - Depending on the currently selected view mode, this
action presents the corresponding resources after a synchronize operation was executed only on a part of the
working copy resources.

•
(Information message) - Informs you why there are no resources presented in the currently selected view

mode.

History View

In Apache Subversion™, both files and directories are versioned and have a history. If you want to examine the
history for a selected resource and find out what happened at a certain revision you can use the History view that
can be accessed from Repositories view, Working Copy view, Revision Graph, or Directory Change Set view. From

Tools 1107

the Working copy view you can display the history of local versioned resources. If the view is not displayed, it can
be opened by selecting it from the Window > Show View menu.

The view consists of four distinct areas:

• The table showing details about each revision, such as revision number, commit date and time, number of
changes (more details available in the tooltip), author's name, and a fragment of the commit message.

Some revisions may be highlighted to emphasize:

• The current revision of the resource for which the history is displayed - a bold font revision.
• The last revision in which the content or properties of the resource were modified - blue font revision.

Note: Both font highlights may be applied for the same revision.
• The complete commit message for the selected revision.
• A tree structure showing the folders where the modified resources are located. You can compress this

structure to a more compact form that focuses on the folders that contain the actual modifications.
• The list of resources modified in the selected revision. For each resource, the type of action done against it is

marked with one of the following symbols:

• - A newly created resource.
• - A newly created resource, copied from another repository location.
• - The content/properties of the resource were modified.
• - Resource was replaced in the repository.
• - Resource was deleted from the repository.

Figure 519: History View

You can group revisions in predefined time frames (today, yesterday, this week, this month), by pressing the
Group by date button from the toolbar.

History Filter Dialog Box

The History view does not always show all the changes ever made to a resource because there may be
thousands of changes and retrieving the entire list can take a long time. Normally you are interested in the more

Tools 1108

recent ones. That is why you can specify the criteria for the revisions displayed in the History view by selecting
one of several options presented in the History dialog box that is displayed when you invoke the Show History
action.

Figure 520: History Filters Dialog Box

Options for the set of revisions presented in the History view are:

• All revisions of the selected resource.
• Only revisions between a start revision number and an end revision number.
• Only revisions added in a period of time (such as today, last week, last month, etc.)
• Only revisions between a start and an end date.
• Only revisions committed by a specified SVN user.

The toolbar of the History view has two buttons for extending the set of revisions presented in the view: Get next
50 and Get all.

History Filter Field

When only the history entries that contain a specified substring need to be displayed in the History view, the filter
field displayed at the top of this view is a useful tool. Just enter the search string in the field next to the Find label.
Only the items (with an author name, commit message, revision number, or date) that match the search string are
kept in the History view. When you press the Search button, the filter action is executed and the content of the
table is updated.

History View Contextual Menu Actions

The History view contains the following contextual menu actions:

Compare with working copy
Compares the selected revision with your working copy file. It is available only when you select a file.

Open
Opens the selected revision of the file into the Editor. This is available only for files.

Open with
Displays the Open with dialog box to specify the editor in which the selected file will be opened.

Get Contents
Replaces the current version from the working copy with the contents of the selected revision from the history
of the file. The BASE version of the file is not changed in the working copy so that after this action the file will
appear as modified in a synchronization operation, that is newer than the BASE version, even if the contents is
from an older version from history.

Tools 1109

Save as
Allows you to save the contents of a file as it was committed at a certain revision. This option is available
only when you access the history of a file.

Copy to
Copies to the repository the item whose history is displayed, using the selected revision. This option is active
only when presenting the history for a repository item (URL).

Note: This action can be used to resurrect deleted items also.

Revert changes from this revision
Reverts changes that were made in the selected revisions. The changes are reverted only in your working
copy and does not affect the repository items. It does not replace your working copy items with those from
the selected revisions. This action is available when the resource history was launched for a local working
copy resource.

Note: For items displayed in the Affected Paths section that were added, deleted, or replaced, this action has
no effect because such changes are considered to be changes to the parent directory. To revert these type of
changes, follow these steps:

1. Request the history for the parent directory.
2. Identify the revision that contains the changes you want to revert.
3. Invoke the action on that revision.

Warning: There are instances where the SVN Client is not able to identify the corresponding working
copy item for the selected item in the Affected Paths section. In this case, the action does not
proceed and an error message is displayed. For example, the selected item in the Affected Paths
section is from a different repository location than the working copy item for which the history is
displayed.

Update to revision
Updates your working copy resource to the selected revision. This is useful if you want your working copy
to reflect a time in the past. It is best to update a whole directory in your working copy, not just one file.
Otherwise, your working copy is inconsistent and you are unable to commit your changes.

Check out
Checks out a new working copy of the directory for which the history is presented, from the selected revision.

Export
Opens the Export dialog box that allows you to configure options for exporting a folder from the repository to
the local file system.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))
Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the
Annotations view, along with the history of the file in the History view.

Change
Allows you to change commit data for a file:

• Author - Changes the name of the SVN user that committed the selected revision.
• Message - Changes the commit message of the selected revision.

When two resources are selected in the History view, the contextual menu contains the following actions:

Compare revisions
When the resource is a file, the action compares the two selected revisions using the Compare view. When
the resource is a folder, the action displays the set of all resources from that folder that were changed
between the two revision numbers.

Revert changes from these revisions
Similar to the svn merge command, it merges two selected revisions into the working copy resource. This
action is only available when the resource history was requested for a working copy item.

Tools 1110

For more information about the History view and its features, see the Request history for a resource and Using the
resource history view sections.

Directory Change Set View

The result of comparing two reference revisions from the history of a folder resource is a set with all the
resources changed between the two revision numbers. The changed resources can be contained in the folder or
in a subfolder of that folder. These resources are presented in a tree format. For each changed resource all the
revisions committed between the two reference revision numbers are presented.

Figure 521: Directory Change Set View

The set of changed resources displayed in the tree is obtained by running the action Compare revisions available
on the contextual menu of the History view when two revisions of a folder resource are selected in the History
view.

The left side panel of the view contains the tree hierarchy with the names of all the changed resources between
the two reference revision numbers. The right side panel presents the list with all the revisions of the resource
selected in the left side tree. These revisions were committed between the two reference revision numbers.
Selecting one revision in the list displays the commit message of that revision in the bottom area of the right side
panel.

Double-clicking a file listed in the left-side tree performs a diff operation between the two revisions of the file
corresponding to the two reference revisions. Double-clicking one of the revisions displayed in the right side list
of the view performs a diff operation between that revision and the previous one of the same file.

The contextual menu of the right side list contains the following actions:

Compare with previous version
Performs a diff operation between the selected revision in the list and the previous one.

Open
Opens the selected revision in the associated editor type.

Open with
Displays a dialog box with the available editor types and allows you to select the editor type for opening the
selected revision.

Save as
Saves the selected file as it was in the selected revision.

Copy to
Copies to the repository the item whose history is displayed, using the selected revision.

Note: This action can be used to resurrect deleted items also.

Tools 1111

Check out
Checks out a new working copy of the selected directory, from the selected revision.

Export
Opens the Export dialog box that allows you to configure options for exporting a folder from the repository to
the local file system.

Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))
Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the
Annotations view, along with the history of the file in the History view.

Show SVN Information (Ctrl (Command on OS X) + I)
Provides additional information for a selected resource. For more details, go to Obtain information for a
resource.

Editor Panel of SVN Client

You can open a file for editing in an internal built-in editor. There are default associations between frequently used
file types and the internal editors in the File Types preferences panel.

The internal editor can be accessed either from the Working copy view or from the History view. No actions that
modify the content are allowed when the editor is opened with a revision from history.

Only one file at a time can be edited in an internal editor. If you try to open another file it will be opened in the
same editor window. The editor provides syntax highlighting for known file types. This means that a different
color will be used for each recognized token type found in the file. If the file's content type is unknown you will be
prompted to choose the proper way the file should be opened.

After editing the content of the file in an internal editor you can save it to disk by using the Save action from the
File menu or the Ctrl + S (Command + S on OS X) key shortcut. After saving your file you can see the file changed
status in the Working Copy view.

If the internal editor associated with a file type is not the XML Editor, then the encoding set in the preferences for
Encoding for non XML files is used for opening and saving a file of that type. This is necessary because in the
case of XML files, the encoding is usually declared at the beginning of the XML file in a special declaration or it
assumes the default value UTF-8, but in the case of non-XML files, there is no standard mechanism for declaring
the encoding for the file.

Annotations View

Sometimes you need to know not only what was changed in a file, but also who made those changes. The
Annotations view displays the revision and the author that changed every line in a file. The annotations of a file
are computed and this view is opened with the Show Annotation action, which is available in the History menu,
and from the contextual menu of the following views: the Repositories view, Working copy view, History view, and
Directory Change Set view..

This action opens a dialog box that allows you to configure some options for showing the annotations.

Tools 1112

Figure 522: Show Annotation Options Dialog Box

Once you have configured the options and click OK, the Annotations view is displayed (by default, on the right
side of the application). You can click a line in the editor panel where the file is opened to see the revision in
which the line was last modified. The same revision is highlighted in the History view and you can also see
all the lines that were changed in the same revision highlighted in the editor panel. Also, the entries of the
Annotations view corresponding to that revision are highlighted. Therefore, the Annotations view, History view,
and annotations editor panel are all synchronized. Clicking a line in one of them highlights the corresponding lines
in the other two.

Tools 1113

Figure 523: Annotations View

The following options can be configured in the Show Annotation dialog box:
From Revision Section

Select the revision from which to start computing the annotation. If you press the History button, the History
dialog box is displayed, which allows you to select a revision.

To Revision Section
Select the ending revision by choosing between the HEAD revision or specify it in the Other text box . If you
press the History button, the History dialog box is displayed, which allows you to select a revision.

Encoding
Select the encoding to be used when the annotation is computed. For each line of text, the SVN Client looks
through the history of the file to be annotated see when it was last modified, and by whom. It is required that
it is in the form of a text file. Therefore, encoding is needed to properly decode and read the file content. By
default, the encoding of the operating system is used.

Ignore MIME type
If selected, the file is treated as a text file and ignores what the SVN system infers from the svn:mime-type
property.

Ignore line endings
If selected, the differences in line endings are ignored when the annotation is computed.

Ignore whitespaces
If selected, it allows you to specify how the whitespace changes should be handled. When selected, you can
then choose between two options:

• Ignore whitespace changes - Ignores changes in the amount of whitespaces or to their type (for example,
when changing the indentation or changing tabs to spaces).

Note: Whitespaces that were added where there were none before, or that were removed, are still
considered to be changes.

Tools 1114

• Ignore all whitespaces - Ignores all types of whitespace changes.

Tip: Selecting any of these ignore options can help you better determine the last time a meaningful change was
made to a given line of text.

After you configure the options and press OK, the annotations will be computed and the Annotations view is
displayed, where all the users that modified the selected resource will be presented, along with the specific lines
and revision numbers modified by each user.

Note: If the file has a very long history, the computation of the annotation data can take a long time to process.

Compare View

In the Oxygen XML Developer, there are three types of files that can be checked for differences: text files,
image files and binary files. For the text files and image files you can use the built-in Compare view. This view
is automatically opened if you select two files and use the Compare with > Each Other action in the contextual
menu.

Figure 524: Compare View

At the top of each of the two editors, there are presented the name of the opened file, the corresponding SVN
revision number (for remote resources) and the author who committed the associated revision.

When comparing text, the differences are computed using a line differencing algorithm. The view can be used to
show the differences between two files in the following cases:

• After obtaining the outgoing status of a file with a Refresh operation, the view can be used to show the
differences between your working file and the pristine copy. In this way you can find out what changes you will
be committing.

• After obtaining the incoming and outgoing status of the file with the Synchronize operation, you can examine
the exact differences between your local file and the HEAD revision file.

Tools 1115

• You can use the Compare view from the History view to compare the local file and a selected revision or
compare two revisions of the same file.

The Compare view contains two editors. Edits are allowed only in the left editor and only when it contains the
working copy file. To learn more about how the view can be used, see View Differences.

Compare View Toolbar

The toolbar of the Compare view contains the operations that can be performed on the source and target files.

Figure 525: Compare View Toolbar

The following actions are available:
Algorithm

The algorithm to be used for performing a comparison. The following options are available:

• Auto - Selects the most appropriate algorithm, based on the compared content and its size (selected by
default).

• Lines - Computes the differences at line level, meaning that it compares two files or fragments looking for
identical lines of text.

• XML Fast - Comparison that works well on large files or fragments, but it is less precise than XML
Accurate.

• XML Accurate - Comparison that is more precise than XML Fast, at the expense of speed. It compares two
XML files or fragments looking for identical XML nodes.

Save action
Saves the content of the left editor when it can be edited.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces
Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the
comparison, the application normalizes the content and trims its leading and trailing whitespaces.

Synchronized scrolling
Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))
Formats and indents both files before comparing them. Use this option for comparisons that contain long
lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the
keys in both files the same to make it easier to compare.

Copy Change from Right to Left
Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left
Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last
change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Tools 1116

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first
change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block
of changes is reached, it highlights the next block of changes. This action is not available when the cursor is
positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))
Jumps to the previous change from the current block of changes. When the first change from the current
block of changes is reached, it highlights the previous block of changes. This action is not available when the
cursor is positioned on the first change or when there are no changes.

Ignore Nodes by XPath
You can use this text field to enter an XPath expression to ignore certain nodes from the comparison. It will
be processed as XPath version 2.0. You can also enter the name of the node to ignore all nodes with the
specified name (for example, if you want to ignore all ID attributes from the document, you could simply
enter @id). This field is only available when comparing XML documents using the XML Fast or XML Accurate
algorithms.

Note: If an XPath expression is specified in the Ignore nodes by XPath option in the Diff / File Comparison
preferences page, that one is used as a default when the application is started. If you then enter an
expression in this field on the toolbar, this one will be used instead of the default. If you delete the expression
from this field, neither will be used.

First Change (Ctrl + B (Command + B on OS X))
Jumps to the first change.

Most of these actions are also available from the Compare menu.

Image Preview

You can view your local files by using the built-in Image Preview component. The view can be accessed from
the Working copy view or from the Repository view. It can also be used from the History view to view a selected
revision of a image file.

Only one image file can be opened at a time. If an image file is opened in the Image preview and you try to open
another one it will be opened in the same window. Supported image types are GIF, JPEG/JPG, PNG, BMP. Once
the image is displayed in the Image Preview panel using the actions from the contextual menu, you can scale the
image at its original size (1:1 action) or scale it down to fit in the view's available area (Scale to fit action).

Compare Images View

The images are compared using the Compare Images view. This view is automatically opened if you select two
image files and use the Compare with > Each Other action in the contextual menu. The images are presented
in the left and right part of the view, scaled to fit the available area. You can use the contextual menu actions to
scale the images at their original size or scale them down to fit the view's available area.

The supported image types are: GIF, JPG / JPEG, PNG, BMP.

Properties View

The properties view presents Apache Subversion™ properties for the currently selected resource from either the
Working Copy view or the Repositories view. If the view is not displayed, it can be opened by selecting it from the
Window > Show View menu.

Tools 1117

Figure 526: Properties View

The table includes four columns:

• State - Can be one of the following:

• (empty) - Normal unmodified property (same current and base values)
• * (asterisk) - Modified property (current and base values are different)
• + (plus sign) - New property
• - (minus sign) - Removed property

• Name - The property name.
• Current value - The current value of the property.
• Base value - The base (original) value of the property.

svn:externals Property

The svn:externals property can be set on a folder or a file. In the first case it stores the URL of a folder from
other repository.

In the second case it stores the URL of a file from other repository. The external file will be added into the working
copy as a versioned item. There are a few differences between directory and file externals:

• The path to the file external must be in a working copy that is already checked out. While directory externals
can place the external directory at any depth and it will create any intermediate directories, file externals must
be placed into a working copy that is already checked out.

• The external file URL must be in the same repository as the URL that the file external will be inserted into; inter-
repository file externals are not supported.

• While commits do not descend into a directory external, a commit in a directory containing a file external will
commit any modifications to the file external.

The differences between a normal versioned file and a file external:

• File externals cannot be moved or deleted; the svn:externals property must be modified instead; however,
file externals can be copied.

A file external is displayed as a X in the switched status column.

Toolbar / Contextual Menu

The properties view toolbar and contextual menu contain the following actions:

• Add a new property - This button invokes the Add property dialog box in which you can specify the property
name and value.

• Edit property - This button invokes the Edit property dialog box in which you can change the property value
and also see its original(base) value.

Tools 1118

• Remove property - This button will prompt a dialog box to confirm the property deletion. You can also
specify if you want to remove the property recursively.

• Refresh - This action will refresh the properties for the current resource.

Console View

The Console View shows the traces of all the actions performed by the application. If the view is not displayed, it
can be opened by selecting it from the Window > Show View menu.

Part of the displayed messages mirror the communication between the application and the Apache Subversion™

server. The output is expressed as subcommands to the Subversion server and simulates the Subversion
command-line notation. For a detailed description of the Subversion console output read the SVN User Manual.

The view has a simple layout, with most of its space occupied by a message area. On its right side, there is a
toolbar holding the following buttons:

Clear
Erases all the displayed messages.

Lock scroll
Disables the automatic scrolling when new messages are appended in the view.

The maximum number of lines displayed in the console (length of the buffer) can be modified in the Preferences
page. By default, this value is set to 100.

Dynamic Help View

Dynamic Help view is a help window that changes its content to display the help section that is specific to
the currently selected view. As you change the focused view, you can read a short description of it and its
functionality. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Revision Graph of a SVN Resource
The history of a SVN resource can be watched on a graphical representation of all the revisions of that resource
together with the tags in which the resource was included. The graphical representation is identical to a tree
structure and very easy to follow.

The graphical representation of a resource history is invoked with the Revision graph action available on the
right-click menu of a SVN resource in the Working Copy view and the Repository view.

Tools 1119

Figure 527: Revision Graph of a File Resource

In every node of the revision graph an icon and the background color represent the type of operation that created
the revision represented in that node. The commit message associated with that revision, the repository path, and
the revision number are also contained in the node. The tooltip displayed when the mouse pointer hovers over a
node specifies the URL of the resource, the SVN user who created the revision of that node, the revision number,
the date of creation, the commit message, the modification type and the affected paths.

The types of nodes used in the graph are:

Added resource

The icon for a new resource added to the repository and a green background.
Copied resource

The icon for a resource copied to other location (for example, when a SVN tag is created and a green
background).

Modified resource
The icon for a modified resource and a blue background.

Deleted resource

The icon for a resource deleted from the repository and a red background.
Replaced resource

The icon for a resource removed and replaced with another one on the repository and a orange
background.

Indirect resource

The icon for a revision from where the resource was copied or an indirectly modified resource, that is a
directory in which a resource was modified and a gray background. The Modification type field of the tooltip
specifies how that revision was obtained in the history of the resource.

A directory resource is represented with two types of graphs:

Simplified graph
Lists only the changes applied directly to the directory;

Tools 1120

Complete graph
Lists also the indirect changes of the directory resource, that is the changes applied to the resources
contained in the directory.

Figure 528: Revision Graph of a Directory (Direct Changes)

Figure 529: Revision Graph of a Directory (Including Indirect Changes)

Tools 1121

The Revision graph toolbar contains the following actions:

Save as image
Saves the graphical representation as image. For a large revision graph you have to set more memory in
the startup script. The default memory size is not enough when there are more than 100 revisions that are
included in the graph.

/ Show/Hide indirect modifications
Switches between simplified and complete graph.

Zoom In
Zooms in the graph.

Zoom Out
Zooms out the graph. When the font reaches its minimum size, the graph nodes will display only the icons,
leading to a very compact representation of the graph.

Reset scale
Resets the graphical scale to a default setting.

Print
Prints the graph.

Print preview
Offers a preview of the graph to allow you to check the information to be printed.

The contextual menu of any of the graph nodes contains the following actions:

Open
Opens the selected revision in the editor panel. Available only for files.

Open with
Opens the selected revision in the editor panel. Available only for files.

Save as
Saves the file for which the revision graph was generated, based on the selected node revision.

Copy to
Copies to the repository the item whose revision graph is displayed, using the selected revision.

Note: This action can be used to resurrect deleted items also.

Compare with HEAD
Compares the selected revision with the HEAD revision and displays the result in the diff panel. Available only
for files.

Show History
Displays the history of the resource in the History view. Available for both files and directories.

Check out
Checks out the selected revision of the directory. Available only for directories.

Export
Opens the Export dialog box that allows you to configure options for exporting a folder from the repository to
the local file system.

When two nodes are selected in the revision graph of a file the right-click menu of this selection contains only
the Compare for comparing the two revisions corresponding to the selected nodes. If the resource for which the
revision graph was built is a folder then the right-click menu displayed for a two nodes selection also contains
the Compare action but it computes the differences between the two selected revisions as a set of directory
changes. The result is displayed in the Directory Change Set view.

Attention: Generating the revision graph of a resource with many revisions may be a slow operation. You
should enable caching for revision graph actions so that future actions on the same repository will not
request the same data again from the SVN server, which will finish the operation much faster.

Tools 1122

Oxygen XML Developer SVN Preferences
The options used in the SVN client are saved and loaded independently from the Oxygen XML Developer options.
However, if Oxygen XML Developer cannot determine a set of SVN options to be loaded at startup, some of the
preferences are imported from the XML Editor options (such as the License key and HTTP Proxy settings).

There is also an additional set of preferences applied to the SVN client that are set in global SVN files. There are
two editing actions available in the Global Runtime Configuration submenu of the Options menu. These actions,
Edit 'config' file and Edit 'servers' file, contain parameters that act as defaults applied to all the SVN client tools
that are used by the same user on their login account.

Entering Local Paths and URLs
The Oxygen XML Developer includes a variety of option configuration pages or wizards that contain text boxes
where you specify paths to local resources or URLs of items inside remote repositories. The Oxygen XML
Developer provides support in these text boxes to make it easier to specify these paths and URLs.

Local Item Paths

The text boxes used for specifying local item paths support the following:

• Absolute Paths - In most cases, the Oxygen XML Developer expects absolute paths for local file system items.
• Relative Paths - The Oxygen XML Developer only accepts relative paths in the form ~[/...], where ~ is the

user home directory.
• Path Validation - Oxygen XML Developer validates the path as you type and invalid text becomes red.
• Drag and Drop - You can drag files and folders from the file system or other applications and drop them into

the text box.
• Automatic Use of Clipboard Data - If the text box is empty when its dialog box is opened, any data that is

available in the system clipboard is used, provided that it is valid for that text box.

Repository Item URLs

• Local Repository Paths - You can use local paths (absolute or relative) to access local repositories. When
you use the Browse button, the Oxygen XML Developer will convert the file path to a file:// form of URL,
provided that the location is a real repository.

• Absolute Paths - In most cases, the Oxygen XML Developer expects absolute paths for local file system
items.

• Relative Paths - The Oxygen XML Developer only accepts relative paths in the form ~[/...], where ~ is the
user home directory.

• Peg Revisions - For URL text boxes found inside dialog boxes where you are pulling information from the
repository, you can use peg revisions at the end of the URLs (for example, URL@rev1234).

Note: If you try to use a peg revision number in a dialog box where you are sending information to the
repository then the peg revision number will become part of the name of the item rather than searching for the
specified revision. For example, in the URL http://host/path/inside/repo/item@100, the item name
is considered to be item@100.

Tip: You can even use peg revisions with local repository paths. For example, C:\path\to\local
\repo@100 will be converted to file:///C:/path/to/local/repo@100 and the Repository browser will
display the content of the local repository as it is at revision 100.

• URL Validation - Oxygen XML Developer validates the URLs as you type and invalid text becomes red. Even
paths to local repositories are not accepted unless using the Browse button to convert them to valid URLs.

• Drag and Drop - You can drag URLs from other applications or text editors and drop them into the URL text box.
You can also drag folders that point to local repositories, from the local file system or from other applications,
and they are automatically converted to valid file:// type URLs.

• Automatic Use of Clipboard Data - If the URL text box is empty when its dialog box is opened, any data that is
available in the system clipboard is used, provided that it is valid for that text box. Even valid local paths will be
automatically converted to file:// type URLs.

Tools 1123

Note: The text boxes that are in the form of a combo box also allow you to select previously used URLs, or URLs
defined in the Repositories view.

Technical Issues
This section contains special technical issues found during the use of Syncro SVN Client.

Authentication Certificates Not Saved

If Syncro SVN Client prompts you to enter the authentication certificate, although you already provided it in a
previous session, then you should make sure that your local machine user account has the necessary rights
to store certificate files in the Subversion configuration folder (write access to Subversion folder and all its
subfolders). Usually, it is located in the following locations:

• Windows: [HOME_DIR]\AppData\Roaming\Subversion
• Mac OS X and Linux: [HOME_DIR]/.subversion

Updating Newly Added Resources

When you want to get a resource that is part of a newly created structure of folders from the repository, you need
to also get its parent folders.

Figure 530: Incoming Changes

Syncro SVN Client allows you to choose how you want to deal with the entire structure from that moment
onwards:

Update ancestor directories recursively
This option brings the entire newly added folders structure into your working copy. In this case, the update
time depends on the total number of newly incoming resources, because of the full update operation (not
updating only selected resource).

Update selected files only (leave ancestor directories empty)
This option brings a skeleton structure composed of the resource's parent folders only, and the selected
resource at the end of the operation. All of the parent directories will have depth set to empty in your working
copy, thus subsequent Synchronize operations will not report any remote modifications in those folders. If
you need to update the folders to full-depth, you can use the Update to revision/depth action from the working
copy view.

Cannot Access a Repository through HTTPS

If you have issues when trying to access a repository through HTTPS protocol, one of the possible causes can be
the encryption protocol currently used by the application. This is happening when:

• You are running Oxygen XML Developer with Java 1.6 or older.
• The repository is set to use only one of the SSLv3 or TLSv1 encryption protocols.

To solve this issue, set the HTTPS encryption protocols option to SSLv3 only or TLSv1 only (depending on the
repository configuration).

Accessing Old Items from a Repository

Usually, you point to an item from a repository using a URL. However, sometimes this might not be enough
because the URL alone might point to a different item than the one you want and a peg revision is needed.

Tools 1124

A Subversion repository tracks any change made to its items by using revisions, which contain information
such as the name of the author who made the changes, the date when they were made, and a number that
uniquely identifies each of them. Over time, an item from a specific location in a repository evolves as a result of
committing changes to it. When an item is deleted, its entire life cycle (all changes made to it from the moment
it was created) remains recorded in the history of the repository. If a new item is created, with the same name
and in the same location of the repository as a previously existing one, then both items are identified by the same
URL even though they are located in different time frames. This is when a peg revision comes in handy. A peg
revision is nothing more than a normal revision, but the difference between them is made by their usage. Many
of the Subversion commands accept also a peg revision as a way to precisely identify an item in time, beside an
operative revision (the revision we are interested in, regarding the used command).

Example:

To illustrate an example, consider the following:

• We created a new repository file config, identified by the URL http://host.com/myRepository/dir/
config.

• The file has been created at revision 10.
• Over time, the file was modified by committing revisions 12, 15, 17.

To access a specific version of the file identified by the http://host.com/myRepository/dir/config URL,
we need to use a corresponding revision (the operative revision):

• If we use a revision number less than 10, an error is triggered, because the file has not been created yet.
• If we use a revision number between 10 and 19, we will obtain the specific version we are interested in.

Note: Although the file was modified in revisions 12, 15, 17, it existed in all revisions between 10 and 19.
Starting with a revision at which the file is modified, it has the same content across all revisions generated in
the repository until another revision in which it is modified again.

At this point, we delete the file, creating revision 20. Now, we cannot access any version of the file, because it
does not exist anymore in the latest repository revision. This is due to the fact that Subversion automatically
uses the HEAD revision as a peg revision (it assumes any item currently exists in the repository if not instructed
otherwise). However, using any of the revision numbers from the 10-19 interval (when the file existed) as a peg
revision (beside the operative revision), will help Subversion to properly identify the time frame when the file
existed, and access the file version corresponding to the operative revision. If we use a revision number greater
than 19, this will also trigger an error.

Continuing our example, suppose that at revision 30 we create a directory called config in the same repository
location as our deleted file. This means that our new directory will be identified by the same repository address:
http://host.com/myRepository/dir/config. If we use only this URL in any Subversion command, we
will access the new directory. We will also access the same directory if we use any revision number equal with
or greater than 30 as peg revision. However, if we are interested in accessing an old version of the previously
existing file, then we must use one of the revisions that existed (10-19), as a peg revision, similar to the previous
case.

Checksum Mismatch Error

A Checksum Mismatch error could happen if an operation that sends or retrieves information from the repository
to the working copy is interrupted. This means that there is a problem with the synchronization between a local
item and its corresponding remote item.

If you encounter this error, try the following:

1. Identify the parent directory of the file that caused the error (the file name should be displayed in the error
message).

Note: If the parent directory is the root of the working copy or if it contains a large amount of items it
is recommended that you check out the working copy again, rather than continuing with the rest of this
procedure.

2. Identify the current depth of that directory.
3. Update the parent directory using the Update to revision/depth action that is available from the contextual

menu or the Working copy menu.

Tools 1125

a. For the Depth option, select This folder only (empty).

Warning: If you have files with changes in this directory, those changes could be lost. You should
commit your changes or move the files to another directory outside the working copy prior to
proceeding with this operation.

4. After clicking OK the contents of the directory will be erased and the directory is be marked as having an
empty depth.

5. Once again, update the same directory using the Update to revision/depth action.

a. This time, for the Depth option, select the depth that was previously identified in step 2.
6. If you moved modified files to another directory outside the working copy, move them back to the original

location inside the working copy.

If this procedure does not solve the error, you need to check out the working copy again and move possible
changes from the old working copy to the new one.

External Tools
A command-line tool can be started in the Oxygen XML Developer user interface as if from the command line of
the operating system shell. Oxygen XML Developer offers you the option of integrating such a tool by specifying
just the command line for starting the executable file and its working directory. To integrate such a tool, open the
Preferences dialog box (Options > Preferences) and go to External Tools (or select Configure from the Tools >
External Tools menu).

The External Tools preferences page presents a list of the external tools that have been configured. Once a tool

has been configured, you can open it by selecting it from the Tools > External Tools menu or from the External
Tools drop-down menu on the toolbar (the Tools toolbar needs to be selected in the Configure Toolbars dialog
box). You can also assign a keyboard shortcut to be used to launch the tool.

If the external tool is applied on one of the files opened in Oxygen XML Developer, the Save all files before
calling external tools option (in the Open/Save preference page) should be selected so that all edited files are
automatically saved when an external tool is applied.

When an external tool is launched, the icon on the toolbar changes to a stop icon () and you can use this button
to stop the tool. When the tool has finished running (or you close it), the icon changes back to the original icon

().

Note: Even though you can stop the external tool by invoking the stop action while it is running, that does not
necessarily mean it will also stop the processes spawned by that external tool. For instance, if you stop an
external tool that runs a batch file, the batch may be stopped but without actually stopping the processes that the
batch was running at that time.

Example: Integrating the Ant Tool

This is an example procedure for integrating the Ant build tool into Oxygen XML Developer:

1. Download and install Apache Ant on your computer.
2. Test your Ant installation from the command-line interface in the directory where you want to use Ant from.

For example, run the clean target of your build.xml file C:\projects\XMLproject\build.xml:

ant clean

3. Open the Preferences dialog box (Options > Preferences) and go to External Tools (or select Configure from
the Tools > External Tools menu).

4. Click the New button to create a new external tool entry and enter the following information:

• Name - For example, Ant tool.
• Working directory - For example, C:\projects\XMLproject.
• Command line - For example, "C:\projects\XMLproject\ant.bat" clean.

5. Click OK to add the new tool to the list of external tools.

Tools 1126

http://ant.apache.org/
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/install.html

6. Run the tool from Tools > External Tools > Ant tool. You can see the output in the system console:

 Started: "C:\projects\XMLproject\ant.bat" clean
 Buildfile: build.xml

 clean:
 [echo] Delete output files.
 [delete] Deleting 5 files from C:\projects\XMLproject

 BUILD SUCCESSFUL
 Total time: 1 second

Tools 1127

Common Problems 17
Topics:

• Performance Problems and Solutions
• Misc Problems and Solutions

This section provides a collection of common performance and other types of problems that might be encountered
when using Oxygen XML Developer, along with their possible solutions.

Performance Problems and Solutions
This section contains solutions for some common performance problems that may appear when running Oxygen
XML Developer.

Related Information:
Editing Documents with Long Lines on page 561
Loading Large Documents on page 559
External Tools on page 1126

Out of Memory on External Processes

Problem

Oxygen XML Developer throws an Out Of Memory error when trying to generate PDF output with the built-in
Apache FOP processor.

Solution

Open the Preferences dialog box (Options > Preferences), go to XML > XSLT-FO-XQuery > FO Processors, and
increase the value of the Memory available to the built-in FOP option.

For external XSL-FO processors, XSLT processors, and external tools, the maximum value of the allocated
memory is set in the command line of the tool using the -Xmx parameter set to the Java virtual machine.

Related Information:
FO Processors Preferences on page 107
Custom Engines Preferences on page 111
External Tools Preferences on page 128

Too many nested apply-templates calls Error When Running a Transformation

Problem

I'm getting the error message Too many nested apply-templates calls when I try to transform my DocBook file to
HTML using default Oxygen XML Developer DocBook to HTML transformation scenario.

Solution

Most likely, this is the result of a masked stack overflow error that can be solved by increasing the stack size (-
Xss) to 4MB. Try setting a new VM option with the value -Xss4m. You can try to slowly increase this to larger
values (e.g. -Xss5m or -Xss6m). Note that this consumes memory on a per thread basis (Oxygen XML Developer

1128

can have tens of threads), so using a very large value here can backfire and leave Oxygen XML Developer without
memory.

Related Information:
Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer on page 156

Performance Issues with Large Documents

Problem

The performance of the application slows down considerably over time when editing large documents.

Solution

A possible cause is that the application needs more memory to run properly. You can increase the maximum
amount of memory available to Oxygen XML Developer by setting the -Xmx parameter in a configuration file that is
specific to the platform that runs the application.

Attention: The maximum amount of memory should not be equal to the physical amount of memory
available on the machine because in that case the operating system and other applications will have no
memory available.

When installed on a multiple user environment, each instance of Oxygen XML Developer will be allocated the
amount stipulated in the memory value. To avoid degrading the general performance of the host system, ensure
that the amount of memory available is optimally apportioned for each of the expected instances.

Note: When starting Oxygen XML Developer from the icon created on the Start menu or Desktop in Windows (or
from the shortcut created on the Linux desktop), the default maximum memory available to the application is set
to 40% of the amount of physical RAM, but not more than 700 MB.

When starting Oxygen XML Developer from a command-line script, the default maximum memory is 512 MB.

Misc Problems and Solutions
This chapter presents common problems that may appear when running the application along with solutions for
these problems.

'Address Family Not Supported by Protocol Family; Connect' Error

Problem

I have experienced the following error: "Address Family Not Supported by Protocol Family; Connect". How do I
solve it?

Solution

This seems to be an IPv6 connectivity problem. By default, the Java runtime used by Oxygen XML Developer
prefers to create connections via IPv6, if the support is available. However, even though it is available in
appearance, IPv6 sometimes happens to be configured incorrectly on some systems.

A quick solution for this problem is to set the java.net.preferIPv4Stack Java property to true
(java.net.preferIPv4Stack=true), by following this procedure:

1. Create a file named custom_commons.vmoptions and add on a single line -
Djava.net.preferIPv4Stack=true. Then save the file and copy it to the Oxygen XML Developer
installation folder (may need admin access).

2. Restart Oxygen XML Developer.
3. Make sure the procedure was successful by going to Help > About > System properties and check that the

value of the java.net.preferIPv4Stack property is true.

Common Problems 1129

Alignment Issues of the Main Menu on Linux Systems Based on Gnome 3.x

Problem

On some Linux systems based on Gnome 3.x (Ubuntu 11.x, 12.x), the main menu of Oxygen XML Developer has
alignment issues when you navigate it using your mouse.

Solutions

This is a known problem caused by Java SE 6 1.6.0_32 and earlier. You can resolve this problem using the latest
Java SE 6 JRE from Oracle. To download the latest version, go to http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

To bypass the JRE bundled with Oxygen XML Developer, go to the installation directory of Oxygen XML Developer
and rename or move the jre folder. If Oxygen XML Developer does not seem to locate the system JRE, either set
the JAVA_HOME environment variable to point to the location where you have installed the JRE, or you can simply
copy that folder with the JRE to the installation directory and rename it to jre to take the place of the bundled
JRE.

Archive Distribution Fails to Run on Mac OS 10.12 (Sierra)

Problem

For versions prior to 18.1, the classic archive distributions of Oxygen XML Developer (.zip or .tar.gz) fail to
run on Mac OS 10.12 (Sierra).

Solution

This happens because the archives get quarantined and Mac OS 10.12 (Sierra) treats quarantined apps differently
than older versions and isolates them from their parent folder at launch. If Oxygen XML Developer was already
installed when you upgraded to Mac OS 10.12 (Sierra), there are no problems.

If Oxygen XML Developer was not already installed, or you need to reinstall an older version (prior to version 18.1),
the quarantine flag must be removed for the entire content of the Oxygen XML Developer installation directory or
the individual applications. To resolve this issue, follow these steps:

1. Open a Terminal window and change the directory to the folder where Oxygen XML Developer is located.
2. Run the following command:

xattr -dr com.apple.quarantine oxygen/

where "oxygen" is the actual name of the Oxygen XML Developer directory.

If Oxygen XML Developer is in a location that requires administrator privileges for write access, you need
to run the command from an administrator account and prefix the command with sudo. You will then be
prompted to enter your password.

Cannot Associate Oxygen XML Developer With a File Type on My Windows Computer

Problem

I cannot associate the Oxygen XML Developer application with a file type on my Windows computer by
right clicking a file in Windows Explorer, selecting Open With > Choose Program and browsing to the file
oxygenDeveloper19.0.exe. When I select the file oxygenDeveloper19.0.exe in the Windows file browser dialog box,
the Oxygen XML Developer application is not added to the list of applications in the Open With dialog box. What
can I do?

Solution

The problem is due to some garbage Windows registry entries remained from versions of Oxygen XML Developer
older than version 9.0. Uninstall all your installed versions of Oxygen XML Developer and run a registry cleaner

Common Problems 1130

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

application for cleaning these older entries. After that just reinstall your current version of Oxygen XML Developer
and try again to create the file association.

Cannot Connect to SVN Repository from Repositories View

Problem

I cannot connect to a SVN repository from the Repositories view of SVN Client. How can I find more details about
the error?

Solution

First check that you entered the correct URL of the repository in the Repositories view. Also check that a SVN
server is running on the server machine specified in the repository URL and is accepting connections from
SVN clients. You can check that the SVN server accepts connections with the command line SVN client from
CollabNet.

If you try to access the repository with a svn+ssh URL also check that a SSH server is running on port 22 on the
server machine specified in the URL.

If the above conditions are verified and you cannot connect to the SVN repository please generate a logging file
on your computer and send the logging file to support@oxygenxml.com. For generating a logging file you need to
create a text file called log4j.properties in the install folder with the following content:

log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=logging.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t] %c - %m%n

Restart the application, reproduce the error, close the application and send the file logging.log generated in
the install directory to support@oxygenxml.com.

Cannot Open XML Files in Internet Explorer

Problem

Before installing Oxygen XML Developer I had no problems opening XML files in Internet Explorer. Now when I
try to open an XML file in Internet Explorer it opens the file in Oxygen XML Developer. How can I load XML files in
Internet Explorer again?

Solution

XML files are opened in Oxygen XML Developer because Internet Explorer uses the Windows system file
associations for opening files and you associated XML files with Oxygen XML Developer in the installer panel
called File Associations. Therefore, Internet Explorer opens XML files with the associated Windows application.

By default, the association with XML files is disabled in the Oxygen XML Developer installer panel called
File Associations. When you enabled it, the installer displayed a warning message about the effect that you
experience right now.

For opening XML files in Internet Explorer, again you have to set Internet Explorer as the default system
application for XML files (for example by right-clicking an XML file in Windows Explorer, selecting Open With >
Choose Program, selecting IE in the list of applications and selecting the checkbox Always use the selected
program). Also, you have to run the following command from a command line:

wscript revert.vbs

where revert.vbs is a text file with the following content:

 function revert()
 Set objShell = CreateObject("WScript.Shell")

Common Problems 1131

 objShell.RegWrite "HKCR\.xml\", "xmlfile", "REG_SZ"
 objShell.RegWrite "HKCR\.xml\Content Type", "text/xml", "REG_SZ"
 end function

 revert()

Compatibility Issue Between Java and Certain Graphics Card Drivers

Problem

Under certain settings, a compatibility issue can appear between Java and some graphics card drivers, which
results in the text from the editor (in Author or Text mode) being displayed garbled.

Solution

If you encounter this problem, update your graphics card driver. Another possible workaround is, open the
Preferences dialog box (Options > Preferences), go to Appearance > Fonts, and set the value of the Text
antialiasing option to ON.

Note: If this workaround does not resolve the problem, set the Text antialiasing option to other values.

Crash at Startup on Windows with an Error About the nvoglv32.dll File

Problem

I try to start Oxygen XML Developer on Windows but it crashed with an error message about “Fault Module Name:
nvoglv32.dll”. What is the problem?

Solution

It is an OpenGL driver issue that can be avoided by creating an empty file called opengl32.dll in the Oxygen
XML Developer install folder (if you start Oxygen XML Developer with the shortcut created by the installer on
the Start menu or on Desktop) or in the subfolder bin of the home folder of the Java virtual machine that runs
Oxygen XML Developer (if you start Oxygen XML Developer with the oxygen.bat script). The home folder of the
Java virtual machine that runs Oxygen XML Developer is the value of the java.home property that is available in
the System properties tab of the About dialog box (opened from the Help > About menu.

Damaged File Associations on OS X

Problem

After upgrading OS X and Oxygen XML Developer, it is no longer associated to the appropriate file types (such as
XML, XSL, XSD, etc.) How can I create the file associations again?

Solution

The upgrade damaged the file associations in the LaunchService Database on your OS X machine. You can
rebuild the LaunchService Database with the following procedure. This will reset all file associations and will
rescan the entire file system searching for applications that declare file associations and collecting them in a
database used by Finder.

1. Find all the Oxygen XML Developer installations on your hard drive.
2. Delete them by dragging them to the Trash.
3. Clear the Trash.
4. Unpack the Oxygen XML Developer installation kit on your desktop.
5. Copy the contents of the archive into the folder / Applications / Oxygen.
6. Run the following command in a Terminal:

/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/
LaunchServices.framework/Versions/A/Support/lsregister -kill -r -domain local -
domain system -domain user

Common Problems 1132

7. Restart Finder with the following command:

killall Finder
8. Create an XML or XSD file on your desktop. It should have the Oxygen XML Developer icon.
9. Double-click the file.
10.Accept the confirmation.

Result: When you start Oxygen XML Developer, the file associations should work correctly.

Details to Submit in a Request for Technical Support Using the Online Form

Problem

What details should I add to my request for technical support on the online form in the product website?

Solution

When completing a request for Technical Support using the online form, include as many details as possible
about your problem. For problems where a simple explanation may not be enough for the Technical Support team
to reproduce or address the issue (such as server connection errors, unexpected delays while editing a document,
an application crash, etc.), you should generate a log file and attach it to the problem report. In the case of a
crash, you should also attach the crash report file generated by your operating system.

If the text content of an XML document you want to send to the support team contains sensitive or private
information, you can use the Randomize XML text content action to create filler content. Before using this action,
you need to copy the initial XML resources and save them in a separate folder. Otherwise, you might lose your
original information.

To generate an Oxygen XML Developer log file, follow these steps:

1. Create a text file called log4j.properties in the application installation folder, with the following content:

log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=${user.home}/Desktop/oxygenLog/oxygen.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t] %c - %m%n

2. Restart the application.
3. Reproduce the error.
4. Close the application.
5. Delete the log4j.properties file because it might cause performance issues if you leave it in the

installation folder.

Important: The logging mode may severely decrease the performance of the application. Therefore, please do
not forget to delete the log4j.properties file when you are done with the procedure.

The resulting log file is named oxygen#.log (for example, oxygen.log, oxygen.log.1, oxygen.log.2, etc.)
and is located in the Desktop\oxygenLog folder.

DITA Map Transformation Fails (Cannot Connect to External Location)

Problem

DITA map transformation fails because it cannot connect to an external location.

Solution

The transformation is run as an external Ant process so you can continue using the application as the
transformation unfolds. All output from the process appears in the DITA Transformation tab.

Common Problems 1133

The HTTP proxy settings are used for the Ant transformation, so if the transformation fails because it cannot
connect to an external location, you can check the the Proxy preferences page

DITA PDF Transformation Fails

Problem

The DITA to PDF transformation fails.

Solution

To generate the PDF output, Oxygen XML Developer uses the DITA Open Toolkit.

You can analyze the Results tab of the DITA transformation and search for messages that contain text similar
to [fop] [ERROR]. If you encounter this type of error message, edit the transformation scenario you are using
and set the clean.temp parameter to no and the retain.topic.fo parameter to yes. Run the transformation, go to
the temporary directory of the transformation, open the topic.fo file and go to the line indicated by the error.
Depending on the XSL FO context try to find the DITA topic that contains the text that generates the error.

If none of the above methods helps you, go to Help > About > Components > Frameworks and check what version
of the DITA Open Toolkit you are using. Copy the whole output from the DITA OT console output and either report
the problem on the DITA User List or to support@oxygenxml.com.

DITA to CHM Transformation Fails
Oxygen XML Developer uses the DITA Open Toolkit and the HTML Help compiler (part of the Microsoft HTML
Help Workshop) to transform DITA content into Compiled HTML Help (or CHM in short).

However, the execution of the transformation scenario may still fail. Reported errors include the following:

Problem: Cannot Open File

[exec] HHC5010: Error: Cannot open "fileName.chm". Compilation stopped.

Solution: Cannot Open File

This error occurs when the CHM output file is opened and the transformation scenario cannot rewrite its content.
To solve this issue, close the CHM help file and run the transformation scenario again.

Problem: Compilation Failed

[exec] HHC5003: Error: Compilation failed while compiling fileName

Solution: Compilation Failed

Possible causes of this error are:

• The processed file does not exist. Fix the file reference before executing the transformation scenario again.
• The processed file has a name that contains space characters. To solve the issue, remove any spacing from

the file name and run the transformation scenario again.

Drag and Drop Without Initial Selection Does Not Work

Problem

When I try to drag with the mouse an unselected file from the Project view, the drag never starts, it only selects
the resource. I need to drag the resource again after it becomes selected. As a result any drag and drop without
initial selection becomes a two step operation. How can I fix this?

Common Problems 1134

Solution

This is a bug present in JVM versions prior to 1.5.0_09. This issue is fixed in 1.5.0_09 and newer versions. See the
installation instructions for setting a specific JVM version for running the Oxygen XML Developer application.

Gray Window on Linux With the Compiz / Beryl Window Manager

Problem

I try to run Oxygen XML Developer on Linux with the Compiz / Beryl window manager but I get only a gray window
that does not respond to user actions. Sometimes the Oxygen XML Developer window responds to user actions
but after opening and closing an Oxygen XML Developer dialog or after resizing the Oxygen XML Developer
window or a view of the Oxygen XML Developer window the content of this window becomes gray and it does not
respond to user actions. What is wrong?

Solution

Sun Microsystems' Java virtual machine does not support the Compiz window manager and the Beryl one very
well. It is expected that better support for Compiz / Beryl will be added in future versions of their Java virtual
machine. You should turn off the special effects of the Compiz / Beryl window manager before starting the
Oxygen XML Developer application or switch to other window manager.

Image Appears Stretched Out in the PDF Output

Problem

When publishing XML content (DITA, DocBook, etc.), images are sometimes scaled up in the PDF outputs but are
displayed perfectly in the HTML (or WebHelp) output.

Solution

PDF output from XML content is obtained by first obtaining a intermediary XML format called XSL-FO and then
applying an XSL-FO processor to it to obtain the PDF. This stretching problem is caused by the fact that all XSL-
FO processors take into account the DPI (dots-per-inch) resolution when computing the size of the rendered
image.

The PDF processor that comes out of the box with the application is the open-source Apache FOP processor.
Here is what Apache FOP does when deciding the image size:

1. If the XSL-FO output contains width, height or a scale specified for the image external-graphic tag, then
these dimensions are used. This means that if in the XML (DITA, DocBook, etc.) you set explicit dimensions to
the image they will be used as such in the PDF output.

2. If there are no sizes (width, height or scale) specified on the image XML element, the processor looks at
the image resolution information available in the image content. If the image has such a resolution saved in
it, the resolution will be used and combined with the image width and height to obtain the rendered image
dimensions.

3. If the image does not contain resolution information inside, Apache FOP will look at the FOP configuration
file for a default resolution. The FOP configuration file for XSLT transformations that output PDF is located
in the [OXYGEN_INSTALL_DIR]/lib/fop.xconf. DITA publishing uses the DITA Open Toolkit that has
the Apache FOP configuration file located in [DITA-OT-DIR/plugins/org.dita.pdf2/fop/conf/
fop.xconf. The configuration file contains two XML elements called source-resolution and target-
resolution. The values set to those elements can be increased (usually a DPI value of 110 or 120 should
render the image in PDF the same as in the HTML output).

The commercial RenderX XEP XSL-FO processor behaves similarly but as a fallback it uses 120 as the DPI value
instead of using a configuration file.

Tip: It is best to save your images without any DPI resolution information. For example, when saving a PNG
image in the open-source GIMP image editor, you do not want to save the resolution.

Common Problems 1135

http://bugs.java.com/view_bug.do?bug_id=4521075
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6429775
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6429775

This allows you to control the image resolution from the configuration file for all referenced images.

Keyboard Shortcuts Do Not Work

Problem

The keyboard shortcuts listed in the Menu Shortcut Keys preferences do not work. What can I do?

Solution

Usually this happens when a special keyboard layout is set in the operating system that generates other
characters than the usual ones for the keys of a standard keyboard. For example if you set the extended Greek
layout for your keyboard you should return to the default Greek layout or to the English one. Otherwise, the Java
virtual machine that runs the application will receive other key codes than the usual ones for a standard keyboard.

Keyboard Language Resets to Default on Windows

Problem

In Windows, I have set a specific language for my keyboard other than the default language and while using
Oxygen XML Developer, it keeps getting reset to the default language.

Solution

The default Windows shortcut keys for switching the input language is Left Alt+Shift and trying to use various
shortcuts in Oxygen XML Developer that involves combinations of those two keys is probably resetting your input
language to the default setting if you accidentally press those two keys without a third combination. You can
change the Windows shortcut keys that are assigned to the input language by going to the control panel and
searching for the Switch input languages option. For example, in Windows 10, go to Control Panel > Language >
Advanced Setting. In the Switching input methods section, click on Change language bar hot keys. Click the
Change Key Sequence button. This opens a dialog box that allows you to switch the shortcut keys for the input
language or keyboard layout.

MSXML 4.0 Transformation Issues

Problem

If the latest MSXML 4.0 service pack is not installed on your computer, you are likely to encounter the following
error message in the Results panel when you run a transformation scenario that uses the MSXML 4.0
transformer.

Example Error Message:

Could not create the 'MSXML2.DOMDocument.4.0' object.
Make sure that MSXML version 4.0 is correctly installed on the machine.

Solution

To fix this issue, go to the Microsoft website and get the latest MSXML 4.0 service pack.

Common Problems 1136

Navigation to the web page was canceled when viewing CHM on a Network Drive

Problem

When viewing a CHM on a network drive, if you only see the TOC and an empty page displaying “Navigation to the
web page was canceled” note that this is normal behavior. The Microsoft viewer for CHM does not display the
topics for a CHM opened on a network drive.

Solution

As a workaround, copy the CHM file on your local system and view it there.

Out Of Memory Error When Opening Large Documents

Problem

I am trying to open a file larger than 100 MB to edit it in Oxygen XML Developer, but it keeps telling me it runs out
of memory (OutOfMemoryError). What can I do?

Solution

You should make sure that the minimum limit of document size that enables the support for editing large
documents (the value of the Optimize loading in the Text edit mode for files over option) is less than the size of
your document. That will enable the optimized support for large documents. If that fails and you still get an Out
Of Memory error you should increase the memory available to Oxygen XML Developer.

Other tips:

• Make sure that you close other files before opening the large file.
• You can set the default editing mode in the Preferences dialog box. The Text editing mode uses less memory

than other editing modes.
• If the file is too large for the editor to handle, you can open it in for viewing in Large File Viewer.

Oxygen XML Developer Crashed on My Mac OS X Computer

Problem

Oxygen XML Developer crashed the Apple Java virtual machine/Oxygen XML Developer could not start up on my
OS X computer due to a JVM crash. What can I do?

Solution

Usually it is an incompatibility between the Apple JVM and a native library of the host system. More details are
available in the crash log file generated by OS X and reported in the crash error message.

Oxygen XML Developer Takes Several Minutes to Start

Problem

Some anti-virus software can cause Java applications, such as Oxygen XML Developer, to start very slowly due to
scanning of compressed archives (such as the JAR libraries that all Java applications use).

Solution

A possible solution is to add the Oxygen XML Developer folder to the list of exceptions in the anti-virus software
settings.

Common Problems 1137

Scroll Function of my Notebook Trackpad is Not Working

Problem

I got a new notebook (Lenovo Thinkpad™ with Windows) and noticed that the scroll function of my trackpad is not
working in Oxygen XML Developer.

Solution

It is a problem with the Synaptics™ trackpads that can be fixed by adding the following lines to the C:\Program
Files\Synaptics\SynTP\TP4table.dat file:

,,oxygen19.0.exe,*,*,*,WheelStd,1,9
,,oxygenAuthor19.0.exe,*,*,*,WheelStd,1,9
,,oxygenDeveloper19.0.exe,*,*,*,WheelStd,1,9
,,syncroSVNClient.exe,*,*,*,WheelStd,1,9
,,diffDirs.exe,*,*,*,WheelStd,1,9
,,diffFiles.exe,*,*,*,WheelStd,1,9

Segmentation Fault Error on Mac OS X

Problem

On my Mac OS X machine the application gives a Segmentation fault error when I double-click the application
icon. Sometimes it gives no error but it does not start. What is the problem?

Solution

Make sure you have the latest Java update from the Apple website installed on your Mac OS X computer. If
installing the latest Java update does not solve the problem, copy the file JavaApplicationStub from the /
System/Frameworks/JavaVM.framework folder to the OxygenDeveloper.app/Contents/MacOS folder.
For browsing the .app folder you have to (CMD+click) the Oxygen XML Developer icon and select Show Package
Contents.

Set Specific JVM Version on Mac OS X

Problem

How do I configure Oxygen XML Developer to run with the version X of the Apple Java virtual machine on my Mac
OS X computer?

Solution

Oxygen XML Developer uses the first JVM from the list of preferred JVM versions set on your Mac computer that
has a version number 1.6.0 or higher. You can move your desired JVM version up in the preferred list by dragging
it with the mouse on a higher position in the list of JVMs available in the Java Preferences panel that is opened
from Applications > Utilities > Java > Java Preferences.

Signature Verification Failed Error on a Resource from Documentum

Problem

When I try to open/edit a resource from Documentum, I receive the following error:

signature verification failed: certificate for All-MB.jar.checksum not signed by a
certification authority.

Solution

The problem is that the certificates from the Java Runtime Environment 1.6.0_22 or later no longer validate the
signatures of the UCF JARS.

Common Problems 1138

Set the -Drequire.signed.ucf.jars=false parameter, as explained in the Setting a Parameter in the
Launcher Configuration File / Startup Script topic.

Special Characters are Replaced with a Square in Editor

Problem

My file was created with other application and it contains special characters (such as é, ©, ®, etc.) Why does
Oxygen XML Developer display a square for these characters when I open the file in Oxygen XML Developer?

Solution

You must set a font able to render the special characters in the Font preferences. If it is a text file you must set
also the encoding used for non XML files. If you want to set a font that is installed on your computer but that font
is not accessible in the Font preferences that means the Java virtual machine is not able to load the system fonts,
probably because it is not a True Type font. It is a problem of the Java virtual machine and a possible solution is
to copy the font file in the [JVM_DIR]/lib/fonts folder. [JVM_DIR] is the value of the property java.home
that is available in the System properties tab of the About dialog box that is opened from menu Help > About.

Syntax Highlight Not Available in Eclipse Plugin

Problem

I associated the .ext extension with Oxygen XML Developer in Eclipse. Why does an .ext file opened with the
Oxygen XML Developer plugin not have syntax highlight?

Solution

Associating an extension with Oxygen XML Developer in Eclipse versions 3.6-3.8, 4.2-4.6 requires three steps:

1. Associate the .ext extension with the Oxygen XML Developer plugin..

a. Open the Preferences dialog box (Options > Preferences) and go to General > Editors > File Associations.
b. Add *.ext to the list of file types.
c. Select *.ext in the list by clicking it.
d. Add Oxygen XML Developer to the list of Associated editors and make it the default editor..

2. Associate the .ext extension with the Oxygen XML content type.

a. Open the Preferences dialog box (Options > Preferences) and go to General > Content Types.
b. Add *.ext to the File associations list for the Text > XML > Oxygen XML Developer content type.

3. Press the OK button in the Eclipse preferences dialog box.

Result: Now when an *.ext file is opened the icon of the editor and the syntax highlight should be the same as
for XML files opened with the Oxygen XML Developer plugin.

TocJS Transformation Does not Generate All Files for a Tree-Like TOC

Problem

The TocJS transformation of a DITA map does not generate all the files needed to display the tree-like table of
contents.

Solution

To get a complete set of output files, follow these steps:

1. Run the XHTML transformation on the same DITA map. Make sure the output gets generated in the same
output folder as for the TocJS transformation.

2. Copy the content of DITA-OT-DIR/plugins/com.sophos.tocjs/basefiles folder in the transformation
output folder.

Common Problems 1139

3. Copy the DITA-OT-DIR/plugins/com.sophos.tocjs/sample/basefiles/frameset.html file in the
transformation's output folder.

4. Edit frameset.html file.
5. Locate element <frame name="contentwin" src="concepts/about.html">.
6. Replace "concepts/about.html" with "index.html".

Topic References Outside the Main DITA Map Folder

Problem

Referencing a DITA topic, map, or binary resource (for example, image) that is located outside of the folder where
the main DITA map is located leads to problems when publishing the content using the DITA Open Toolkit.

Solution

The DITA-OT does not handle it well when references are outside the directory where the published DITA map is
found. By default, it does not even copy the referenced topics to the output directory.

To solve this, you have the following options:

1. Create another DITA map that is located in a folder path above all referenced folders and reference from it the
original DITA map. Then transform this DITA map instead.

2. Edit the transformation scenario and in the Parameters tab edit the fix.external.refs.com.oxygenxml
parameter. This parameter is used to specify whether or not the application tries to fix such references in a
temporary files folder before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact
on your edited DITA content. The allowed values are "false" and "true". The default value is false.

Important: The fix.external.refs.com.oxygenxml parameter is only supported when the DITA OT
transformation process is started from Oxygen XML Developer.

Wrong Highlights of Matched Words in a Search in User Manual

Problem

When I do a keyword search in the User Manual that is included with the Oxygen XML Developer application, the
search highlights the wrong word in the text. Sometimes the highlighted word is several words after the matched
word. What can I do to get correct highlights?

Solution

This does not happen when Oxygen XML Developer runs with a built-in Java virtual machine, that is a JVM that
was installed by Oxygen XML Developer in a subfolder of the installation folder (for example, on Windows and
Linux when installing Oxygen XML Developer with the installation wizard specific for that platform). When Oxygen
XML Developer runs from an All Platforms installation, it uses whatever JVM was found on the host system,
which may be incompatible with the JavaHelp indexer used for creating the built-in User Manual. Such a JVM
may offset the highlight of the matched word with several characters, usually to the right of the matched word.
To see the highlight exactly on the matched word, it is recommended to install the application with the specific
installation wizard for your platform (available only for Windows and Linux).

XML Document Takes a Long Time to Open

Problem

Oxygen XML Developer takes a long time to open a document.

Solution

It takes longer to open an XML document if the whole content of your document is on a single line or if the
document size is very large.

Common Problems 1140

If the content is on a single line, you can speed up loading by selecting the Format and indent the document on
open option (in the Format preferences page).

If the document is very large (above 30 MB), make sure that the value of the Optimize loading in the Text edit
mode for files over option (in the Open/Save preferences page) is greater than the size of your document.

If that fails and you get an Out Of Memory error (OutOfMemoryError) you can increase the memory available to
Oxygen XML Developer.

XSLT Debugger Is Very Slow

Problem

When I run a transformation in the XSLT Debugger perspective it is very slow. Can I increase the speed?

Solution

If the transformation produces HTML or XHTML output you should disable rendering of output in the XHTML
output view during the transformation process. To view the XHTML output result do one of the following:

• Run the transformation in the Editor perspective and make sure the Open in Browser/System Application
option is selected.

• Run the transformation in the XSLT Debugger perspective, save the text output area to a file, and use a
browser application for viewing it (for example Firefox or Internet Explorer).

Common Problems 1141

Glossary 18
Topics:

• Active Cell
• Anchor
• Apache Ant
• Block Element
• Bookmap
• Callout
• Canonicalize
• Content Completion Assistant
• Dockable
• Document Fragment
• Document Type Association
• DITA Map
• DITA-OT-DIR
• Foldable Element
• Framework
• Global Options
• IDML
• Inline Element
• Java Archive
• Key Space
• Keystore
• Master File
• Named User
• Perspective
• Plugin
• Pretty-Print
• Project Options
• QName
• Quick Assist
• Quick Fix
• Root Map
• Space-Preserved Element
• Subject Scheme Map
• Working Set
• XML Catalog

Active Cell
Active cell refers to the selected cell where data is entered when you begin typing. Only one cell is active at a
time. The active cell is bounded by a heavy border.

1142

Anchor
An Anchor is used in various types of links to take the user to a specific location within the target document. It is
designated in a URL or in the value of the href attribute with a # symbol followed by the anchor that is defined in
a target ID (for example href="MyTopic.dita#anchor).

Apache Ant
Apache Ant (Another Neat Tool) is a software tool for automating software build processes.

Block Element
A block element is intended to be visually separated from its siblings, usually vertically. For instance, paragraphs
and list items are block elements. It is distinct from a inline element, which has no such separation.

Bookmap
A bookmap is a specialized DITA map used for creating books. A bookmap supports book divisions such as
chapters and book lists such as indexes.

Callout
A callout is a string of text inside a graphic and is connected to a specific location in a document by a line.
Oxygen XML Developer uses callouts to present comments and other types of review modifications.

Canonicalize
To canonicalize something means to convert it to a standard format that everyone generally uses. When using
the term with regards to XML, it refers to the process of converting data that has more than one possible
representations into a standardization that conforms to the specification of an XML document or document
subset. It is helpful for applications that require the ability to test whether or not the content of an XML document
or subset has been changed.

Content Completion Assistant
The Content Completion Assistant refers to a very helpful mechanism in Oxygen XML Developer that offers a
list of proposed items that could be inserted at the current location, depending on the current context, editing
mode, and type of document. It also tries to determine the most logical choice in the current editing context and
displays that proposal at the beginning of the list.

For more information about this feature and how to invoke it, depending on your editing context, see the
following:

• Content Completion Assistant in Text Mode on page 247
• Content Completion Assistant in Grid Mode on page 275
• Content Completion in XSLT Stylesheets on page 344
• Content Completion in Ant Build Files on page 375
• Content Completion in XML Schema on page 415
• Content Completion in XQuery on page 449
• Content Completion Assistance in WSDL Documents on page 461
• Content Completion in CSS Stylesheets on page 480
• Content Completion in LESS Stylesheets on page 483

Glossary 1143

• Content Completion in Relax NG Schemas on page 488
• Content Completion in NVDL Schemas on page 500
• Content Completion in JavaScript Documents on page 511
• Content Completion in Schematron Documents on page 516
• Content Completion in SQF on page 530

Dockable
A Dockable window is one that can be moved and resized, and either floated or pinned to a location, allowing you
to configure the workspace according to your preferences.

Document Fragment
A document fragment represents a portion of an XML document's tree of nodes or content.

Document Type Association
In general terms, a Document Type Association is a set of rules that associate a document type with a framework.
In Oxygen XML Developer, Document Type Association also specifically refers to a preferences page where you
can create new custom frameworks or edit existing ones. Note that predefined frameworks (document types) are
read-only, but you can Extend or Duplicate them to configure them as custom frameworks.

DITA Map
A DITA map is a component of the DITA framework that provides the means for a hierarchical collection of DITA
topics that can be processed to form an output. Maps do not contain the content of topics, but only references to
them. These are known as topic references. Usually the maps are saved on disk or in a CMS with the extension
.ditamap.

Maps can also contain relationship tables that establish relationships between the topics contained within the
map. Relationship tables are also used to generate links in your published document.

You can use your map or bookmap to generate a deliverable using an output type such as XHTML, PDF, HTML
Help, or Eclipse Help.

DITA-OT-DIR
DITA_OT_DIR refers to the default directory that is specified for your DITA Open Toolkit distribution in the
Options > Preferences > DITA preferences page.

For example, if you are using DITA OT 2.4.4, [OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT2.x (or if
you are using DITA OT 1.8.5, the default DITA OT directory is: [OXYGEN_INSTALL_DIR]/frameworks/dita/
DITA-OT). You can also specify a custom directory.

Foldable Element
A foldable element refers to elements that can be collapsed and expanded in Oxygen XML Developer. Foldable
elements are marked with a small triangle (/) on the left side of the editor panel and you can use that
triangle to quickly collapse or expand them. This feature is helpful when you are working with large documents
and you want to temporarily hide blocks of content. You can right-click the triangle to access additional collapse
and expand actions (Collapse Other Folds, Collapse Child Folds, Expand Child Folds, Expand All).

Glossary 1144

Framework
A framework refers to a package that contains resources and configuration information to provide ready-
to-use support for an XML vocabulary or document type. Oxygen XML Developer includes a Document Type
Configuration Dialog Box that allows you to define a set of rules and customize various authoring mechanisms
for new or existing frameworks.

Global Options
Global Options refers to the storage option in the Oxygen XML Developer preference pages (Options >
Preferences). If you select Global Options, the options in that particular preferences page are stored locally on
your computer and are not accessible to other users (unless you export them into an XML options file that can
then be shared).

IDML
IDML is an abbreviation for Adobe InDesign Markup files.

Inline Element
An inline element is intended to be displayed in the same line of text as its siblings or the surrounding text. For
instance, strong and emphasis in HTML are inline elements. It is distinct from a block element, which is visually
separated from its siblings.

Java Archive
Java Archive (JAR) is an archive file format. JAR files are built on the ZIP file format and have the .jar file
extension. Computer users can create or extract JAR files using the jar command or an archive tool.

Key Space
A Key Space is established when a root map defines a set of effective key bindings.

Keystore
A Keystore is an encrypted file that contains private keys and certificates. There are two types of keystores that
are supported in Oxygen XML Developer:

• Java Key Store (JKS)
• Public-Key Cryptography Standards version 12 (PKCS-12)

Master File
A Master File typically refers to the root of an imported or included tree of modules and this support helps you
simplify the configuration and development of XML projects. For more information, see the Master Files Support
on page 233 section.

Glossary 1145

Named User
Named User is defined as an individual full or part-time employee who is authorized by You (the individual or
entity who owns the rights to Oxygen XML Developer) to use the software regardless of whether or not the
individual is actively using the software at any given time. To avoid any doubt, Named User licenses cannot be
shared amongst multiple individuals and separate Named User licenses must be purchased for each individual
user.

A Named User license may not be reassigned to another employee except in the following circumstances:

• (a) Upon termination of the Named User’s employment with your company.
• (b) Permanent reassignment of a Named User to a position that does not involve the use of the Software.

For example, suppose Jane has been assigned an Oxygen XML license and she leaves your company. When she
leaves, you can simply reassign her license to John, her replacement. In the event that you do reassign the Named
User license in accordance with the restrictions above, you do not need to notify Syncro of such a reassignment.

Note: This definition is taken from the Oxygen XML Developer End User License Agreement.

Perspective
In Oxygen XML Developer, a perspective refers to an interface layout geared towards a specific editing
environment. Each perspective includes a unique set of interface objects, toolbars, views, and features. You can
change the perspective by selecting the respective icon () in the top-right corner of Oxygen XML
Developer or by selecting the perspective from the Window > Open Perspective menu.

The perspectives that are available in Oxygen XML Developer are:

• Editor - The most commonly used perspective and it is used to edit XML documents.
• XSLT Debugger - Used to detect problems in an XSLT transformation by executing the process step by step

in a controlled environment.
• XQuery Debugger - Used to detect problems in an XQuery transformation process by executing the process

step by step in a controlled environment
• Database - Used to browse and manage databases.

Plugin
A plugin (also referred to as add-on or extension) is a component that adds specific features to an existing
application. Oxygen XML Developer supports plugins to enable numerous customizations.

Pretty-Print
Pretty-print refers to formatting and indenting the source code in Text mode to make the content easier to view
and analyze. The formatting actions that are available in Oxygen XML Developer include:

• Format and Indent Element - Available in the Source submenu of the contextual menu for the current
element.

• Format and Indent - Available on the toolbar for the entire currently opened document.
• Format and Indent Files - Available in the contextual menu of the Project view for one or more selected

files.

Glossary 1146

https://www.oxygenxml.com/eula_developer.html

Project Options
Project Options refers to the storage option in the Oxygen XML Developer preference pages (Options >
Preferences). If you select Project Options, the options in that particular preferences page are stored at project
level in the project file (.xpr), which can easily be shared with other users.

QName
QName stands for "qualified name" and defines a valid identifier for elements and attributes. QNames are used as
URI references to reference particular elements or attributes within XML documents.

Quick Assist
The Quick Assist feature gives you easy access to some of the most commonly used actions for the specific type
of document you are editing. If one or more actions are available in the current context, they are accessible via
a yellow bulb help () placed at the current line in the stripe on the left side of the editor in Text mode. You can
also invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Quick Fix
The Quick Fix support in Oxygen XML Developer helps you resolve errors that appear in an XML document
by offering proposals to fix problems such as missing required attributes or invalid elements. Quick Fixes are
available in Text mode and they can be presented and activated in several ways.

• When hovering over an area of text where a validation error or warning occurs, the Quick Fix proposals can be
presented as links in a tooltip pop-up window.

• If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon ()
is displayed in the stripe on the left side of the editor. Clicking that icon will allow you select from the available
proposals.

• If you place the cursor in the highlighted area where a validation error or warning occurs, you can also access
the Quick Fix menu by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Oxygen XML Developer also provides support for defining and customizing a library of Quick Fixes using the
Schematron language.

Root Map
A Root Map (or master map) specifies a DITA map that defines a hierarchical structures of submaps that are
contained within the root map. Essentially, the root map defines a scope and provides the mechanism to allow
your defined keys to be propagated throughout the entire map structure (this mechanism is also known as a key
space).

Space-Preserved Element
A spaced-preserved element refers to elements that require white spaces and line endings to be preserved (for
example, DITA codeblock and pre elements).

Subject Scheme Map
A Subject Scheme Map allows you to create custom controlled attribute values and to manage metadata. Subject
scheme maps use a key definition to define a collection of controlled values rather than a collection of topics. The

Glossary 1147

highest level of map that uses the set of controlled values must reference the subject scheme map in which those
controlled values are defined.

A controlled value is a keyword that can be used as a value in a metadata attribute. For example, the @audience
metadata attribute may take a value that identifies the user group associated with a particular content unit (for
medical equipment, that might include therapist, oncologist, surgeon, radiologist, and so on).

Working Set
A Working Set refers to a set of files that will be used for the scope of search and refactoring operations. Many of
the search and refactoring wizards include a step where you can specify the scope for the operation and you can
choose one or more working sets to restrict the scope to that specified set of files.

XML Catalog
An XML Catalog maps a system ID or a URI reference for a resource (stored either remotely or locally) to a local
copy of the same resource. Whenever XML processing relies on external resources (such as referenced schemas
and stylesheets), the use of an XML Catalog becomes a necessity when Internet access is not available or the
connection is slow.

Oxygen XML Developer includes default global catalogs as well as default catalogs for each of the built-in
frameworks, and you can also create your own. Oxygen XML Developer uses these XML Catalogs to resolve
references for document validation and transformations. For more information, see Working with XML Catalogs
on page 314.

Glossary 1148

Index

Numerics
3-way directory comparison and merge tool 583, 1028

A
Action dialog box 52
Add nodes in Grid Mode 273
Add Schematron Quick Fix 524
Add-on preferences 47
Add-ons

Check for add-on updates 36
Install new add-ons 36
Manage add-ons 36

Adding custom views 951
Additional Framework plugin extension 946
Annotation preferences 80
Ant build files

Component Dependencies view 380
Content completion 375
Editing in Master Files context 374
Highlight occurrences 380
Outline view 376
Quick Assist feature 382
Quick fix support 375
Refactoring actions 381
Resource Hierarchy/Dependencies view 379
Search declarations 380
Search references 380
Syntax highlighting 376
Validation 374

Ant preferences 112
Ant transformation scenario

Options tab 689
Output tab 690
Parameters tab 690

Antenna House Formatter processor 627, 667
Appearance preferences 43
Archive preferences 126
Archives

Browse 844
Edit files 848
EPUB 846
File browser 844
Migrate OOXML to DITA 848
Migrate OOXML to TEI 848
Modify 844
ODF 846
OOXML 846

Associate schema directly in XML documents 298
Associate schema in a framework configuration 301
Associate schema in a validation scenario defined in framework
297
Associate schema through a validation scenario 294
Associate schema to an XML document 294
Attributes view in Design mode 191, 418
Attributes view in Text mode 176, 252
Author editing mode

Entities view 179, 254
Model view 178, 251

Automated tests 959
Automatic Spell Check 558
Automatic validation 277

B
BaseX database connection 889
BaseX database contextual menu actions 890
BaseX XQJ connection 891
Batch transformation 710
Berkeley DB XML database connection 866
Berkeley DB XML database contextual menu actions 868
Berkeley DB XML debugging 871, 901
Bidirectional text in Grid mode 187
Bidirectional text in Text mode 184

C
Canonicalize files tool 563, 1001
Certificates preferences 114
Change file permissions on remote FTP server 211
Change language for interface 155
Changing the font size in Text mode 239
Character Map dialog box 196
Check for add-on updates 36
Check Spelling 553
Check Spelling in Files 559
Check Well-Formedness action 276
Class Loader 959
Class Loader issues 957
Clear content in Grid Mode 273
Close file 214
Code template preferences 85
Code templates 255
Color preferences 44
Common problems and solutions 1129
Compare Directories Against a Base tool 583, 1028
Compare Directories tool

Compare images 583, 1028
Menus 582, 1027
Toolbar 580, 1026

Compare Files tool
Menus 576, 1021
Toolbar 573, 1019

Comparing files and directories 567
Compile LESS to CSS 484
Compile XSL Stylesheet for Saxon tool 373, 990
Components Validation plugin extension 946
Configure Toolbars 145
Configure transformation scenario 706
Configure Transformation Scenario dialog box 707
Configuring options 138
Configuring Oxygen 40
Content Completion Assistant in Grid Mode 275
Content completion helper views 250
Content completion in Text Mode 247
Content completion preferences 78
Content Management System integration 901
Contextual menu actions in Text Mode 264
Contextual menu of current editor tab 214

1149

Convert database to XML Schema 442, 987
Convert schema to another schema language 440, 985
Convert XML to JSON 507, 989
Copy/Paste in Grid Mode 274
Create DTD from learned document structure 301
Create Markdown documents 536
Create new transformation scenario 669
Create new validation scenario 282
Create Schematron Quick Fix 524
CSS stylesheets

Content completion 480
Custom CSS properties 480
Editing features 479
Folding 482
Format and indent (pretty print) 482
Minifying 482
Outline view 481
Syntax highlighting 481
Validation 480

CSS validation preferences 91
Custom editor variables 134
Custom Protocol plugin extension 947
Custom system properties 152
Custom validation engine preferences 89
Custom XML refactoring operations 327, 970
Custom XSLT/XQuery transformation engine preferences 111
Customize document templates 204
Customizing default options 139

D
Data Source Explorer view 849
Data Sources preferences page 115
Database connection preferences 115
Database drivers 119
Database perspective 161
Databases

Connections
BaseX

Contextual menu actions 890
XQJ 891

Berkeley DB XML
Contextual menu actions 868
Debugging 871, 901

Documentum xDB
Contextual menu actions 882
Parser configuration 885

eXist
Contextual menu actions 873

Generic JDBC 887
IBM DB2

Contextual menu actions 856
JDBC-ODBC 888
MarkLogic

Contextual menu actions 880
Debugging 878, 900

MarkLogic development 877
Microsoft SQL Server

Contextual menu actions 859
MySQL 886
Oracle

Contextual menu actions 862
PostgreSQL

Contextual menu actions 866

SharePoint
Contextual menu actions 910
SharePoint Browser view 908

WebDAV
Contextual menu actions 893

Data Source Explorer view 849
SQL support 894
Table Explorer view 850
XQuery

Debugging
Berkeley DB XML 871, 901
MarkLogic 878, 900

Drag and drop from Data Source Explorer 897
Transformations 897
Validation 897

Debug PDF transformation 713
Debugger preferences 106
Debugging XQuery

Breakpoints 936
Identify expressions 937
Information views

Breakpoints view 928
Context Node view 926
Messages view 929
Nodes/Values Set view 933
Output Mapping Stack view 930
Stack view 930
Templates view 933
Trace History view 931
Variables view 934
XPath Watch view 927

Java extensions 939
Layout 923
Profiling

Hotspots view 942
Invocation Tree view 941

Steps in a typical debugging process 936
Toolbar 924

Debugging XSLT
Breakpoints 936
Identify expressions 937
Information views

Breakpoints view 928
Context Node view 926
Messages view 929
Nodes/Values Set view 933
Output Mapping Stack view 930
Stack view 930
Templates view 933
Trace History view 931
Variables view 934
XPath Watch view 927

Java extensions 939
Layout 923
Profiling

Hotspots view 942
Invocation Tree view 941

Steps in a typical debugging process 936
Toolbar 924

Design editing mode
Attributes view 191, 418
Components

Grouping components 410
xs:all 405
xs:alternative 401

1150

xs:any 406
xs:anyAttribute 406
xs:assert 409
xs:attribute 395
xs:attributeGroup 397
xs:choice 405
xs:complexType 398
xs:element 392
xs:field 409
xs:group 402
xs:import 403
xs:include 403
xs:key 408
xs:keyRef 408
xs:notation 404
xs:openContent 410
xs:override 404
xs:redefine 403
xs:schema 391
xs:selector 408
xs:sequence 405
xs:simpleType 400
xs:unique 407

Contextual menu actions 385
Editing actions 384
Facets view 193, 420
Navigation 189, 383
Outline view 189, 416
Palette view 194, 419

Design mode preferences 70
Detect Master Files 234
Detect Master Files from Project 234
Diff Directories tool 579, 1024
Diff Files tool 567, 1013
Digital Signature

Canonicalize files 563, 1001
Certificates 563
Sign files 564, 1002
Verify signature 566, 1004

Digital Signatures
Example of how to digitally sign XML content 566
Overview 561

Directory comparison appearance preferences 126
Directory comparison preferences 125
DITA

Output
DITA Map to MS Office Word transformation 628
DITA Map to PDF WYSIWYG transformation 627, 667
PDF output customization

Add watermark 624, 663
Creating a customization directory 622, 661
Customize 'Note' images 626, 665
Customize header/footer 624, 663
Force page breaks 625, 665
Set font 626, 666
Show comments and tracked changes 626, 666

PDF output customization
Add watermark 624, 663
Creating a customization directory 622, 661
Customize 'Note' images 626, 665
Customize header/footer 624, 663
Force page breaks 625, 665
Set font 626, 666
Show comments and tracked changes 626, 666

DITA and Markdown documents 543

DITA Map document type 606
DITA Map to CHM (Compiled Help) transformation 630, 668
DITA Map to Kindle transformation 630, 669
DITA Map to MS Office Word transformation 628
DITA Map to PDF WYSIWYG transformation 627, 667
DITA Map to WebHelp Classic Mobile transformation 619, 659
DITA Map to WebHelp Classic transformation 614, 654
DITA Map to WebHelp Responsive transformation 607, 647
DITA Map to WebHelp Responsive with Classic transformation
617, 656
DITA Map to WebHelp Responsive with Feedback
transformation 611, 650
DITA Map transformations 607, 646
DITA Maps

Transformation scenarios 607, 646
DITA OT preferences 114
DITA OT transformation scenario

Advanced tab 685
Filters tab 685
FO Processor tab 683
Output tab 687
Parameters tab 684
Skins tab 682
Templates tab 683

DITA preferences 114
DITA Topic document type 605
DocBook

Output
PDF output customization

Show comments and tracked changes 599, 645
PDF output customization

Show comments and tracked changes 599, 645
DocBook 4 document type

Transformation scenarios 589, 638
DocBook 4 to WebHelp transformation 589, 638
DocBook 4 transformations 589, 638
DocBook 5 document type

Transformation scenarios 596, 642
DocBook 5 to WebHelp transformation 596, 642
DocBook 5 transformations 596, 642
DocBook 5.1 Assembly 603
DocBook 5.1 document type 595
DocBook 5.1 Topic document type 604
DocBook olink 593, 600
DocBook Targetset document type 605
DocBook to DITA transformation 593, 600, 641, 646
DocBook to EPUB transformation 592, 600, 642, 646
DocBook to PDF transformation 592, 599, 641, 645
Document checking preferences 73
Document plugin extension 955
Document template preferences 88
Document templates

Creating 203
Customizing 204

Document type association preferences 47
Document type configuration dialog box

Association rules tab 49
Author tab

Actions subtab 52
Content Completion subtab 61
Contextual Menu subtab 59
CSS subtab 51
Menu subtab 58
Toolbar subtab 60

Catalogs tab 63

1151

Classpath tab 51
Extensions tab 65
Schema tab 50
Templates tab 62
Transformation tab 63
Validation tab 64

Document Types 588
Documentum xDB database connection 881
Documentum xDB database contextual menu actions 882
Documentum xDB database parser configuration 885
Documentum xDB troubleshooting 885
Drag and Drop in Grid Mode 273
Drag and Drop in Text Mode 245
DTD Entities for editing large XML documents 316
Duplicate nodes in Grid Mode 273
Duplicate transformation scenario 707

E
Edit

create new documents 199
Edit cell value in Grid Mode 273
Edit documents with long lines 561
Edit mode preferences 67
Edit validation scenario 286
Editing Modes

Design 188, 382
Grid 185
Text 163

Editing XML markup in Text Mode 241
Editing XSLT

Compile XSL Stylesheet for Saxon tool 373, 990
Editor perspective 158
Editor preferences 66
Editor variables

Custom editor variables 152
Elements view in Text mode 179, 253
Encoding preferences 65
Entities view 179, 254
EPUB document type 634
Executing SQF in Other Documents 529
eXist database connection 871
eXist database contextual menu actions 873
Export color themes 43
Export Global Options 142
Export Global Transformation Scenarios 147
Export Global Validation Scenarios 147
Export Layout 143
Export Markdown documents 536
Extending Oxygen with plugins 944
External tool configuration 128
External tool preferences 128
External Tools 1126

F
Facets view in Design mode 193, 420
File comparison appearance preferences 124
File comparison preferences 122
File extension association 142
File properties 215
File related actions in Text Mode 258
File type preferences 131
Find All Elements action 304

Find All Elements dialog box 304
Find/Replace action 302
Find/Replace dialog box 302
Find/Replace in Files action 306
Find/Replace in multiple files 306
Find/Replace text 302
Flatten Schema tool 443, 987
FO processor preferences 107
Folding in Text Mode 245
Font preferences 45
Font size configuration in Text mode 239
Format and Indent Files tool 262, 991
Format and Indent in Text Mode 259
Format/Indent multiple files 262, 991
Formatting preferences 74
Formatting Schematron Quick Fix Content 529
Framework customization

Deploying as Add-ons 958
Localizing 57

Framework directory locations 48
Frameworks 588
FTP connection settings 136

G
General plugin extension 953
Generate Documentation tools 992
Generate Sample XML Files tool

Advanced tab 431, 983
From command line 431, 984
Options tab 429, 981
Schema tab 427, 980

Generate WSDL Documentation tool 473, 999
Generate XML Schema Documentation tool

Customize PDF output 438
From command line 439
Output formats 435

Generate XSLT Stylesheet Documentation tool
Custom format 371
From command line 372
HTML format 369

Generic JDBC database connection 887
GET parameters for WebHelp Classic 801, 823
GET parameters for WebHelp Responsive 766
Getting Started with Oxygen

Help 7
Layout 3
Resources to help you with Oxygen 4
Shortcut keys 10
Supported document types 4

Global Options 140
Global preferences 42
Grid editing mode

Add nodes 273
Bidirectional text 187
Clear content 273
Content Completion Assistant 275
Copy/Paste 274
Drag and Drop 273
Duplicate nodes 273
Edit cell value 273
Insert columns 273
Insert rows 273
Refresh layout 273
Sort columns 272

1152

Grid editing modes
Layout 185
Navigation 186

Grid mode preferences 69

H
Help

Randomize XML text content 9
Support related resources 7
Using the Help menu 7

Hex Viewer tool 1011
Highlight ID occurrences in Text Mode 264
Highlights in XML documents 319
HTTP authentication schemes 213
HTTP connection settings 135
HTTPS troubleshooting 211

I
IBM DB2 database connection 854
IBM DB2 database contextual menu actions 856
Import color themes 43
Import data dynamically 919
Import Global Options 142
Import Global Transformation Scenarios 147
Import Global Validation Scenarios 147
Import preferences 112
Importing data 913
Importing data from a database 916
Importing data from Excel 915
Importing data from HTML files 918
Importing Data from text files 913
Incorrect Function error 33
Increase stack size 1128
Indenting Schematron Quick Fix Content 529
Information view 318
Information view preferences 137
Insert columns in Grid Mode 273
Insert File in Text mode 258
Insert rows in Grid Mode 273
Install new add-ons 36
Installing Oxygen

Command line options 38
Floating license server 27
Group deployment 23
HTTP floating license server

Management and Statistics 29
Replacing 31
Upgrading 31

Installation options 14
Java Web Start Installer 21
Licensing 23
Linux Installation 17
Linux/Unix Server Installation 20
Mac OS X Installation 16
TCP floating license server

All Platforms distribution
Replacing 34
Upgrading 34

Windows 32-bit
Incorrect Function error 33
Process Terminated Unexpectedly error 33
Replacing 33

Upgrading 33
Transfer license key 35
Upgrading 35
Windows Installation 15
Windows Server Installation 19

Integrate Schematron Quick Fixes in a framework 532
Integrating external tools 1126
Introduction 1

J
JATS document type 634
Java system properties 152
Java VM parameters 156
JavaScript documents

Content Completion 511
Editing features 509
Outline view 512
Syntax highlighting 511
Validation 510

JDBC-ODBC database connection 888
Jenkins integration with WebHelp plugin 833
JSON documents

Folding 506
Grid mode editing features 505
Outline view 506
Syntax highlighting 506, 537, 542
Text mode editing features 503
Validation 506
XML to JSON converter 507, 989

jTEI document type 633

K
Kerberos 213

L
Large documents 559
Large File Viewer tool 1009
Layout configuration 143
Layout preferences 46
LESS stylesheets

Compile to CSS 484
Content completion 483
Editing features 482
Syntax highlighting 483
Validation 483

Licensing Oxygen
Floating license

HTTP license server 25
Multiple users 26
Release floating license 26
TCP license server 25

Named-user license 24
Load Layout 143
Localization file 155
Localizing frameworks 57
Localizing the user interface 155
Localizing XML refactoring operations 339, 979
Lock Handler plugin extension 947
Lock/Unlock XML tags in Text Mode 259

1153

M
Manage add-ons 36
Manage highlighted content in Text Mode 263
Manual validation actions 277
Markdown documents

Actions in Markdown Editor 537
DITA 543
Markdown Editor 536
Rules and specifications 543
Validation 542

Markdown Editor 536
MarkLogic database connection 875
MarkLogic database contextual menu actions 880
MarkLogic debugging 878, 900
MarkLogic for the developer 877
Markup transparency in Text Mode 258
Master Files

Add files 235
Contextual menu 235
Detecting 234
Enabling 233
Overview 233
Transformations 235
Validation 235

Menu Shortcut Keys 130
Message preferences 138
Microsoft SQL Server database connection 857
Microsoft SQL Server database contextual menu actions 859
Model view 178, 251
Modular XML files 311
Move file tabs 213
Move XML resources 313
MSXML 3.0 and 4.0 preferences 102
MSXML.NET preferences 102
MySQL database connection 886

N
Navigating in Text Mode 163, 237
Network connection preferences 134
New document from templates 203
New Document Wizard 199
New from Templates Wizard 203
New project 6, 222
NISO Journal Article Tag Suite document type 634
Non-XML files 552
NTLM 213
NVDL schemas

Component Dependencies view 501
Content completion 500
Diagram Editor

Contextual menu actions 500
Full Model view 498
Introduction 498
Logical Model view 499

Outline view 501
Refactoring actions 502
Search actions 502
Syntax highlighting 501
Validation 500

O
Olink element 593, 600
Open file 205
Open File at Cursor in Text mode 258
Open file at specific location 207
Open file at start-up 206
Open file in system application 206
Open preferences 83
Open Redirect plugin extension 948
Open remote document 208
Open URL dialog box 208
Open/Find Resource

In content 220
In file paths 221
In reviews 222

Open/Find resource preferences 132
Option Page plugin extension 948
Options Menu

Preferences 40
Oracle database connection 860
Oracle database contextual menu actions 862
Out Of Memory error 107, 1009, 1128, 1129
Outline view in Design mode 189, 416
Outline view in Text mode 174, 255
Outline view preferences 137
oxy:allows-child-element function 55
oxy:allows-global-element function 56
oxy:current-selected-element function 57
oxy:is-required-element function 57
Oxygen SDK

Automated tests 959
CMS integration 955
Configuration 944
Custom Protocol 958
Debugging a plugin 960
Debugging an SDK extension 961
Deploying plugins as add-ons 958
Disable a plugin 961
Installation 945
Types of Extensions 946

P
PAC 135
Palette view in Design mode 194, 419
Performance preferences 83
Perspectives

Database 161
Editor 158
XQuery Debugger 160
XSLT Debugger 159

Plugin extensions
Additional Framework 946
Components Validation 946
Custom Protocol 947
Document 955
General 953
Lock Handler 947
Open Redirect 948
Option Page 948
Refactoring Operations 953
Resource Locking 948
Selection 953
URL Stream Handler 949

1154

Workspace Access
Adding custom views 951

Workspace Access (JS-based) 951
Plugin preferences 127
Plugins

Automated tests 959
CMS integration 955
Configuration 944
Custom Protocol 958
Debugging 960
Debugging an SDK extension 961
Deploying plugins as add-ons 958
Disable a plugin 961
Installation 945
Types of Extensions 946

PostgreSQL database connection 864
PostgreSQL database contextual menu actions 866
Predefined frameworks

DITA Map 606
DITA Topic 605
DocBook 4 588
DocBook 5 595
DocBook 5.1 595
DocBook 5.1 Assembly 603
DocBook 5.1 Topic 604
DocBook Targetset 605
EPUB 634
JATS 634
jTEI 633
TEI ODD 632
TEI P5 631
XHTML 630

Predefined XML refactoring operations 323, 966
Preferences

Add-ons 47
Appearance

Colors 44
Fonts 45

Application Layout 46
Archive 126
CSS Validator 91
Custom Editor Variables 134
Data Sources

Table Filters 118
Diff

Directories Comparison
Appearance 126

Files Comparison
Appearance 124

DITA 114
Document Type Association

Document type configuration dialog box
Association rules tab 49
Author tab

Actions subtab 52
Content Completion subtab 61
Contextual Menu subtab 59
CSS subtab 51
Menu subtab 58
Toolbar subtab 60

Catalogs tab 63
Classpath tab 51
Extensions tab 65
Schema 50
Templates tab 62

Transformation tab 63
Validation tab 64

Locations 48
Editor

Code Templates 85
Content Completion

Annotations 80
JavaScript 82
XPath 81
XSD 81
XSL 80

Custom Validation Engines 89
Document Checking 73
Document Templates 88
Edit Modes

Author
Schema Design

Properties 71
Grid 69
Text

Diagram 69
Format

CSS 78
JavaScript 78
XML

Whitespaces 77
XPath 78
XQuery 77

Mark Occurrences 89
Open/Save

Save Hooks 84
Print 67
Spell Check

Spell Check Dictionaries 72
Syntax Highlight

Elements/Attributes by Prefix 82
Templates 84

Encoding 65
External Tools 128
File Types 131
Global 42
Menu Shortcut Keys 130
Messages 138
Network Connection Settings

(S)FTP 136
HTTP(S)/WebDAV 135
Proxy 134
SSH 137
Trusted Hosts 137

Open/Find Resource 132
Plugins 127
SVN

Diff 121
Messages 122
Working Copy 120

Views 137
XML

Ant 112
Import 112
Sample XML Files Generator 95
XML Catalog 91
XML Parser

Relax NG 94
Schematron 94
XML Schema 93

1155

XML Refactoring 114
XML Signing Certificates 114
XProc 97
XSLT-FO-XQuery

Custom Engines 111
Debugger 106
FO Processor 107
Profiler 106
XPath 110
XQuery

Saxon-HE/PE/EE
Advanced 105

XSLT
MSXML 102
MSXML.NET 102
Saxon-HE/PE/EE

Advanced 100
Saxon6 98
XSLTProc 101

XML Structure Outline 137
Prince Print with CSS processor 627, 667
Print documents 320
Print preferences 67
Print Preview dialog box 320
Problems and solutions 1129
Process Terminated Unexpectedly error 33
Project Options 140
Project view 165, 223
Project view preferences 137
Projects

Adding items to projects 6, 222
Creating new projects 6, 222
Image preview 231
Managing resources 165, 223
Master files

Add files 235
Contextual menu 235
Detecting 234
Enabling 233
Overview 233
Transformations 235
Validation 235

Move resources 230
Project view 165, 223
Rename resources 230
Sharing 231

Proxy auto-config script 135
Proxy preferences 134
Publish WebHelp on SharePoint 768, 804, 826
Publishing 637

Q
Quick Assist feature in Text Mode 264
Quick Find toolbar 305
Quick fix support in XML documents 292

R
Read-only files 561
Rectangular Selection feature 246
Refactoring Operations plugin extension 953
Refactoring XML Documents 321, 963
Refresh layout in Grid Mode 273

Regular expressions syntax 305, 309
Relax NG schemas

Component Dependencies View 494
Content completion 488
Custom datatype library 497
Diagram Editor

Contextual menu actions 487
Full Model view 485
Introduction 485
Logical Model view 486
Symbols 486

Editing in Master Files context 484
Moving resources 494
Outline view 490
Quick Assist feature 496
Refactoring actions 495
Renaming resources 494
Resource Hierarchy/Dependencies view 492
Search actions 495
Syntax highlighting 489
Validation 488

Rename XML resources 313
Reset Global Options 142
Reset Layout 143
Resolve schemas through XML catalogs 301, 315
Resource Hierarchy/Dependencies view for XML documents
312
Resource Locking plugin extension 948
Restricting Schematron Quick Fix operations 528
Results view

Make persistent copy 318

S
Sample XML File Generator preferences 95
Save file 207
Save preferences 83
Save remote document 208
Saxon 6 XSLT preferences 98
Saxon HE/PE/EE advanced XQuery preferences 105
Saxon HE/PE/EE advanced XSLT preferences 100
Saxon HE/PE/EE XQuery preferences 104
Saxon HE/PE/EE XSLT preferences 99
Schema annotations in Text Mode 249
Schema Design mode 188, 382
Schema Diagram Editor 188, 382
Schematron Quick Fix Operations

Add 526
Delete 526
Replace 526
String Replace 526

Schematron Quick Fixes
Content Completion 530
Customizing 524
Defining 524
Embedded 531
Executing SQF in Other Documents 529
Formatting and Indenting 529
Highlight occurrences 530
Integrating in a framework 532
Refactoring actions 530
Restricting operations 528
Search actions 530
SQF Operations 526
Use-When Condition 528

1156

User Entry operation 528
Validation 529

Schematron schemas
Content completion 516
Syntax highlighting 517

Schematron Schemas
Editing features 514
Editing in Master Files context 515
Embedded 517
Highlight occurrences 521
Moving resources 521
Outline view 518
Quick Assist feature 523
Refactoring actions 521
Renaming resources 521
Resource Hierarchy/Dependencies view 519
Search actions 521
Validation 515

Scratch Buffer 560
Search actions for IDs 309
Search dialog box 302
Search in current file 302
Search multiple files 306
Search preferences 132
Searching documents

Open/Find Resource
In content 220
In file paths 221
In reviews 222

Selecting content in Text Mode 246
Selection plugin extension 953
Set indent to zero in Text Mode 262
Set schema for content completion in Text Mode 249
SFTP connection settings 136
Share transformation scenarios 710
Share validation scenarios 290
SharePoint Browser view 908
SharePoint contextual menu actions 910
SharePoint database connection 907
Sharing project level options 141
Sharing project options file

Minimize differences between versions 233
Sharing settings 141
Sharing Transformation Scenarios 231
Sharing Validation Scenarios 231
Sharing XML refactoring operations 338, 978
Shortcut actions in Text Mode 239
Shortcut key configuration 130
Shortcut Keys 10
Sign files tool 564, 1002
Signing XML document preferences 114
Single sign-on 213
Smart Editing in Text Mode 239
Sort table columns in Grid Mode 272
Special character preferences 83
Spell check preferences 71
Spell checking

Add dictionaries 555
Add term lists 556, 558
Customizing dictionaries and term lists 554
Dictionaries and term lists 554
Forbidden words 556
Ignored words 558
Learned words 558
Multiple files 559

Replace dictionaries 557
Spell Checking

Automatic spell check 558
SQF

Content Completion 530
Customizing 524
Defining 524
Embedded 531
Executing SQF in Other Documents 529
Formatting and Indenting 529
Highlight occurrences 530
Integrating in a framework 532
Operations 526
Refactoring actions 530
Restricting operations 528
Search actions 530
Use-When Condition 528
User Entry operation 528
Validation 529

SQL transformation scenario 705
SSH connection settings 137
StackOverflowException error 90
Startup parameter

Application launcher parameters 156
Command line script parameters 157
Custom startup parameters file 157

Startup parameters 156
Storing global options 140
Storing project level options 140
Storing XML refactoring operations 338, 978
StratML documents

Editing features 508
Supported document types 588, 635
SVG files

SVG Viewer 533, 1011
SVG viewer in Results panel 534

SVG Viewer in Results panel 534
SVG Viewer tool 533, 1011
SVN Client

Authentication 1044
Branches/Tags

Create branch/tag 1067
Exporting resources 1091
Importing resources 1089
Manage resources 1092
Merging 1068
Patching 1080
Relocate working copy 1080
Switch repository location 1078

Checking out a working copy 1047
Define a working copy 1046
Entering local paths and URLs 1123
History dialog box 1049
Manage repository locations 1043
Menus 1034
Preferences 1123
Properties 1066
Request history for a resource 1066
Request status information for a resource 1065
Resource History view

Directory Change Set view 1111
Revision Graph 1119
Share projects 1045
Sparse checkouts 1093
Status bar 1043

1157

Synchronize with the SVN repository
Conflicts 1057
Integrating bug tracking tools 1064
Send changes to repository 1062
Update working copy 1061
View differences 1055

Technical issues 1124
Toolbar 1042
Use an existing working copy 1049
Views

Annotations view 1112, 1119
Compare Images view 1117
Compare view 1115
Dynamic Help view 1119
Editor view 1112
History view 1107
Image Preview panel 1117
Properties view 1117
Repositories view 1094
Working Copy view 1097

Working copy resource management
Add resources 1050
Copy resources 1052
Delete resources 1052
Edit files 1050
Ignore resources 1052
Lock/Unlock resources 1053
Move resources 1053
Rename resources 1053

SVN message preferences 122
SVN preferences 119
Switch file tabs 213
Syntax highlight preferences 82
Syntax highlighting in Text Mode 255
Syntax highlights in Text mode 183
System properties 152

T
Table Explorer view 850
Tags transparency selector 258
TEI ODD document type 632
TEI P5 document type 631
Text editing mode

Attributes view 176, 252
Bidirectional text 184
Content completion 247
Contextual menu actions 264
Drag and Drop 245
Editing XML markup 241
Elements view 179, 253
Entities view 179, 254
File related actions 258
Folding 245
Format and indent 259
Format and indent multiple files 262, 991
Highlight ID occurrences 264
Lock/Unlock XML tags 259
Manage highlighted content 263
Markup transparency 258
Model view 178, 251
Navigation 163, 237
Outline view 174, 255
Rectangular selection 246
Schema annotations 249

Selecting content 246
Set indent to zero 262
Set schema for content completion 249
Shortcut actions 239
Smart Editing 239
Syntax highlighting 255
Syntax highlights 183
Validation errors 183, 278
Views 165

Text mode preferences 68
Three-way file comparison 567, 1013
Too many nested apply-templates calls 1128
Toolbar configuration 145
Transform DITA document to MS Word 628
Transformation Scenarios

Ant 689
Batch transformation 710
Built-in transformation scenarios 638
Configure 706
Configure Calabash with XEP 714
Configure Transformation Scenario dialog box 707
Configure XSLT processor extension paths 716
Custom XSLT processor 716
Debugging PDF transformations 713
DITA map 607, 646
DITA Map to CHM (Compiled Help 630, 668
DITA Map to Kindle 630, 669
DITA Map to MS Office Word 628
DITA Map to PDF WYSIWYG 627, 667
DITA Map to WebHelp Classic 614, 654
DITA Map to WebHelp Classic Mobile 619, 659
DITA Map to WebHelp Classic with Feedback 617, 656
DITA Map to WebHelp Responsive 607, 647
DITA Map to WebHelp Responsive with Feedback 611, 650
DITA OT 681
DocBook 4 589, 638
DocBook 4 to DITA 593, 600, 641, 646
DocBook 4 to EPUB 592, 600, 642, 646
DocBook 4 to PDF 592, 599, 641, 645
DocBook 4 to WebHelp 589, 638
DocBook 5 596, 642
DocBook 5 to DITA 593, 600, 641, 646
DocBook 5 to EPUB 592, 600, 642, 646
DocBook 5 to PDF 592, 599, 641, 645
DocBook 5 to WebHelp 596, 642
Duplicate 707
Integrate external XProc engine 714
New

Ant 689
DITA OT 681
SQL 705
XML with XQuery 675
XML with XSLT 669
XProc 697
XQuery 700
XSLT 691

PDF output using Calabash XProc processor 714
Sharing 710
SQL 705
Supported XSLT processors 714
XML with XQuery 675
XML with XSLT 669
XProc 697
XQuery 700
XSL-FO processors 717

1158

XSLT 691
Transformation Scenarios view 711
Transformation types 706
Transforming Documents 637
Travis CI integration with WebHelp plugin 833
Tree editor preferences 137
Tree Editor tool 1013
Trusted hosts connection settings 137
Two-way file comparison 567, 1013

U
Unicode support

Character Map 196
Fallback Font Support 198
Inserting symbols 196
Opening/Saving documents with unsupported characters
196

Uninstalling Oxygen 37
Upgrading Oxygen 35
Uppercase plugin 954
URL Stream Handler plugin extension 949
Use-When SQF Condition 528
User Entry SQF operation 528
UTF-8 BOM handling 65

V
Validating XML Documents

Against a schema 277
Against Schematron 515
Automatic validation 277
Check Well-formedness 276
Create new validation scenarios 282
Custom validators 280
Customizing error messages 280
Edit validation scenarios 286
Manual validation 277
References to schema specifications 290
Resolving references to remote schemas 291
Sharing scenarios 290
Text Mode 183, 278

Validation engine 'StackOverflowException' error 90
Validation errors in Text mode 183, 278
Validation preferences 73
Verify Signature tool 566, 1004

W
WebDAV connection 892
WebDAV connection settings 135
WebDAV contextual menu actions 893
WebDAV over HTTPS 211
WebHelp Classic Mobile system

Customizing 805
WebHelp Classic system

Add button in code snippets (DITA) 782, 806
Add custom HTML content 781, 805
Add Facebook widget 787, 812
Add Favicon 749, 782, 806
Add Google+ widget 788, 812
Add logo image 749, 782
Add Twitter widget 788, 813
Add video and audio objects in DITA 749, 783, 807

Add videos in DocBook 784, 808
Adding additional resources 747, 781, 805
Changing icons in the table of contents 784, 808
Changing the style of WebHelp Mobile pages 808
CSS styling to customize WebHelp output 752, 785, 809
Customize highlights in the table of contents 785, 809
Customize ordered lists 752, 784, 808
Customizing

Overriding the XSLT processing step 759, 793, 816
Overriding XSLT stylesheet from Ant build file 763, 796,
820
XSLT-Import extension point 760, 793, 817
XSLT-Parameter extension point 760, 793, 817

Disable caching 786, 810
Edit scoring in search results 753, 786, 810
Exclude DITA topics from search results 754, 787, 811
Flag DITA content 754, 787, 811
GET parameters 801, 823
Indexing Japanese content 759, 792, 816
Integrate Google Analytics 789, 814
Integrate Google Search 790, 814
Localize email notifications 758, 791
Localizing the interface for DITA transformations 758, 791,
815
Localizing the interface for DocBook transformations 792,
815
Overriding the XSLT processing step 759, 793, 816
Overriding XSLT stylesheet from Ant build file 763, 796, 820
Publishing on SharePoint Site 804, 826
Remove Previous/Next links 799, 822
Right-to-Left languages 766, 800, 823
Search engine optimization 765, 799, 822
Skin Builder 800
Use custom CSS 785, 810
XSLT-Import extension point 760, 793, 817
XSLT-Parameter extension point 760, 793, 817

WebHelp Classic with Feedback system
Admin Panel 730, 779
Deploying 728, 777
Installing 728, 777
Manage comments 730, 779
Refreshing content 730, 779

WebHelp Mobile system 804
WebHelp Plugin

DITA
Apply custom styling to an external transformation
832
Configuring the comments database 833
Integrate Output with Jenkins 833
Integrate Output with Travis CI 833
Integration with DITA OT 826
Licensing 827
Running external transformation 828
Upgrading 827

DocBook
Configuring the comments database 837
Integration with DocBook XSL 835
Licensing 835
Running external transformation 835
Upgrading 835

WebHelp Responsive system
Add custom HTML content 748
Add Facebook widget 754
Add Favicon 749, 782, 806
Add Google+ widget 755

1159

Add logo image 749, 782
Add Tweet widget 755
Add video and audio objects in DITA 749, 783, 807
Add welcome message 749
Adding additional resources 747, 781, 805
Configure tiles 750
CSS styling to customize WebHelp output 752, 785, 809
Customization methods 744
Customize ordered lists 752, 784, 808
Customize the menu 752
Customizing

Overriding the XSLT processing step 759, 793, 816
Overriding XSLT stylesheet from Ant build file 763, 796,
820
XSLT-Import extension point 760, 793, 817
XSLT-Parameter extension point 760, 793, 817

Customizing side TOC 761, 794, 818
Edit scoring in search results 753, 786, 810
Exclude DITA topics from search results 754, 787, 811
Flag DITA content 754, 787, 811
GET parameters 766
Indexing Japanese content 759, 792, 816
Integrate Google Analytics 756
Integrate Google Search 757
Localize email notifications 758, 791
Localizing the interface for DITA transformations 758, 791,
815
Overriding the XSLT processing step 759, 793, 816
Overriding XSLT stylesheet from Ant build file 763, 796, 820
Publishing on SharePoint Site 768
Right-to-Left languages 766, 800, 823
Search engine optimization 765, 799, 822
Templates

Components 738
Directory structure 732
HTML template files 734
Template page types 734

XSLT-Import extension point 760, 793, 817
XSLT-Parameter extension point 760, 793, 817

WebHelp Responsive with Feedback system
Admin Panel 730, 779
Deploying 728, 777
Installing 728, 777
Manage comments 730, 779
Refreshing content 730, 779

WebHelp System Output
Context-Sensitive WebHelp Classic 802, 824
Context-Sensitive WebHelp Responsive 767
WebHelp Classic 769
WebHelp Classic with Feedback 772
WebHelp Mobile 804
WebHelp Responsive 721
WebHelp Responsive with Feedback 725

Workspace Access (JS-based) plugin extension 951
Workspace Access plugin extension 950
WSDL documents

Component Dependencies view 468
Content completion 461
Editing in Master Files context 461
Generate documentation for WSDL documents

Custom format 476
From command line 476
HTML format 475

Highlight occurrences 469
Moving resources 468

Outline view 463
Quick Assist feature 472
Refactoring actions 470
Renaming resources 468
Resource Hierarchy/Dependencies view 466
Search actions 470
SOAP analyzer

Test remote files 478, 1006
UDDI Registry Browser 479, 1006

Syntax highlighting 462
Validation 461

WSDL SOAP Analyzer tool
Test remote files 478, 1006
UDDI Registry Browser 479, 1006

X
XHTML document type 630
XHTML documents

Editing features 535
XInclude for editing large XML documents 316
XLIFF documents

Editing features 508
XML catalog preferences 91
XML Catalogs 314
XML documents

Associate schema 294
Associate schema directly in XML documents 298
Associate schema in a framework configuration 301
Associate schema in a validation scenario defined in
framework 297
Associate schema through a validation scenario 294
Author Mode editing

Entities view 179, 254
Model view 178, 251

Code templates 255
DTD Entities for editing large documents 316
Editing in Master Files context 311
Find All Elements dialog box 304
Find/Replace dialog box 302
Find/Replace in multiple files 306
Find/Replace text 302
Grid Mode editing

Add nodes 273
Clear content 273
Content Completion Assistant 275
Copy/Paste 274
Drag and Drop 273
Duplicate nodes 273
Edit cell value 273
Insert columns 273
Insert rows 273
Refresh layout 273
Sort columns 272

Highlights 319
Learn document structure 301
Moving resources 313
Navigating Find/Replace matches 305
Printing 320
Quick Assist feature 264
Quick Find toolbar 305
Quick fix support 292
Refactoring

Custom operations 327, 970
Localizing operations 339, 979

1160

Predefined operations 323, 966
Sharing operations 338, 978
Storing operations 338, 978

Renaming resources 313
Resolve schemas through XML catalogs 301, 315
Resource Hierarchy/Dependencies view 312
Results view

Make persistent copy 318
Search actions for IDs 309
Status information 318
Text Mode editing

Attributes view 176, 252
Content completion 247
Contextual menu actions 264
Drag and Drop 245
Editing XML markup 241
Elements view 179, 253
Entities view 179, 254
File related actions 258
Folding 245
Format and indent 259
Format and indent multiple files 262, 991
Highlight ID occurrences 264
Lock/Unlock XML tags 259
Manage highlighted content 263
Markup transparency 258
Model view 178, 251
Navigation 163, 237
Outline view 174, 255
Rectangular selection 246
Schema annotations 249
Selecting content 246
Set indent to zero 262
Set schema for content completion 249
Shortcut actions 239
Smart Editing 239
Syntax highlighting 255

Validation
Against a schema 277
Against Schematron 515
Automatic validation 277
Check Well-formedness 276
Create new validation scenario 282
Custom validators 280
Customizing error messages 280
Edit validation scenario 286
Manual validation 277
References to schema specifications 290
Resolving references to remote schemas 291
Sharing scenarios 290
Text Mode 183, 278

XInclude for editing large documents 316
XML catalogs 314

XML documents without a schema 301
XML parser preferences 93
XML refactoring preferences 114
XML Refactoring tool

Custom operations 327, 970
Localizing operations 339, 979
Predefined operations 323, 966
Sharing operations 338, 978
Storing operations 338, 978

XML Schema Design mode 188, 382
XML Schema Diagram Editor

Attributes view 191, 418

Components 391
Contextual menu actions 385
Edit namespaces 413
Editing actions 384
Facets view 193, 420
Navigation 189, 383
Outline view 189, 416
Palette view 194, 419
Validation 412

XML Schema Regular Expression Builder tool 445, 1007
XML Schemas

Attributes view 191, 418
Component Dependencies view 423
Content completion 415
Convert DB Structure to XML Schema tool 442, 987
Design mode editing

Components
Grouping components 410
xs:all 405
xs:alternative 401
xs:any 406
xs:anyAttribute 406
xs:assert 409
xs:attribute 395
xs:attributeGroup 397
xs:choice 405
xs:complexType 398
xs:element 392
xs:field 409
xs:group 402
xs:import 403
xs:include 403
xs:key 408
xs:keyRef 408
xs:notation 404
xs:openContent 410
xs:override 404
xs:redefine 403
xs:schema 391
xs:selector 408
xs:sequence 405
xs:simpleType 400
xs:unique 407

Contextual menu actions 385
Edit namespaces 413
Editing actions 384
Facets view 193, 420
Navigation 189, 383
Palette view 194, 419
Validation 412

Editing in Master Files context 413
Flatten Schema tool 443, 987
Generate documentation for XML Schema

Customize PDF output 438
From command line 439
Output formats 435

Generate Sample XML Files tool
Advanced tab 431, 983
From command line 431, 984
Options tab 429, 981
Schema tab 427, 980

Generate/Convert Schema tool 440, 985
Highlight occurrences 425
Moving resources 423
Outline view 189, 416

1161

Quick Assist feature 426
Refactoring actions 425
References to specification 414
Regular Expressions Builder 445, 1007
Renaming resources 423
Resource Hierarchy/Dependencies view 421
Search actions 425
Set version 447
Syntax highlighting 415
Text mode editing 413
Validation 414
XML Schema 1.1 support 446

XML to JSON tool 507, 989
XML transformation with XQuery 675
XML transformation with XSLT 669
XPath Expressions

Catalogs 843
Prefix mapping 843
Toolbar 838
XPath Builder view 840
XPath Results view 842

XProc Scripts
Editing features 512

XProc transformation scenario
Inputs tab 698
Options tab 700
Outputs tab 699
Parameters tab 698
XProc tab 698

XQuery
Content completion 449
Folding 450
Format and Indent 450
Generate HTML documentation 456, 998
Input view 352, 454
Outline view 451
Sequence view 458
Syntax highlighting 449
Transformations

Sequence view 458
Updating XML documents 460
XQJ 899

Updating XML documents 460
Validation 448
XQuery Builder view 452

XQuery Debugger perspective
Breakpoints 936
Identify expressions 937
Information views

Breakpoints view 928
Context Node view 926
Messages view 929
Nodes/Values Set view 933
Output Mapping Stack view 930
Stack view 930
Templates view 933
Trace History view 931
Variables view 934
XPath Watch view 927

Java extensions 939
Layout 923
Profiling

Hotspots view 942
Invocation Tree view 941

Steps in a typical debugging process 936

Toolbar 924
XQuery Documentation tool 456, 998
XQuery preferences 103
XQuery Profiler preferences 106
XQuery transformation scenario

FO Processor tab 679, 704
Output tab 680, 704
XQuery tab 676, 700

XSLT
Component Dependencies view 358
Component documentation 360
Content completion 344
Content completion in XPath expressions 345
Editing features 340
Editing in Master Files context 340
Generate documentation for XSLT stylesheets

Custom format 371
From command line 372
HTML format 369

Highlight occurrences 359
Input view 352, 454
Moving resources 357
Outline view 349
Quick Assist feature 363
Quick fix support 342
Refactoring actions 360
Renaming resources 357
Resource Hierarchy/Dependencies view 355
Search declarations 359
Search references 359
Syntax highlighting 348
Unit test (XSpec) 365
Validation 340
XPath Tooltip Helper 348

XSLT Debugger perspective
Breakpoints 936
Identify expressions 937
Information views

Breakpoints view 928
Context Node view 926
Messages view 929
Nodes/Values Set view 933
Output Mapping Stack view 930
Stack view 930
Templates view 933
Trace History view 931
Variables view 934
XPath Watch view 927

Java extensions 939
Layout 923
Profiling

Hotspots view 942
Invocation Tree view 941

Steps in a typical debugging process 936
Toolbar 924

XSLT Import extension points for WebHelp 759, 760, 793, 793,
816, 817
XSLT Parameter extension points for WebHelp 759, 760, 793,
793, 816, 817
XSLT preferences 98
XSLT Profiler preferences 106
XSLT transformation scenario

FO Processor tab 674, 696
Output tab 674, 696
XSLT tab 669, 691

1162

XSLTProc preferences 101

1163

Copyright

Oxygen XML Developer User Manual

Syncro Soft SRL.

Copyright © 2002-2017 Syncro Soft SRL. All Rights Reserved.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher. Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

Trademarks. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this document, and Syncro Soft SRL was aware of a trademark claim,
the designations have been rendered in caps or initial caps.

Notice. While every precaution has been taken in the preparation of this document, the publisher and the author
assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in
this document or from the use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Link disclaimer. Syncro Soft SRL is not responsible for the contents or reliability of any linked Web sites referenced
elsewhere within this documentation, and Syncro Soft SRL does not necessarily endorse the products, services, or
information described or offered within them. We cannot guarantee that these links will work all the time and we have
no control over the availability of the linked pages.

Warranty. Syncro Soft SRL provides a limited warranty on this product. Refer to your sales agreement to establish the
terms of the limited warranty. In addition, Oxygen XML Developer End User License Agreement, as well as information
regarding support for this product, while under warranty, is available through the Oxygen XML Developer website.

Third-party components. Certain software programs or portions thereof included in the Product may contain software
distributed under third party agreements ("Third Party Components"), which may contain terms that expand or limit
rights to use certain portions of the Product ("Third Party Terms"). Information identifying Third Party Components and
the Third Party Terms that apply to them is available on the Oxygen XML Developer website.

Downloading documents. For the most current versions of documentation, see the Oxygen XML Developer website.

Contact Syncro Soft SRL. Syncro Soft SRL provides telephone numbers and e-mail addresses for you to report
problems or to ask questions about your product, see the Oxygen XML Developer website.

https://www.oxygenxml.com/eula_developer.html
https://www.oxygenxml.com/thirdparty/
https://www.oxygenxml.com/documentation.html
https://www.oxygenxml.com/support.html

	Copyright
	Contents
	Introduction
	Getting Started
	What is Oxygen XML Developer
	Getting Familiar with the Layout
	Supported Document Types
	Resources to Help You Get Started Using Oxygen XML Developer
	Your First Document or Project
	Creating a New Project

	Getting Help
	Help Menu
	Randomize XML Text Content

	Frequently Used Shortcut Keys

	Installation
	Installation Options
	Windows Installation
	Choosing an Installer
	System Requirements
	Install Using the Windows Installer
	Unattended Installation

	Mac OS X Installation
	Choosing an Installer
	System Requirements
	OS X Installation

	Linux Installation
	Choosing an Installer
	System Requirements
	Linux Installation
	Unattended Installation

	Windows Terminal Server Installation
	Choosing an Installer
	System Requirements
	Install Using the Windows Installer
	Configuring Windows Terminal Server

	Linux Server Installation
	Choosing an Installer
	System Requirements
	Linux Installation
	Unix / Linux Server Configuration

	Java Web Start (JWS) Installation
	Site-wide deployment
	Licensing
	Choosing a License Type
	Obtaining a License
	Register a Named-User or Subscription License
	Registering a Floating License
	Request a Floating License from a TCP License Server
	Request a Floating License from an HTTP License Server
	Release a Floating License
	Register a Floating License for Multiple Users

	Setting up a License Server
	Setting up an HTTP Floating License Server
	Floating License Server Management and Statistics Pages
	Replacing a Floating License Key in an HTTP Floating License Server
	Upgrading Your HTTP Floating License Server

	Setting up a TCP Floating License Server Using a 32-bit Windows Installer
	Replacing a Floating License Key in a TCP Floating License Server
	Upgrading Your TCP Floating License Server
	Common Problems
	Windows Service Reports 'Incorrect Function When Started'
	Windows Service Reports 'Error 1067: Process Terminated Unexpectedly'

	Setting up a TCP Floating License Server Using All-Platforms Distribution
	Replacing a Floating License Key in a TCP Floating License Server
	Upgrading Your TCP Floating License Server

	Transferring or Releasing a License
	Upgrading
	Checking for New Versions of Oxygen XML Developer
	What is Preserved During an Upgrade?
	Upgrading the Standalone Application

	Installing and Updating Add-ons
	Uninstalling
	Uninstalling the Oxygen XML Developer Standalone
	Unattended Uninstall

	Oxygen XML Developer Installer Command Line Reference

	Configuration
	Preferences
	Global Preferences
	Appearance Preferences
	Colors Preferences
	Fonts Preferences

	Application Layout Preferences
	Add-ons Preferences
	Document Type Association Preferences
	Locations Preferences
	Document Type Configuration Dialog Box
	Association Rules Tab
	Schema Tab
	Classpath Tab
	Author Tab
	CSS Subtab
	Actions Subtab
	Action Dialog Box
	Activate Multiple Functions for Actions using XPath Expressions
	oxy:allows-child-element() Function
	oxy:allows-global-element() Function
	oxy:current-selected-element() Function
	oxy:is-required-element() Function

	Localizing Frameworks

	Menu Subtab
	Contextual Menu Subtab
	Toolbar Subtab
	Content Completion Subtab

	Templates Tab
	Catalogs Tab
	Transformation Tab
	Validation Tab
	Extensions Tab

	Encoding Preferences
	Editor Preferences
	Print Preferences
	Edit Modes Preferences
	Text Preferences
	Diagram Preferences

	Grid Preferences
	Schema Design Preferences
	Properties Preferences

	Spell Check Preferences
	Spell Check Dictionaries Preferences

	Document Checking Preferences
	Format Preferences
	XML Preferences
	Whitespaces Preferences

	XQuery Preferences
	XPath Preferences
	CSS Preferences
	JavaScript Preferences

	Content Completion Preferences
	Annotations Preferences
	XSLT Preferences
	XPath Preferences
	XSD Preferences
	JavaScript Preferences

	Syntax Highlight Preferences
	Elements/Attributes by Prefix Preferences

	Open/Save Preferences
	Save Hooks Preferences

	Templates Preferences
	Code Templates Preferences
	Document Templates Preferences

	Mark Occurrences Preferences
	Custom Validation Engines Preferences
	Increasing the Stack Size for Validation Engines

	CSS Validator Preferences
	XML Preferences
	XML Catalog Preferences
	XML Parser Preferences
	XML Schema Preferences
	Relax NG Preferences
	Schematron Preferences

	Sample XML Files Generator Preferences
	XProc Preferences
	XSLT-FO-XQuery Preferences
	XSLT Preferences
	Saxon6 Preferences
	Saxon-HE/PE/EE Preferences
	Saxon-HE/PE/EE Advanced Preferences

	XSLTProc Preferences
	MSXML Preferences
	MSXML.NET Preferences

	XQuery Preferences
	Saxon-HE/PE/EE Preferences
	Saxon HE/PE/EE Advanced Preferences

	Debugger Preferences
	Profiler Preferences
	FO Processors Preferences
	XPath Preferences
	Custom Engines Preferences

	Ant Preferences
	Import Preferences
	XML Signing Certificates Preferences
	XML Refactoring Preferences

	DITA Preferences
	Data Sources Preferences
	Table Filters Preferences
	Download Links for Database Drivers

	SVN Preferences
	Working Copy Preferences
	Diff Preferences
	Messages Preferences

	Diff Preferences
	Files Comparison Preferences
	Appearance Preferences

	Directories Comparison Preferences
	Appearance Preferences

	Archive Preferences
	Plugins Preferences
	External Tools Preferences
	Menu Shortcut Keys Preferences
	File Types Preferences
	Open/Find Resource Preferences Page
	Custom Editor Variables Preferences
	Network Connection Settings Preferences
	Proxy Preferences
	Using a Proxy Auto-Configuration Script (PAC)

	HTTP(S)/WebDAV Preferences
	(S)FTP Preferences
	Trusted Hosts Preferences
	SSH Preferences

	XML Structure Outline Preferences
	Views Preferences
	Messages Preferences

	Configuring Options
	Customizing Default Options
	Storing Global and Project Level Options
	Sharing Application Settings
	Importing/Exporting/Resetting Global Options

	Associating a File Extension with Oxygen XML Developer
	Configuring the Layout of the Views and Editors
	Configure Toolbars
	Import/Export Transformation or Validation Scenarios
	Editor Variables
	Custom Editor Variables

	Custom System Properties
	Localizing the User Interface
	Creating an Interface Localization File

	Setting a Java Virtual Machine Parameter when Launching Oxygen XML Developer
	Setting Parameters for the Application Launchers
	Setting Parameters in the Command Line Scripts
	Creating Custom Startup Parameters File

	Perspectives
	Editor Perspective
	XSLT Debugger Perspective
	XQuery Debugger Perspective
	Database Perspective

	Editing Modes
	Text Editing Mode
	Navigating the Document Content in Text Mode
	Text Mode Views
	Project View
	Open/Find Resource View
	Outline View in Text Mode
	Outline View Filters in Text Mode
	Outline View Contextual Menu Actions in Text Mode

	Attributes View in Text Mode
	Model View
	Elements View in Text Mode
	Entities View
	Results View

	Syntax Highlight Depending on Namespace Prefix
	Presenting Validation Errors in Text Mode
	Bidirectional Text Support in Text Mode

	Grid Editing Mode
	Layouts: Grid and Tree
	Grid Mode Navigation
	Bidirectional Text Support in Grid Mode

	Design Editing Mode (XML Schema Diagram Editor)
	Navigation in the XML Schema Design Mode
	XML Schema Outline View
	XML Schema Attributes View
	XML Schema Facets View
	XML Schema Palette View

	Editing Documents
	Working with Unicode
	Opening and Saving Documents with Unsupported Characters
	Inserting Symbols
	Unicode Fallback Font Support

	Creating and Working with Documents
	Creating New Documents and Templates
	New Document Wizard
	Creating New Document Templates
	Customizing Document Templates

	Opening Documents
	Opening the Current Document in System Application
	Opening Local Files at Start-up
	Opening a File at a Specific Location Using the Command Line Interface

	Saving Documents
	Opening and Saving Remote Documents
	Open URL
	Changing File Permissions on a Remote FTP Server
	WebDAV over HTTPS
	Troubleshooting HTTPS

	HTTP Authentication Schemes
	Single Sign-on

	Switching and Moving File Tabs
	Closing Documents
	Contextual Menu of the Current Editor Tab
	Viewing File Properties

	Searching Documents
	Open/Find Resource View
	Open/Find Resource Dialog Box
	Searching in Content
	Searching in File Paths
	Searching in Reviews
	Technical Aspects

	Using Projects to Group Documents
	Creating a New Project
	Project View
	Moving/Renaming Resources in the Project View
	Problems Updating References of Moved/Renamed Resources

	Image Preview from the Project View

	Sharing a Project - Team Collaboration
	Minimize Differences Between Versions Saved on Multiple Computers

	Master Files Support
	Master Files Benefits
	Enabling the Master Files Support
	Detecting Master Files
	Adding Files to the Master File Directory
	Project Validation and Transformation
	Contextual Menu of the Master Files

	Editing XML Documents
	Editing XML Documents in Text Mode
	Navigating the Document Content in Text Mode
	Smart Editing in Text Mode
	Shortcut Actions in Text Mode
	Editing XML Markup in Text Mode
	Folding XML Elements in Text Mode
	Drag and Drop in Text Mode
	Selecting Content in Text Mode
	Content Completion Assistant in Text Mode
	Set Schema to be Used for Content Completion in Text Mode
	Schema Annotations in Text Mode
	Content Completion Helper Views
	Model View
	Attributes View in Text Mode
	Elements View in Text Mode
	Entities View

	Code Templates

	Syntax Highlighting in XML Documents
	Outline View in Text Mode
	Outline View Filters in Text Mode
	Outline View Contextual Menu Actions in Text Mode

	Inserting or Opening a File at Cursor Location
	Adjusting the Transparency of XML Markup
	Locking and Unlocking XML Markup
	Formatting and Indenting XML Documents
	Setting an Indent Size to Zero
	Format and Indent (Pretty-Print) Multiple Files

	Managing Highlighted Content
	Quick Assist Support for IDs and IDREFS
	Highlight ID Occurrences in Text Mode
	Contextual Menu Actions in Text Mode

	Editing XML Documents in Grid Mode
	Editing Actions in Grid Mode
	Sorting a Table Column
	Inserting a Row in a Table
	Inserting a Column in a Table
	Clearing the Content of a Column
	Adding Nodes
	Duplicating Nodes
	Refresh Layout
	Editing a Cell Value

	Drag and Drop in the Grid Editing Mode
	Copy and Paste in the Grid Editing Mode
	Content Completion Assistant in Grid Mode

	Validating XML Documents
	Checking XML Well-Formedness
	Validating XML Documents Against a Schema
	Automatic Validation
	Manual Validation Actions
	Presenting Validation Errors in Text Mode
	Customizing Assert Error Messages
	Custom Validators
	Linked Output Messages of an External Engine

	Validation Scenarios
	Creating a New Validation Scenario
	Editing a Validation Scenario

	Sharing Validation Scenarios
	References to XML Schema Specification
	Resolving References to Remote Schemas with an XML Catalog
	Validation Example - A DocBook Validation Error

	XML Quick Fixes
	Quick Fixes for DTD, XSD, and Relax NG Errors
	Schematron Quick Fixes (SQF)

	Associating a Schema to XML Documents
	Associating a Schema Through a Validation Scenario
	Associating a Schema in Validation Scenarios Defined in the Document Type
	Associating a Schema Directly in XML Documents
	Associating a Schema in a Framework (Document Type) Configuration
	Resolving Schema Locations Through XML Catalogs
	Learn Document Structure when Schema is not Detected
	Create a DTD from Learn Document Structure Option

	Finding and Replacing Text in the Current File
	Find/Replace Dialog Box
	Find All Elements Dialog Box
	Quick Find Toolbar
	Keyboard Shortcuts for Finding the Next and Previous Match
	Regular Expressions Syntax

	Finding and Replacing Text in Multiple Files
	Regular Expressions Syntax

	Search and Refactoring Actions for IDs and IDREFS
	Search and Refactor Operations Scope

	Working with Modular XML Files in the Master Files Context
	XML Resource Hierarchy/Dependencies View
	Moving/Renaming XML Resources

	Working with XML Catalogs
	Resolving Schema Locations Through XML Catalogs

	Editing Large XML Documents with DTD Entities or XInclude
	Including Document Parts with DTD Entities
	Including Document Parts with XInclude

	Viewing Status Information
	Making a Persistent Copy of Results
	Editor Highlights
	Printing a Document
	Refactoring XML Documents
	Predefined Refactoring Operations
	Custom Refactoring Operations
	Custom Refactoring Script
	Custom Refactoring Operation Descriptor File
	XQuery Update Script for Creating a Custom Operation
	XSLT Stylesheet for Creating a Custom Operation

	Storing and Sharing Refactoring Operations
	Localizing XML Refactoring Operations

	Editing XSLT Stylesheets
	Editing XSLT Stylesheets in the Master Files Context
	Validating XSLT Stylesheets
	Creating a Validation Scenario for XSLT Stylesheets
	Validating XSLT Stylesheets with Custom Engines

	XSLT Quick Fix Support
	Content Completion in XSLT Stylesheets
	Content Completion in XPath Expressions
	Tooltip Helper for the XPath Functions Arguments

	Syntax Highlighting in XSLT
	XSLT Outline View
	XSLT/XQuery Input View
	XSLT Resource Hierarchy/Dependencies View
	Moving/Renaming XSLT Resources

	XSLT Component Dependencies View
	Highlight Component Occurrences
	Finding XSLT References and Declarations
	XSLT Stylesheet Component Documentation Support
	XSLT Refactoring Actions
	XSLT Quick Assist Support
	XSLT Unit Test (XSpec)
	Generating Documentation for an XSLT Stylesheet
	Generate XSLT Documentation in HTML Format
	Generate XSLT Documentation in a Custom Format
	Generating XSLT Documentation From the Command-Line Interface

	Compiling an XSL Stylesheet for Saxon

	Editing Ant Build Files
	Editing Ant Build Files in the Context of Master Files
	Validating Ant Build Files
	Create a Validation Scenario for Ant Build Files

	Ant Quick Fix Support
	Content Completion in Ant Build Files
	Syntax Highlighting in Ant Files
	Ant Outline View
	Ant Resource Hierarchy/Dependencies View
	Ant Component Dependencies View
	Highlight Component Occurrences
	Find References and Declarations of Ant Components
	Ant Refactoring Actions
	Ant Quick Assist Support

	Editing XML Schemas
	Design Editing Mode (XML Schema Diagram Editor)
	Navigation in the XML Schema Design Mode
	Schema Editing Actions
	Contextual Menu Actions in the Design Mode
	XML Schema Components
	xs:schema
	xs:element
	xs:attribute
	xs:attributeGroup
	xs:complexType
	xs:simpleType
	xs:alternative
	xs:group
	xs:include
	xs:import
	xs:redefine
	xs:override
	xs:notation
	xs:sequence / xs:choice / xs:all
	xs:any
	xs:anyAttribute
	xs:unique
	xs:key
	xs:keyRef
	xs:selector
	xs:field
	xs:assert
	xs:openContent
	Constructs Used to Group Schema Components
	Attributes
	Constraints
	Substitutions

	Schema Validation
	Edit Schema Namespaces

	Editing XML Schema in Text Editing Mode
	Editing XML Schema in the Master Files Context
	Validating XML Schema Documents
	References to XML Schema Specification

	Quick Fixes for DTD, XSD, and Relax NG Errors
	Content Completion in XML Schema
	Syntax Highlighting in XML Schema
	XML Schema Outline View
	XML Schema Attributes View
	XML Schema Palette View
	XML Schema Facets View
	XML Schema Resource Hierarchy / Dependencies View
	Moving/Renaming XML Schema Resources

	Component Dependencies View for XML Schema
	Highlight Component Occurrences
	Searching and Refactoring Actions in XML Schemas
	XML Schema Quick Assist Support
	Generating Sample XML Files
	Schema Tab (Generate Sample XML Files Tool)
	Options Tab (Generate Sample XML Files Tool)
	Advanced Tab (Generate Sample XML Files Tool)
	Running the Generate Sample XML Files Tool from the Command Line

	Generating Documentation for an XML Schema
	Output Formats for Generating XML Schema Documentation
	Customizing the PDF Output of Generated XML Schema Documentation

	Generating XML Schema Documentation From the Command-Line Interface

	Converting Schema to Another Schema Language
	Converting Database to XML Schema
	Flatten an XML Schema
	XML Schema Regular Expressions Builder
	XML Schema 1.1
	Setting the XML Schema Version

	Editing XQuery Documents
	XQuery Validation
	Content Completion in XQuery
	Syntax Highlighting in XQuery
	Formatting and Indenting XQuery Documents
	Folding in XQuery Documents
	XQuery Outline View
	XQuery Builder View
	XSLT/XQuery Input View
	Generating HTML Documentation for an XQuery Document
	Transforming XML Documents Using XQuery
	Display XQuery Result in Sequence View
	Advanced Saxon HE/PE/EE XQuery Transformation Options
	Updating XML Documents using XQuery

	Editing WSDL Documents
	Editing WSDL Documents in the Master Files Context
	Validating WSDL Documents
	Content Completion Assistance in WSDL Documents
	WSDL Syntax Highlighting
	WSDL Outline View
	WSDL Resource Hierarchy/Dependencies View in WSDL Documents
	Moving/Renaming WSDL Resources

	Component Dependencies View in WSDL Documents
	Highlight Component Occurrences in WSDL Documents
	Searching and Refactoring Operations in WSDL Documents
	Searching and Refactoring Operations Scope in WSDL Documents

	Quick Assist Support in WSDL Documents
	Generating Documentation for WSDL Documents
	Generating WSDL Documentation in HTML Format
	Generating WSDL Documentation in a Custom Format
	Generating WSDL Documentation from the Command-Line Interface

	WSDL SOAP Analyzer
	Testing Remote WSDL Files
	UDDI Registry Browser

	Editing CSS Stylesheets
	Validating CSS Stylesheets
	Specify Custom CSS Properties

	Content Completion in CSS Stylesheets
	Syntax Highlighting in CSS Files
	CSS Outline View
	Folding in CSS Stylesheets
	Formatting and Indenting CSS Stylesheets (Pretty Print)
	Minifying CSS Stylesheets

	Editing LESS CSS Stylesheets
	Validating LESS Stylesheets
	Content Completion in LESS Stylesheets
	Syntax Highlighting in LESS Files
	Compiling LESS Stylesheets to CSS

	Editing Relax NG Schemas
	Editing Relax NG Schema in the Master Files Context
	Relax NG Schema Diagram Editor
	Introduction to Relax NG Schema Diagram Editor
	Full Model View
	Logical Model View
	Symbols Used in the Schema Diagram
	Actions Available in the Schema Diagram Editor

	Validating Relax NG Schema Documents
	Content Completion in Relax NG Schemas
	Syntax Highlighting in Relax NG Schemas
	Quick Fixes for DTD, XSD, and Relax NG Errors
	Relax NG Outline View
	RNG Resource Hierarchy/Dependencies View
	Moving/Renaming RNG Resources

	Component Dependencies View for RelaxNG Schemas
	Searching and Refactoring Actions in RNG Schemas
	RNG Quick Assist Support
	Configuring a Custom Datatype Library for a RELAX NG Schema

	Editing NVDL Schemas
	NVDL Schema Diagram
	Introduction to NVDL Schema Diagram Editor
	Full Model View
	Logical Model View
	Actions Available in the Diagram Editor

	Validating NVDL Schema Documents
	Content Completion in NVDL Schemas
	Syntax Highlighting in NVDL Schemas
	NVDL Outline View
	Component Dependencies View for NVDL Schemas
	Searching and Refactoring Actions in NVDL Schemas

	Editing JSON Documents
	Editing JSON Documents in Text Mode
	Editing JSON Documents in Grid Mode
	Validating JSON Documents
	Syntax Highlighting in JSON Documents
	Folding in JSON
	JSON Outline View
	XML to JSON Converter

	Editing StratML Documents
	Editing XLIFF Documents
	Editing JavaScript Documents
	JavaScript Editing Actions
	Validating JavaScript Files
	Content Completion in JavaScript Documents
	Syntax Highlighting in JavaScript Documents
	JavaScript Outline View

	Editing XProc Scripts
	Editing Schematron Schemas
	Editing Schematron Schema in the Master Files Context
	Validating Schematron Documents
	Presenting Schematron Validation Issues
	Content Completion in Schematron Documents
	Syntax Highlighting in Schematron
	XML Schema or RELAX NG with Embedded Schematron Rules
	Schematron Outline View
	Schematron Resource Hierarchy/Dependencies View
	Moving/Renaming Schematron Resources

	Highlight Component Occurrences in Schematron Documents
	Searching and Refactoring Operations in Schematron Documents
	Searching and Refactoring Operations Scope in Schematron Documents

	Quick Assist Support in Schematron Documents

	Editing Schematron Quick Fixes
	Schematron Quick Fixes (SQF)
	Defining Schematron Quick Fixes
	Basic Schematron Quick Fix Operations
	User Entry SQF Operation
	Restricting Quick Fix Operations
	Formatting/Indenting Content Inserted by SQF Operations
	Executing Schematron Quick Fixes in Other Documents

	Validating Schematron Quick Fixes
	Content Completion in SQF
	Highlight Quick Fix Occurrences in SQF
	Searching and Refactoring Operations in SQF
	Embed Schematron Quick Fixes in Relax NG or XML Schema
	Integrating SQF in a Framework

	Editing SVG Files
	Standalone SVG Viewer
	Integrated SVG Viewer in the Results Panel

	Editing XHTML Documents
	Editing Markdown Documents
	Markdown Editor
	Creating New Markdown Documents
	Actions Available in the Markdown Editor
	Syntax Highlighting in the Markdown Editor
	Automatic Validation in Markdown Documents
	Working with Markdown Documents in DITA
	Markdown Editor Syntax Rules and Specifications

	Editing Non-XML Files
	Spell Checking
	Spell Check Dictionaries and Term Lists
	Adding Custom Dictionaries and Term Lists
	Adding Spell Check Dictionaries
	Adding Spell Check Term Lists

	Replacing a Spell Check Dictionary

	Learned Words
	Ignored Words (Elements)
	Automatic Spell Check
	Spell Check Multiple Files

	Loading Large Documents
	File Sizes Smaller than 300 MB
	File Sizes Greater than 300 MB

	Scratch Buffer
	Handling Read-Only Files
	Editing Documents with Long Lines
	XML Digital Signatures
	Digital Signatures Overview
	Certificates
	Canonicalizing Files
	Signing Files
	Verifying Signature
	Example of How to Digitally Sign XML Files or Content

	Compare Files or Directories
	Compare Files
	Toolbar and Contextual Menu Actions of the Compare Files Tool
	Compare Files Tool Menus

	Compare Directories
	Toolbar and Contextual Menu Actions of the Compare Directories Tool
	Compare Directories Tool Menus
	Compare Images

	Compare Directories Against a Base (3-Way)

	Document Types and Frameworks
	Predefined Document Types (Frameworks)
	DocBook 4 Document Type (Framework)
	DocBook 4 Transformation Scenarios
	DocBook 4 to WebHelp Output
	DocBook to PDF Output Customization
	DocBook to EPUB Transformation
	DocBook to DITA Transformation

	Inserting an olink in DocBook Documents

	DocBook 5 Document Type (Framework)
	DocBook 5 Transformation Scenarios
	DocBook 5 to WebHelp Output
	DocBook to PDF Output Customization
	Show Comments and Tracked Changes in DocBook 5 PDF Output

	DocBook to EPUB Transformation
	DocBook to DITA Transformation

	Inserting an olink in DocBook Documents

	DocBook 5.1 Assembly
	DocBook 5.1 Topic
	DocBook Targetset Document Type (Framework)
	DITA Topics Document Type (Framework)
	DITA Map Document Type (Framework)
	DITA Map Transformation Scenarios
	DITA Map to WebHelp Output
	WebHelp Responsive Output
	WebHelp Responsive with Feedback Output
	WebHelp Classic Output
	WebHelp Classic With Feedback Output
	WebHelp Classic Mobile Output

	DITA Map to PDF Output Customization
	Creating a Customization Directory for PDF Output
	Customizing the Header and Footer in PDF Output
	Adding a Watermark to PDF Output
	Force Page Breaks Between Two Block Elements in PDF Output
	Customizing note Images in PDF
	Show Comments and Tracked Changes in PDF Output
	Set a Font for PDF Output Generated with FO Processor

	DITA Map to PDF WYSIWYG Transformation
	DITA Map to MS Office Word Transformation
	Compiled HTML Help (CHM) Output Format
	Kindle Output Format

	XHTML Document Type (Framework)
	TEI P5 Document Type (Framework)
	Customization of TEI Frameworks Using the Compiled Sources

	TEI ODD Document Type (Framework)
	jTEI Document Type (Framework)
	JATS Document Type (Framework)
	EPUB Document Type (Framework)

	Other Supported Document Types

	Publishing
	Transformation Scenarios
	Built-in Transformation Scenarios
	DocBook 4 Transformation Scenarios
	DocBook 4 to WebHelp Output
	DocBook to PDF Output Customization
	DocBook to DITA Transformation
	DocBook to EPUB Transformation

	DocBook 5 Transformation Scenarios
	DocBook 5 to WebHelp Output
	DocBook to PDF Output Customization
	Show Comments and Tracked Changes in DocBook 5 PDF Output

	DocBook to DITA Transformation
	DocBook to EPUB Transformation

	DITA Map Transformation Scenarios
	DITA Map to WebHelp Output
	WebHelp Responsive Output
	WebHelp Responsive with Feedback Output
	WebHelp Classic Output
	WebHelp Classic With Feedback Output
	WebHelp Classic Mobile Output

	DITA Map to PDF Output Customization
	Creating a Customization Directory for PDF Output
	Customizing the Header and Footer in PDF Output
	Adding a Watermark to PDF Output
	Force Page Breaks Between Two Block Elements in PDF Output
	Customizing note Images in PDF
	Show Comments and Tracked Changes in PDF Output
	Set a Font for PDF Output Generated with FO Processor

	DITA Map to PDF WYSIWYG Transformation
	Compiled HTML Help (CHM) Output Format
	Kindle Output Format

	Creating New Transformation Scenarios
	XML Transformation with XSLT
	XSLT Tab
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets
	Advanced Saxon HE/PE/EE XSLT Transformation Options

	FO Processor Tab (XSLT Transformations)
	Output Tab (XSLT Transformations)

	XML Transformation with XQuery
	XQuery Tab
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	DITA OT Transformation
	Skins Tab (DITA OT Transformations)
	Templates Tab (DITA OT Transformations)
	FO Processor Tab (DITA OT Transformations)
	Parameters Tab (DITA OT Transformations)
	Filters Tab (DITA Transformations)
	Advanced Tab (DITA OT Transformations)
	Output Tab (DITA OT Transformations)
	Troubleshooting DITA Transformation Errors

	Ant Transformation
	Options Tab (Ant Transformations)
	Parameters Tab (Ant Transformations)
	Output Tab (Ant Transformations)

	XSLT Transformation
	XSLT Tab
	XSLT Parameters
	XSLT Extensions
	Additional XSLT Stylesheets
	Advanced Saxon HE/PE/EE XSLT Transformation Options

	FO Processor Tab (XSLT Transformations)
	Output Tab (XSLT Transformations)

	XProc Transformation
	XProc Tab
	Inputs Tab (XProc Transformations)
	Parameters Tab (XProc Transformations)
	Outputs Tab (XProc Transformations)
	Options Tab (XProc Transformations)

	XQuery Transformation
	XQuery Tab
	XQuery Parameters
	XQuery Extensions
	Advanced Saxon HE/PE/EE XQuery Transformation Options

	FO Processor Tab (XQuery Transformations)
	Output Tab (XQuery Transformations)

	SQL Transformation

	Editing a Transformation Scenario
	Duplicating a Transformation Scenario
	Configure Transformation Scenario(s) Dialog Box
	Apply Batch Transformations
	Sharing Transformation Scenarios
	Transformation Scenarios View
	Debugging PDF Transformations
	Configuring Calabash with XEP
	Integration of an External XProc Engine
	XSLT Processors
	Supported XSLT Processors
	Configuring Custom XSLT Processors
	Configuring the XSLT Processor Extensions Paths

	XSL-FO Processors
	Built-in XSL-FO Processor
	Add a Font to the Built-in FO Processor - Simple Version
	Add a Font to the Built-in FO Processor
	Adding Libraries to the Built-in FO Processor (XML with XSLT and FO)
	Adding Libraries to the Built-in FO Processor (DITA-OT)

	WebHelp System Output
	WebHelp Responsive System
	WebHelp Responsive with Feedback System
	Deploying a Feedback-Enabled WebHelp System
	Refreshing the Content of a Feedback-Enabled WebHelp System
	Managing Users and Comments in a Feedback-Enabled WebHelp System

	WebHelp Responsive Template Mechanism
	WebHelp Responsive Template Directory Structure
	WebHelp Responsive Template Files
	WebHelp Responsive Main Page Template
	WebHelp Responsive Topic Template
	WebHelp Responsive Search Results Template
	WebHelp Responsive Index Terms Template

	WebHelp Responsive Template Components

	Customizing the WebHelp Responsive Output
	WebHelp Responsive Customization Methods
	Copying Additional Resources to WebHelp Output Directory
	Adding Custom HTML Content in WebHelp Responsive Output
	Adding a Favicon in WebHelp Systems
	Adding a Logo Image in the Title Area
	Adding a Welcome Message in the Home Page
	Adding Video and Audio Objects in DITA WebHelp Output
	Configuring the Tiles on the Main Page
	Change Numbering Styles for Ordered Lists
	CSS Styling to Customize WebHelp Output
	Customizing the Menu
	Editing Scoring Values of Tag Elements in Search Results
	Exclude Certain DITA Topics from WebHelp Search Results
	Flag DITA Content in WebHelp Output
	Integrating Social Media and Google Tools in WebHelp Output
	How to Add a Facebook Like Button in WebHelp Responsive Output
	How to Add a Google+ Button in WebHelp Responsive Output
	How to Add Tweet Button in WebHelp Responsive Output
	How to Integrate Google Analytics in WebHelp Responsive Output
	How to Integrate Google Search in WebHelp Responsive Output

	Localizing the Email Notifications of WebHelp with Feedback Systems
	Localizing the Interface of WebHelp Output (for DITA Map Transformations)
	Searching Japanese Content in WebHelp Pages
	Overriding an XSLT Processing Step of the DITA WebHelp Transformation
	WebHelp XSLT-Import and XSLT-Parameter Extension Points
	Example: Customizing Side TOC Using XSLT-Import/Parameter Extension Points

	Overriding a WebHelp XSLT Stylesheet from an Ant Build File

	Search Engine Optimization for DITA WebHelp
	Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp
	WebHelp Responsive Runtime Additional Parameters

	Context-Sensitive WebHelp Responsive System
	Publishing WebHelp Responsive Output on a SharePoint Site

	WebHelp Classic System
	WebHelp Classic with Feedback System
	Deploying a Feedback-Enabled WebHelp System
	Refreshing the Content of a Feedback-Enabled WebHelp System
	Managing Users and Comments in a Feedback-Enabled WebHelp System

	Customizing WebHelp Classic Systems
	Copying Additional Resources to WebHelp Output Directory
	Adding Custom HTML Content in WebHelp Classic Output
	Adding a Button in Code Snippet Areas in DITA WebHelp Classic Output
	Adding a Favicon in WebHelp Systems
	Adding a Logo Image in the Title Area
	Adding Video and Audio Objects in DITA WebHelp Output
	Adding Videos in DocBook WebHelp Classic Output
	Change Numbering Styles for Ordered Lists
	Changing the Icons in a WebHelp Classic Table of Contents
	CSS Styling to Customize WebHelp Output
	Customize the Appearance of Selected Items in the Table of Contents
	Customizing WebHelp Output with a Custom CSS
	Disable Caching in WebHelp Classic Output
	Editing Scoring Values of Tag Elements in Search Results
	Exclude Certain DITA Topics from WebHelp Search Results
	Flag DITA Content in WebHelp Output
	Integrating Social Media and Google Tools in WebHelp Output
	How to Add a Facebook Like Button in WebHelp Classic Output
	How to Add a Google+ Button in WebHelp Classic Output
	How to Add Tweet Button in WebHelp Classic Output
	How to Integrate Google Analytics in WebHelp Classic Output
	How to Integrate Google Search in WebHelp Classic Output

	Localizing the Email Notifications of WebHelp with Feedback Systems
	Localizing the Interface of WebHelp Output
	Localizing the Interface of WebHelp Output (for DITA Map Transformations)
	Localizing the Interface of WebHelp Output (for DocBook Transformations)

	Searching Japanese Content in WebHelp Pages
	Overriding an XSLT Processing Step of the DITA WebHelp Transformation
	WebHelp XSLT-Import and XSLT-Parameter Extension Points
	Example: Customizing Side TOC Using XSLT-Import/Parameter Extension Points

	Overriding a WebHelp XSLT Stylesheet from an Ant Build File

	Removing the Previous/Next Links from WebHelp Classic Output
	Search Engine Optimization for DITA WebHelp
	Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp
	WebHelp Skin Builder
	WebHelp Classic Runtime Additional Parameters

	Context-Sensitive WebHelp Classic System
	Publishing WebHelp Classic Output on a SharePoint Site

	WebHelp Classic Mobile System (Deprecated)
	Customizing WebHelp Classic Mobile Systems
	Copying Additional Resources to WebHelp Output Directory
	Adding Custom HTML Content in WebHelp Classic Output
	Adding a Button in Code Snippet Areas in DITA WebHelp Classic Output
	Adding a Favicon in WebHelp Systems
	Adding Video and Audio Objects in DITA WebHelp Output
	Adding Videos in DocBook WebHelp Classic Output
	Changing the Style of WebHelp Mobile Pages
	Change Numbering Styles for Ordered Lists
	Changing the Icons in a WebHelp Classic Table of Contents
	CSS Styling to Customize WebHelp Output
	Customize the Appearance of Selected Items in the Table of Contents
	Customizing WebHelp Output with a Custom CSS
	Disable Caching in WebHelp Classic Output
	Editing Scoring Values of Tag Elements in Search Results
	Exclude Certain DITA Topics from WebHelp Search Results
	Flag DITA Content in WebHelp Output
	Integrating Social Media and Google Tools in WebHelp Output
	How to Add a Facebook Like Button in WebHelp Classic Output
	How to Add a Google+ Button in WebHelp Classic Output
	How to Add Tweet Button in WebHelp Classic Output
	How to Integrate Google Analytics in WebHelp Classic Output
	How to Integrate Google Search in WebHelp Classic Output

	Localizing the Interface of WebHelp Output
	Localizing the Interface of WebHelp Output (for DITA Map Transformations)
	Localizing the Interface of WebHelp Output (for DocBook Transformations)

	Searching Japanese Content in WebHelp Pages
	Overriding an XSLT Processing Step of the DITA WebHelp Transformation
	WebHelp XSLT-Import and XSLT-Parameter Extension Points
	Example: Customizing Side TOC Using XSLT-Import/Parameter Extension Points

	Overriding a WebHelp XSLT Stylesheet from an Ant Build File

	Removing the Previous/Next Links from WebHelp Classic Output
	Search Engine Optimization for DITA WebHelp
	Support for Right-to-Left (RTL) Oriented Languages for DITA WebHelp
	WebHelp Classic Runtime Additional Parameters

	Context-Sensitive WebHelp Classic System
	Publishing WebHelp Classic Output on a SharePoint Site

	Using the Oxygen XML WebHelp Plugin to Automate Output
	Oxygen XML WebHelp Plugin for DITA
	Integrating the Oxygen XML WebHelp Plugin with the DITA Open Toolkit
	Licensing the Oxygen XML WebHelp Plugin for DITA OT
	Upgrading the Oxygen XML WebHelp Plugin for DITA OT
	Running an External DITA Transformation Using the Oxygen XML WebHelp Plugin
	Additional Oxygen XML WebHelp Plugin Parameters for DITA
	Customization Example: Apply Custom Styling to an External Transformation

	Configuring the Comment Database for DITA WebHelp Systems with Feedback
	Building Oxygen XML WebHelp Output on Jenkins
	Building Oxygen XML WebHelp Output on Travis CI

	Oxygen XML WebHelp Plugin for DocBook
	Integrating the Oxygen XML WebHelp Plugin with the DocBook XSL Distribution
	Licensing the Oxygen XML WebHelp Plugin for DocBook
	Upgrading the Oxygen XML WebHelp Plugin for DocBook
	Running an External DocBook Transformation Using the WebHelp Plugin
	Additional Oxygen XML WebHelp Plugin Parameters for DocBook

	Configuring the Comment Database for DocBook WebHelp Classic with Feedback

	Working with XPath Expressions
	XPath Toolbar
	XPath Builder View
	XPath Expression Results View
	XPath and XML Catalogs
	XPath Prefix Mapping

	Working with Archives
	Browsing Archives
	Working with Archive Files
	Creating an Archive
	Editing and Saving Files Inside an Archive
	Migrating Archives to DITA or TEI

	Databases and CMS
	Working with Databases
	Data Source Explorer View
	Table Explorer View
	Database Connection Support
	IBM DB2 Database Connections
	Configuring an IBM DB2 Database Connection
	How to Configure IBM DB2 Data Source Drivers
	How to Configure an IBM DB2 Connection

	IBM DB2 Contextual Menu Actions

	Microsoft SQL Server Database Connections
	Configuring a Microsoft SQL Server Connection
	How to Configure Microsoft SQL Server Data Source Drivers
	How to Configure a Microsoft SQL Server Connection

	Microsoft SQL Server Contextual Menu Actions

	Oracle Database Connections
	Configuring an Oracle 11g Database Connection
	How to Configure Oracle 11g Data Source Drivers
	How to Configure an Oracle 11g Connection

	Oracle Database Contextual Menu Actions

	PostgreSQL Database Connections
	Configuring a PostgreSQL Database Connection
	How to Configure PostgreSQL 8.3 Data Source Drivers
	How to Configure a PostgreSQL 8.3 Connection

	PostgreSQL Contextual Menu Actions

	Berkeley DB XML Database Connections
	Configuring a Berkeley DB XML Database Connection
	How to Configure Berkeley DB XML Data Source Drivers
	How to Configure a Berkeley DB XML Connection

	Berkeley DB XML Contextual Menu Actions
	Debugging with Berkeley DB XML

	eXist Database Connections
	Configuring an eXist Database Connection
	How to Configure eXist Data Source Drivers
	How to Configure an eXist Connection

	eXist Contextual Menu Actions

	MarkLogic Database Connections
	Configuring a MarkLogic Database Connection
	How to Configure MarkLogic Data Source Drivers
	How to Configure a MarkLogic Connection

	MarkLogic Development in Oxygen XML Developer
	Debugging with MarkLogic
	Using Breakpoints for Debugging Queries that Import Modules with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger

	MarkLogic Contextual Menu Actions

	Documentum xDB (X-Hive/DB) 10 Database Connections
	Configuring a Documentum xDB (X-Hive/DB) 10 Database Connection
	How to Configure Documentum xDB (X-Hive/DB) 10 Data Source Drivers
	How to Configure an Documentum xDB (X-Hive/DB) 10 Connection

	Documentum xDB (X-Hive/DB) 10 Contextual Menu Actions
	Documentum xDB (X-Hive/DB) 10 Parser Configuration for Adding XML Instances
	Troubleshooting Documentum xDB

	MySQL Database Connections
	Configuring a MySQL Database Connection
	How to Configure MySQL Data Source Drivers
	How to Configure a MySQL Connection

	Generic JDBC Database Connections
	Configuring a Generic JDBC Database Connection
	How to Configure Generic JDBC Data Source Drivers
	How to Configure a Generic JDBC Connection

	JDBC-ODBC Database Connections
	How to Configure a JDBC-ODBC Connection

	BaseX Database Connections
	How to Configure a BaseX Connection
	BaseX Contextual Menu Actions
	Base X XQJ Connection
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	WebDAV Connections
	How to Configure a WebDAV Connection
	WebDAV Contextual Menu Actions

	SQL Execution Support
	Drag and Drop from Data Source Explorer View
	SQL Validation
	Executing SQL Statements

	XQuery and Databases
	Build Queries with Drag and Drop from the Data Source Explorer View
	XQuery Validation When Connected to a Database
	XQuery Transformation for Databases
	XQuery XQJ Transformation
	How to Configure an XQJ Data Source
	How to Configure an XQJ Connection

	XQuery Database Debugging
	Debugging with MarkLogic
	Using Breakpoints for Debugging Queries that Import Modules with MarkLogic
	Peculiarities and Limitations of the MarkLogic Debugger

	Debugging with Berkeley DB XML

	Content Management System (CMS) Integration
	Integration with Documentum (CMS) (deprecated)
	Configuring a Documentum (CMS) Database Connection
	How to Configure Documentum (CMS) Data Source Drivers
	How to Configure a Documentum (CMS) Connection
	Known Issues with Documentum (CMS)

	Documentum (CMS) Contextual Menu Actions

	Integration with Microsoft SharePoint
	How to Configure a SharePoint Connection
	SharePoint Browser View
	SharePoint Contextual Menu Actions

	Importing Data
	Import from Text Files
	Import from MS Excel Files
	Import Data from MS Excel 2007 or Newer

	Import Database Data as an XML Document
	Import from HTML Files
	Import Content Dynamically

	XSLT / XQuery Debugging
	Debugger Layout
	Control Toolbar
	Debugging Information Views
	Context Node View
	XPath Watch (XWatch) View
	Breakpoints View
	Messages View
	Stack View
	Output Mapping Stack View
	Trace History View
	Templates View
	Nodes/Values Set View
	Variables View

	Multiple Output Documents in XSLT 2.0 and XSLT 3.0

	Working with the XSLT / XQuery Debugger
	Steps in a Typical Debugging Process
	Using Breakpoints
	Inserting Breakpoints
	Removing Breakpoints

	Identify the XSLT / XQuery Expression that Generated Particular Output

	Debugging Java Extensions
	Supported Processors for XSLT / XQuery Debugging
	Performance Profiling of XSLT Stylesheets and XQuery Documents
	XSLT/XQuery Performance Profiling Overview
	Working with XSLT/XQuery Profiler
	Invocation Tree View
	Hotspots View

	Using the Oxygen XML SDK
	Extending Oxygen XML Developer with Plugins
	General Configuration of an Oxygen XML Developer Plugin
	Installing an Oxygen XML Developer Plugin
	Types of Plugin Extensions Available with the SDK
	Additional Framework Plugin Extension
	Components Validation Plugin Extension
	Custom Protocol Plugin Extension
	Lock Handler Plugin Extension
	Open Redirect Plugin Extension
	Option Page Plugin Extension
	Resource Locking Custom Protocol Plugin Extension
	Targeted URL Stream Handler Plugin Extension
	Workspace Access Plugin Extension
	Adding a Custom View in Oxygen XML Developer

	Workspace Access Plugin Extension (JavaScript-Based)
	XML Refactoring Operations Plugin Extension
	Plugin Extensions Designed to Work only in the Text Editing Mode
	General Plugin Extension
	Selection Plugin Extension
	Example - Uppercase Plugin

	Document Plugin Extension

	Oxygen XML Developer Plugin How to...
	How to Write a CMS Integration Plugin
	Class Loading Issues

	How to Write A Custom Protocol Plugin
	Packing and Deploying Plugins as Add-ons
	How to Share a Class Loader Between a Framework and Plugin

	Creating and Running Automated Tests
	Debugging a Plugin Using the Eclipse Workbench
	Debugging an Oxygen SDK Extension Using the Eclipse Workbench
	Disabling a Plugin

	Tools
	XML Refactoring
	Predefined Refactoring Operations
	Custom Refactoring Operations
	Custom Refactoring Script
	Custom Refactoring Operation Descriptor File
	XSLT Stylesheet for Creating a Custom Operation

	Storing and Sharing Refactoring Operations
	Localizing XML Refactoring Operations

	Generate Sample XML Files
	Schema Tab (Generate Sample XML Files Tool)
	Options Tab (Generate Sample XML Files Tool)
	Advanced Tab (Generate Sample XML Files Tool)
	Running the Generate Sample XML Files Tool from the Command Line

	Generate/Convert Schema
	Convert DB Structure to XML Schema
	Flatten Schema
	XML to JSON
	Compile XSL Stylesheet for Saxon
	Format and Indent Files
	Generate Documentation
	XML Schema Documentation
	XSLT Stylesheet Documentation
	XQuery Documentation
	WSDL Documentation

	Canonicalize
	Sign
	Verify Signature
	WSDL SOAP Analyzer
	Testing Remote WSDL Files
	UDDI Registry Browser

	XML Schema Regular Expressions Builder
	Large File Viewer
	Hex Viewer
	SVG Viewer
	Tree Editor
	Compare Files
	Toolbar and Contextual Menu Actions of the Compare Files Tool
	Compare Files Tool Menus

	Compare Directories
	Toolbar and Contextual Menu Actions of the Compare Directories Tool
	Compare Directories Tool Menus
	Compare Images

	Compare Directories Against a Base (3-Way)
	Syncro SVN Client
	Main Window
	Views
	SVN Main Menu
	SVN Main Toolbar
	Status Bar

	Getting Started
	SVN Repository Location
	Add / Edit / Remove Repository Locations
	Authentication

	Share a Project
	Defining a Working Copy
	Check Out a Working Copy
	History Dialog Box

	Use an Existing Working Copy

	Manage Working Copy Resources
	Edit Files
	Add Resources to Version Control
	Ignore Resources Not Under Version Control
	Delete Resources
	Copy Resources
	Move Resources
	Rename Resources
	Lock / Unlock Resources
	Scanning for Locks
	Locking a File
	Unlocking a File

	Synchronize with Repository
	View Differences
	Conflicts
	Real Conflicts vs Mergeable Conflicts
	Content Conflicts vs Property Conflicts
	Edit Real Content Conflicts
	Revert Your Changes
	Merge Conflicted Resources
	Drop Incoming Modifications
	Tree Conflicts

	Update the Working Copy
	Send Your Changes to the Repository
	Committing to Multiple Locations

	Integration with Bug Tracking Tools

	Obtain Information for a Resource
	Request Status Information for a Resource
	Request History for a Resource

	Management of SVN Properties
	Branches and Tags
	Create a Branch / Tag
	Merging
	Pre-Merge Checks
	Merge Revisions
	Synchronize a Branch
	Reintegrate a Branch
	Merge Two Different Trees
	Merge Options
	Resolving Merge Conflicts
	Additional Notes About the Merge Operation

	Switch the Repository Location
	Relocate a Working Copy
	Patches
	Generating a Patch - Local Items
	Create Patch from Local Modifications
	Create Patch Against a Specific Revision
	Create Patch Between Two Revisions of an Item
	Create Patch Between Two Repository Items

	Generating a Patch - Remote Items
	Create Patch Between Two Revisions of an Item
	Create Patch Between Two Repository Items

	Patch Options

	Working with Repositories
	Importing Resources Into a Repository
	Exporting Resources From a Repository
	Copy / Move / Delete Resources From a Repository

	Sparse Checkout

	Syncro SVN Client Views
	Repositories View
	Toolbar
	Repositories View Contextual Menu Actions
	Assistant Actions
	Drag and Drop Operations

	Working Copy View
	Working Copy Settings
	Working Copy Format
	Refresh a Working Copy
	Working Copy View Contextual Menu Actions
	Drag and Drop Operations
	Assistant Actions

	History View
	History Filter Dialog Box
	History Filter Field
	History View Contextual Menu Actions

	Directory Change Set View
	Editor Panel of SVN Client
	Annotations View
	Compare View
	Compare View Toolbar

	Image Preview
	Compare Images View
	Properties View
	svn:externals Property
	Toolbar / Contextual Menu

	Console View
	Dynamic Help View

	Revision Graph of a SVN Resource
	Oxygen XML Developer SVN Preferences
	Entering Local Paths and URLs
	Technical Issues
	Authentication Certificates Not Saved
	Updating Newly Added Resources
	Cannot Access a Repository through HTTPS
	Accessing Old Items from a Repository
	Checksum Mismatch Error

	External Tools

	Common Problems
	Performance Problems and Solutions
	Out of Memory on External Processes
	Too many nested apply-templates calls Error When Running a Transformation
	Performance Issues with Large Documents

	Misc Problems and Solutions
	'Address Family Not Supported by Protocol Family; Connect' Error
	Alignment Issues of the Main Menu on Linux Systems Based on Gnome 3.x
	Archive Distribution Fails to Run on Mac OS 10.12 (Sierra)
	Cannot Associate Oxygen XML Developer With a File Type on My Windows Computer
	Cannot Connect to SVN Repository from Repositories View
	Cannot Open XML Files in Internet Explorer
	Compatibility Issue Between Java and Certain Graphics Card Drivers
	Crash at Startup on Windows with an Error About the nvoglv32.dll File
	Damaged File Associations on OS X
	Details to Submit in a Request for Technical Support Using the Online Form
	DITA Map Transformation Fails (Cannot Connect to External Location)
	DITA PDF Transformation Fails
	DITA to CHM Transformation Fails
	Drag and Drop Without Initial Selection Does Not Work
	Gray Window on Linux With the Compiz / Beryl Window Manager
	Image Appears Stretched Out in the PDF Output
	Keyboard Shortcuts Do Not Work
	Keyboard Language Resets to Default on Windows
	MSXML 4.0 Transformation Issues
	Navigation to the web page was canceled when viewing CHM on a Network Drive
	Out Of Memory Error When Opening Large Documents
	Oxygen XML Developer Crashed on My Mac OS X Computer
	Oxygen XML Developer Takes Several Minutes to Start
	Scroll Function of my Notebook Trackpad is Not Working
	Segmentation Fault Error on Mac OS X
	Set Specific JVM Version on Mac OS X
	Signature Verification Failed Error on a Resource from Documentum
	Special Characters are Replaced with a Square in Editor
	Syntax Highlight Not Available in Eclipse Plugin
	TocJS Transformation Does not Generate All Files for a Tree-Like TOC
	Topic References Outside the Main DITA Map Folder
	Wrong Highlights of Matched Words in a Search in User Manual
	XML Document Takes a Long Time to Open
	XSLT Debugger Is Very Slow

	Glossary
	Active Cell
	Anchor
	Apache Ant
	Block Element
	Bookmap
	Callout
	Canonicalize
	Content Completion Assistant
	Dockable
	Document Fragment
	Document Type Association
	DITA Map
	DITA-OT-DIR
	Foldable Element
	Framework
	Global Options
	IDML
	Inline Element
	Java Archive
	Key Space
	Keystore
	Master File
	Named User
	Perspective
	Plugin
	Pretty-Print
	Project Options
	QName
	Quick Assist
	Quick Fix
	Root Map
	Space-Preserved Element
	Subject Scheme Map
	Working Set
	XML Catalog

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

